Smart and Sustainable Energy Consumption: A Bibliometric Review and Visualization
Abstract
:1. Introduction
2. Materials and Methods
3. Results of Bibliographic Network Analyses and Visualizations
3.1. Global Citation Score (GCS) Analysis
3.2. Bibliometric Co-Coupling Network (CCN) Analysis
3.3. Burst Detection Analysis (BDA)
3.4. Co-Occurrence Network of Keywords (CONK) Analysis
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahman, A.; Farrok, O.; Haque, M.M. Environmental Impact of Renewable Energy Source Based Electrical Power Plants: Solar, Wind, Hydroelectric, Biomass, Geothermal, Tidal, Ocean, and Osmotic. Renew. Sustain. Energy Rev. 2022, 161, 112279. [Google Scholar] [CrossRef]
- Omer, A.M. Energy Use and Environmental Impacts: A General Review. Adv. Energy Res. 2014, 17, 1–38. [Google Scholar] [CrossRef]
- Kirikkaleli, D.; Adebayo, T.S. Do Renewable Energy Consumption and Financial Development Matter for Environmental Sustainability? New Global Evidence. Sustain. Dev. 2021, 29, 583–594. [Google Scholar] [CrossRef]
- Shafiei, S.; Salim, R.A. Non-Renewable and Renewable Energy Consumption and CO2 Emissions in OECD Countries: A Comparative Analysis. Energy Policy 2014, 66, 547–556. [Google Scholar] [CrossRef]
- Ali, S.; Anwar, S.; Nasreen, S. Renewable and Non-Renewable Energy and Its Impact on Environmental Quality in South Asian Countries. Forman J. Econ. Stud. 2017, 13, 177–194. [Google Scholar] [CrossRef]
- Bilen, K.; Ozyurt, O.; Bakirci, K.; Karsli, S.; Erdogan, S.; Yilmaz, M.; Comakli, O. Energy Production, Consumption, and Environmental Pollution for Sustainable Development: A Case Study in Turkey. Renew. Sustain. Energy Rev. 2008, 12, 1529–1561. [Google Scholar] [CrossRef]
- Destek, M.A.; Sinha, A. Renewable, Non-Renewable Energy Consumption, Economic Growth, Trade Openness and Ecological Footprint: Evidence from Organisation for Economic Co-Operation and Development Countries. J. Clean. Prod. 2020, 242, 118537. [Google Scholar] [CrossRef]
- Kansal, A.; Hsu, J.; Zahedi, S.; Srivastava, M.B. Power Management in Energy Harvesting Sensor Networks. ACM Trans. Embed. Comput. Syst. 2007, 6, 32–70. [Google Scholar] [CrossRef]
- Albertus, P.; Manser, J.S.; Litzelman, S. Long-Duration Electricity Storage Applications, Economics, and Technologies. Joule 2020, 4, 21–32. [Google Scholar] [CrossRef]
- Khazali, A.; Rezaei, N.; Su, W.; Kalantar, M. Risk-Aware Bilevel Optimal Offering Strategy of a Joint Wind/Storage Unit Based on Information Gap Decision Theory. IEEE Syst. J. 2021, 15, 1939–1949. [Google Scholar] [CrossRef]
- Xiao, D.; Chen, H.; Cai, W.; Wei, C.; Zhao, Z. Integrated Risk Measurement and Control for Stochastic Energy Trading of a Wind Storage System in Electricity Markets. Prot. Control Mod. Power Syst. 2023, 8, 60. [Google Scholar] [CrossRef]
- Kraus, S.; Breier, M.; Lim, W.M.; Dabić, M.; Kumar, S.; Kanbach, D.; Mukherjee, D.; Corvello, V.; Piñeiro-Chousa, J.; Liguori, E.; et al. Literature Reviews as Independent Studies: Guidelines for Academic Practice. Rev. Manag. Sci. 2022, 16, 2577–2595. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Sustainable Energy Transition for Renewable and Low Carbon Grid Electricity Generation and Supply. Front. Energy Res. 2022, 9, 743114. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhang, D. Using the Internet of Things in Smart Energy Systems and Networks. Sustain. Cities Soc. 2021, 68, 102783. [Google Scholar] [CrossRef]
- Infield, D.; Freris, L. The Future of Hydro and Marine Power; John Wiley & Sons: Hoboken, NJ, USA, 2020; ISBN 978-1-118-64993-0. [Google Scholar]
- Smith, O.; Cattell, O.; Farcot, E.; O’Dea, R.D.; Hopcraft, K.I. The Effect of Renewable Energy Incorporation on Power Grid Stability and Resilience. Sci. Adv. 2022, 8, 6734. [Google Scholar] [CrossRef]
- Haider, M.U.; Mumtaz, F.; Khan, H.H.; Asif, M.; Rashid, M.S.; Abbas, S.R.; Zeeshan, M. Smart Energy Meters in Renewable-Energy-Based Power Networks: An Extensive Review. Eng. Proc. 2022, 20, 23. [Google Scholar] [CrossRef]
- Izam, N.S.M.N.; Itam, Z.; Sing, W.L.; Syamsir, A. Sustainable Development Perspectives of Solar Energy Technologies with Focus on Solar Photovoltaic—A Review. Energy 2022, 15, 2790. [Google Scholar] [CrossRef]
- Qayyum, F.; Jamil, H.; Ali, F. A Review of Smart Energy Management in Residential Buildings for Smart Cities. Energy 2023, 17, 83. [Google Scholar] [CrossRef]
- Scopus Database Scopus—Document Search. Available online: https://www.scopus.com/search/form.uri?display=basic&zone=header&origin=AuthorProfile#basic (accessed on 11 January 2024).
