Fuel Cell-Based and Hybrid Power Generation Systems Modelling
Conflicts of Interest
List of Contributions
- Pajak, M.; Brus, G.; Szmyd, J. Catalyst Distribution Optimization Scheme for Effective Green Hydrogen Production from Biogas Reforming. Energies 2021, 14, 5558. https://doi.org/10.3390/en14175558.
- Vasyukov, I.; Pavlenko, A.; Puzin, V.; Batishchev, D.; Bolshenko, I. Mathematical Modeling of an Electrotechnical Complex of a Power Unit Based on Hydrogen Fuel Cells for Unmanned Aerial Vehicles. Energies 2021, 14, 6974. https://doi.org/10.3390/en14216974.
- Choi, E.; Yu, S.; Lee, S. Optimization of Operating Conditions of a Solid Oxide Fuel Cell System with Anode Off-Gas Recirculation Using the Model-Based Sensitivity Analysis. Energies 2022, 15, 644. https://doi.org/10.3390/en15020644.
- Hollmann, J.; Fuchs, M.; Spieker, C.; Gardemann, U.; Steffen, M.; Luo, X.; Kabelac, S. System Simulation and Analysis of an LNG-Fueled SOFC System Using Additively Manufactured High Temperature Heat Exchangers. Energies 2022, 15, 941. https://doi.org/10.3390/en15030941.
- Ghanem, R.; Nousch, L.; Richter, M. Modeling of a Grid-Independent Set-Up of a PV/SOFC Micro-CHP System Combined with a Seasonal Energy Storage for Residential Applications. Energies 2022, 15, 1388. https://doi.org/10.3390/en15041388.
- Crespi, E.; Guandalini, G.; Nieto Cantero, G.; Campanari, S. Dynamic Modeling of a PEM Fuel Cell Power Plant for Flexibility Optimization and Grid Support. Energies 2022, 15, 4801. https://doi.org/10.3390/en15134801.
- Pielecha, I. Modeling of Fuel Cells Characteristics in Relation to Real Driving Conditions of FCHEV Vehicles. Energies 2022, 15, 6753. https://doi.org/10.3390/en15186753.
- Olesen, A.; Kær, S.; Berning, T. A Multi-Fluid Model for Water and Methanol Transport in a Direct Methanol Fuel Cell. Energies 2022, 15, 6869. https://doi.org/10.3390/en15196869.
- De Lorenzo, G.; Piraino, F.; Longo, F.; Tinè, G.; Boscaino, V.; Panzavecchia, N.; Caccia, M.; Fragiacomo, P. Modelling and Performance Analysis of an Autonomous Marine Vehicle Powered by a Fuel Cell Hybrid Powertrain. Energies 2022, 15, 6926. https://doi.org/10.3390/en15196926.
- Giacoppo, G.; Trocino, S.; Lo Vecchio, C.; Baglio, V.; Díez-García, M.; Aricò, A.; Barbera, O. Numerical 3D Model of a Novel Photoelectrolysis Tandem Cell with Solid Electrolyte for Green Hydrogen Production. Energies 2023, 16, 1953; https://doi.org/10.3390/en16041953.
References
- Zhang, Y.; Liu, L.; Lan, M.; Su, Z.; Wang, K. Climate Change and Economic Policy Uncertainty: Evidence from Major Countries around the World. Econ. Anal. Policy 2024, 81, 1045–1060. [Google Scholar] [CrossRef]
- Tadadjeu, S.; Njangang, H.; Woldemichael, A. Are Resource-Rich Countries Less Responsive to Global Warming? Oil Wealth and Climate Change Policy. Energy Policy 2023, 182, 113774. [Google Scholar] [CrossRef]
- Maslin, M.A.; Lang, J.; Harvey, F. A Short History of the Successes and Failures of the International Climate Change Negotiations. UCL Open Environ. 2023, 5. [Google Scholar] [CrossRef] [PubMed]
- Henderson, J. Ten Key Conclusions from COP28: A Farewell to Fossil Fuels? In Energy Insight; The Oxford Institute for Energy Studies: Oxford, UK, 2024; Volume 143. [Google Scholar]
- Sinha, A.A.; Sanjay; Ansari, M.Z.; Shukla, A.K.; Choudhary, T. Comprehensive Review on Integration Strategies and Numerical Modeling of Fuel Cell Hybrid System for Power & Heat Production. Int. J. Hydrogen Energy 2023, 48, 33669–33704. [Google Scholar] [CrossRef]
- Lee, J.Y.; Tseng, L.H.; Chen, C.L. A Mathematical Technique for Optimal Design of Hybrid Power Systems Considering Demand-Side Management; Elsevier Masson: Issy les Moulineaux, France, 2017; Volume 40, ISBN 9780444639653. [Google Scholar]
- Borba, A.T.A.; Simões, L.J.M.; de Melo, T.R.; Santos, A.Á.B. Techno-Economic Assessment of a Hybrid Renewable Energy System for a County in the State of Bahia. Energies 2024, 17, 572. [Google Scholar] [CrossRef]
- Armoo, E.A.; Mohammed, M.; Narra, S.; Beguedou, E.; Agyenim, F.B.; Kemausuor, F. Achieving Techno-Economic Feasibility for Hybrid Renewable Energy Systems through the Production of Energy and Alternative Fuels. Energies 2024, 17, 735. [Google Scholar] [CrossRef]