- Powell, K.R.; Peterson, S.R. Coverage and Quality: A Comparison of Web of Science and Scopus Databases for Reporting Faculty Nursing Publication Metrics. Nurs. Outlook 2017, 65, 572–578. [Google Scholar] [CrossRef]
- Pranckutė, R. Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Strozzi, F.; Colicchia, C.; Creazza, A.; Noè, C. Literature Review on the ‘Smart Factory’ Concept Using Bibliometric Tools. Int. J. Prod. Res. 2017, 55, 6572–6591. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Chen, C.; Ibekwe-SanJuan, F.; Hou, J. The Structure and Dynamics of Cocitation Clusters: A Multiple-Perspective Cocitation Analysis. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 1386–1409. [Google Scholar] [CrossRef]
- Knoke, D.; Yang, S. Introduction to Social Network Analysis—Basic Methods for Analyzing Networks. Soc. Netw. Anal. 2011, 46–92. [Google Scholar]
- Adebayo, T.S.; Ullah, S.; Kartal, M.T.; Ali, K.; Pata, U.K.; Ağa, M. Endorsing Sustainable Development in BRICS: The Role of Technological Innovation, Renewable Energy Consumption, and Natural Resources in Limiting Carbon Emission. Sci. Total Environ. 2023, 859, 160181. [Google Scholar] [CrossRef] [PubMed]
- Mohsenian-Rad, A.-H.; Wong, V.W.S.; Jatskevich, J.; Schober, R.; Leon-Garcia, A. Autonomous Demand-Side Management Based on Game-Theoretic Energy Consumption Scheduling for the Future Smart Grid. IEEE Trans. Smart Grid. 2010, 1, 320–331. [Google Scholar] [CrossRef]
- Azam, W.; Khan, I.; Ali, S.A. Alternative Energy and Natural Resources in Determining Environmental Sustainability: A Look at the Role of Government Final Consumption Expenditures in France. Environ. Sci. Pollut. Res. 2023, 30, 1949–1965. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Razzaq, A.; Adebayo, T.S.; Awosusi, A.A. Do Renewable Energy Consumption and Financial Globalisation Contribute to Ecological Sustainability in Newly Industrialized Countries? Renew. Energy 2022, 187, 688–697. [Google Scholar] [CrossRef]
- Wu, L.; Adebayo, T.S.; Yue, X.-G.; Umut, A. The Role of Renewable Energy Consumption and Financial Development in Environmental Sustainability: Implications for the Nordic Countries. Int. J. Sustain. Dev. World Ecol. 2023, 30, 21–36. [Google Scholar] [CrossRef]
- Ahmed, Z.; Ahmad, M.; Rjoub, H.; Kalugina, O.A.; Hussain, N. Economic Growth, Renewable Energy Consumption, and Ecological Footprint: Exploring the Role of Environmental Regulations and Democracy in Sustainable Development. Sustain. Dev. 2022, 30, 595–605. [Google Scholar] [CrossRef]
- Xue, C.; Shahbaz, M.; Ahmed, Z.; Ahmad, M.; Sinha, A. Clean Energy Consumption, Economic Growth, and Environmental Sustainability: What Is the Role of Economic Policy Uncertainty? Renew Energy 2022, 184, 899–907. [Google Scholar] [CrossRef]
- Irfan, M.; Ullah, S.; Razzaq, A.; Cai, J.; Adebayo, T.S. Unleashing the Dynamic Impact of Tourism Industry on Energy Consumption, Economic Output, and Environmental Quality in China: A Way Forward towards Environmental Sustainability. J. Clean. Prod. 2023, 387, 135778. [Google Scholar] [CrossRef]
- Ding, Q.; Khattak, S.I.; Ahmad, M. Towards Sustainable Production and Consumption: Assessing the Impact of Energy Productivity and Eco-Innovation on Consumption-Based Carbon Dioxide Emissions (CCO2) in G-7 Nations. Sustain. Prod. Consum. 2021, 27, 254–268. [Google Scholar] [CrossRef]
- Perianes-Rodriguez, A.; Waltman, L.; van Eck, N.J. Constructing Bibliometric Networks: A Comparison between Full and Fractional Counting. J. Informetr. 2016, 10, 1178–1195. [Google Scholar] [CrossRef]
- Khan, I.; Zakari, A.; Ahmad, M.; Irfan, M.; Hou, F. Linking Energy Transitions, Energy Consumption, and Environmental Sustainability in OECD Countries. Gondwana Res. 2022, 103, 445–457. [Google Scholar] [CrossRef]
- Wang, R.; Usman, M.; Radulescu, M.; Cifuentes-Faura, J.; Balsalobre-Lorente, D. Achieving Ecological Sustainability through Technological Innovations, Financial Development, Foreign Direct Investment, and Energy Consumption in Developing European Countries. Gondwana Res. 2023, 119, 138–152. [Google Scholar] [CrossRef]
- Bibi, A.; Zhang, X.; Umar, M. The Imperativeness of Biomass Energy Consumption to the Environmental Sustainability of the United States Revisited. Environ. Ecol. Stat. 2021, 28, 821–841. [Google Scholar] [CrossRef]
- Adebayo, T.S. Renewable Energy Consumption and Environmental Sustainability in Canada: Does Political Stability Make a Difference? Environ. Sci. Pollut. Res. 2022, 29, 61307–61322. [Google Scholar] [CrossRef]
- He, Y.; Li, X.; Huang, P.; Wang, J. Exploring the Road toward Environmental Sustainability: Natural Resources, Renewable Energy Consumption, Economic Growth, and Greenhouse Gas Emissions. Sustainability 2022, 14, 1579. [Google Scholar] [CrossRef]
- Mughal, N.; Arif, A.; Jain, V.; Chupradit, S.; Shabbir, M.S.; Ramos-Meza, C.S.; Zhanbayev, R. The Role of Technological Innovation in Environmental Pollution, Energy Consumption and Sustainable Economic Growth: Evidence from South Asian Economies. Energy Strategy Rev. 2022, 39, 100745. [Google Scholar] [CrossRef]
- Ulucak, R.; Danish; Ozcan, B. Relationship between Energy Consumption and Environmental Sustainability in OECD Countries: The Role of Natural Resources Rents. Resour. Policy 2020, 69, 101803. [Google Scholar] [CrossRef]
- Nathaniel, S.P.; Adeleye, N. Environmental Preservation amidst Carbon Emissions, Energy Consumption, and Urbanization in Selected African Countries: Implication for Sustainability. J. Clean. Prod. 2021, 285, 125409. [Google Scholar] [CrossRef]
- Zafar, M.W.; Saeed, A.; Zaidi, S.A.H.; Waheed, A. The Linkages among Natural Resources, Renewable Energy Consumption, and Environmental Quality: A Path toward Sustainable Development. Sustain. Dev. 2021, 29, 353–362. [Google Scholar] [CrossRef]
- Saint Akadiri, S.; Alola, A.A.; Akadiri, A.C.; Alola, U.V. Renewable Energy Consumption in EU-28 Countries: Policy toward Pollution Mitigation and Economic Sustainability. Energy Policy 2019, 132, 803–810. [Google Scholar] [CrossRef]
- Paramati, S.R.; Apergis, N.; Ummalla, M. Dynamics of Renewable Energy Consumption and Economic Activities across the Agriculture, Industry, and Service Sectors: Evidence in the Perspective of Sustainable Development. Environ. Sci. Pollut. Res. 2018, 25, 1375–1387. [Google Scholar] [CrossRef]
- Zaharia, A.; Diaconeasa, M.C.; Brad, L.; Lădaru, G.-R.; Ioanăș, C. Factors Influencing Energy Consumption in the Context of Sustainable Development. Sustainability 2019, 11, 4147. [Google Scholar] [CrossRef]
- Zaman, K.; Moemen, M.A. el Energy Consumption, Carbon Dioxide Emissions and Economic Development: Evaluating Alternative and Plausible Environmental Hypothesis for Sustainable Growth. Renew. Sustain. Energy Rev. 2017, 74, 1119–1130. [Google Scholar] [CrossRef]