- Ran, P.; Ou, Y.F.; Zhang, C.Y.; Chen, Y.T. Energy, Exergy, Economic, and Life Cycle Environmental Analysis of a Novel Biogas-Fueled Solid Oxide Fuel Cell Hybrid Power Generation System Assisted with Solar Thermal Energy Storage Unit. Appl. Energy 2024, 358, 122618. [Google Scholar] [CrossRef]
- Wang, M.; Ruan, J.; Zhang, J.; Jiang, Y.; Gao, F.; Zhang, X.; Rahman, E.; Guo, J. Modeling, Thermodynamic Performance Analysis, and Parameter Optimization of a Hybrid Power Generation System Coupling Thermogalvanic Cells with Alkaline Fuel Cells. Energy 2024, 292, 130557. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Sun, Z.; Chen, Z. A Systematic Review of System Modeling and Control Strategy of Proton Exchange Membrane Fuel Cell. Energy Rev. 2024, 3, 100054. [Google Scholar] [CrossRef]
- Lopez-Juarez, M.; Rockstroh, T.; Novella, R.; Vijayagopal, R. A Methodology to Develop Multi-Physics Dynamic Fuel Cell System Models Validated with Vehicle Realistic Drive Cycle Data. Appl. Energy 2024, 358, 122568. [Google Scholar] [CrossRef]
- Chiara, M.; Pramotton, S.; Marocco, P.; Hugo, A.; Monteverde, A.; Santarelli, M. Optimal Design of a Hydrogen-Powered Fuel Cell System for Aircraft Applications. Energy Convers. Manag. 2024, 306, 118266. [Google Scholar] [CrossRef]
- Yang, S.; Sun, H.; Liu, Z.; Deng, C.; Xie, N. Process Modeling and Analysis of a Combined Heat and Power System Integrating Solid Oxide Fuel Cell and Organic Rankine Cycle for Poultry Litter Utilization. Appl. Therm. Eng. 2024, 236, 121897. [Google Scholar] [CrossRef]
- Ma, L.; Ru, X.; Wang, J.; Lin, Z. System Model and Performance Analysis of a Solid Oxide Fuel Cell System Self-Humidified with Anode off-Gas Recycling. Int. J. Hydrogen Energy 2024, 57, 1164–1173. [Google Scholar] [CrossRef]
- Xu, J.H.; Zhang, B.X.; Yan, H.Z.; Ding, Q.; Zhu, K.Q.; Yang, Y.R.; Huang, T.M.; Li, S.; Wan, Z.M.; Wang, X.D. A Comprehensive Assessment of the Hybrid Power Generation System of PEMFC and Internal Combustion Engine Based on Ammonia Decomposition. Energy 2023, 285, 129559. [Google Scholar] [CrossRef]
- Zhao, K.; Kong, H.; Tan, S.; Yang, X.G.; Zheng, H.; Yang, T.; Wang, H. Analysis of a Hybrid System Combining Solar-Assisted Methanol Reforming and Fuel Cell Power Generation. Energy Convers. Manag. 2023, 297, 117664. [Google Scholar] [CrossRef]
- Soni, P.; Naveena Bhargavi, R.; Dave, V.; Paliwal, H. Artificial Intelligence-Enabled Techno-Economic Analysis and Optimization of Grid-Tied Solar PV-Fuel Cell Hybrid Power Systems for Enhanced Performance. E3S Web Conf. 2024, 472, 03012. [Google Scholar] [CrossRef]
- Hai, T.; Alenizi, F.A.; Flaih, L.R.; Singh Chauhan, B.; Metwally, A.S.M. Dual-Objective Optimization of a Novel Hybrid Power Generation System Based on Hydrogen Production Unit for Emission Reduction. Int. J. Hydrogen Energy 2024, 52, 916–928. [Google Scholar] [CrossRef]
- Koholé, Y.W.; Wankouo Ngouleu, C.A.; Fohagui, F.C.V.; Tchuen, G. Optimization of an Off-Grid Hybrid Photovoltaic/Wind/Diesel/Fuel Cell System for Residential Applications Power Generation Employing Evolutionary Algorithms. Renew. Energy 2024, 224, 120131. [Google Scholar] [CrossRef]
- Xin, R.; Wang, Z.; Zhai, J.; Zhang, J.; Cui, D.; Ji, Y. Simulation of Design and Operation of a Hybrid PV (Photovoltaic)/PEMFC (Proton Exchange Membrane Fuel Cell)/Battery Power System for a Tugboat. Adv. Transdiscipl. Eng. 2023, 38, 250–262. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbera, O. Fuel Cell-Based and Hybrid Power Generation Systems Modelling. Energies 2024, 17, 3340. https://doi.org/10.3390/en17133340
Barbera O. Fuel Cell-Based and Hybrid Power Generation Systems Modelling. Energies. 2024; 17(13):3340. https://doi.org/10.3390/en17133340
Chicago/Turabian StyleBarbera, Orazio. 2024. "Fuel Cell-Based and Hybrid Power Generation Systems Modelling" Energies 17, no. 13: 3340. https://doi.org/10.3390/en17133340
APA StyleBarbera, O. (2024). Fuel Cell-Based and Hybrid Power Generation Systems Modelling. Energies, 17(13), 3340. https://doi.org/10.3390/en17133340