- Rehman, A.; Ma, H.; Ozturk, I.; Ulucak, R. Sustainable Development and Pollution: The Effects of CO2 Emission on Population Growth, Food Production, Economic Development, and Energy Consumption in Pakistan. Environ. Sci. Pollut. Res. 2022, 29, 17319–17330. [Google Scholar] [CrossRef] [PubMed]
- Anser, M.K.; Usman, M.; Godil, D.I.; Shabbir, M.S.; Sharif, A.; Tabash, M.I.; Lopez, L.B. Does Globalization Affect the Green Economy and Environment? The Relationship between Energy Consumption, Carbon Dioxide Emissions, and Economic Growth. Environ. Sci. Pollut. Res. 2021, 28, 51105–51118. [Google Scholar] [CrossRef]
- Vasylieva, T.; Lyulyov, O.; Bilan, Y.; Streimikiene, D. Sustainable Economic Development and Greenhouse Gas Emissions: The Dynamic Impact of Renewable Energy Consumption, GDP, and Corruption. Energy 2019, 12, 3289. [Google Scholar] [CrossRef]
- Qudrat-Ullah, H.; Nevo, C.M. The Impact of Renewable Energy Consumption and Environmental Sustainability on Economic Growth in Africa. Energy Rep. 2021, 7, 3877–3886. [Google Scholar] [CrossRef]
- Ikram, M.; Zhang, Q.; Sroufe, R.; Shah, S.Z.A. Towards a Sustainable Environment: The Nexus between ISO 14001, Renewable Energy Consumption, Access to Electricity, Agriculture and CO2 Emissions in SAARC Countries. Sustain. Prod. Consum. 2020, 22, 218–230. [Google Scholar] [CrossRef]
- Jiang, Z.; Lyu, P.; Ye, L.; Zhou, Y.W. Green Innovation Transformation, Economic Sustainability and Energy Consumption during China’s New Normal Stage. J. Clean. Prod. 2020, 273, 123044. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, J.; Huang, Y. Co-Citation Analysis and Burst Detection on Financial Bubbles with Scientometrics Approach. Econ. Res.-Ekon. Istraž. 2019, 32, 2310–2328. [Google Scholar] [CrossRef]
- Kleinberg, J. Bursty and Hierarchical Structure in Streams. Data Min. Knowl. Discov. 2003, 7, 373–397. [Google Scholar] [CrossRef]
- Khan, I.; Han, L.; BiBi, R.; Khan, H. The Role of Technological Innovations and Renewable Energy Consumption in Reducing Environmental Degradation: Evidence from the Belt and Road Initiative Countries. Environ. Sci. Pollut. Res. 2022, 29, 73085–73099. [Google Scholar] [CrossRef]
- Lyu, W.; Liu, J. Artificial Intelligence and Emerging Digital Technologies in the Energy Sector. Appl. Energy 2021, 303, 117615. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhang, D.; Huang, C.; Zhang, H.; Dai, N.; Song, Y.; Chen, H. Artificial Intelligence in Sustainable Energy Industry: Status Quo, Challenges and Opportunities. J. Clean. Prod. 2021, 289, 125834. [Google Scholar] [CrossRef]
- Li, M.; Xu, K.; Huang, S. Evaluation of Green and Sustainable Building Project Based on Extension Matter-Element Theory in Smart City Application. Comput. Intell. 2024, 40, e12286. [Google Scholar] [CrossRef]
- Karimi, R.; Farahzadi, L.; Sepasgozar, S.M.; Sargolzaei, S.; Sepasgozar, S.M.E.; Zareian, M.; Nasrolahi, A. Smart Built Environment Including Smart Home, Smart Building and Smart City: Definitions and Applied Technologies. In Advances and Technologies in Building Construction and Structural Analysis; IntechOpen: London, UK, 2021. [Google Scholar]
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Hafeez, G.; Alimgeer, K.S.; Wadud, Z.; Khan, I.; Usman, M.; Qazi, A.B.; Khan, F.A. An Innovative Optimization Strategy for Efficient Energy Management With Day-Ahead Demand Response Signal and Energy Consumption Forecasting in Smart Grid Using Artificial Neural Network. IEEE Access 2020, 8, 84415–84433. [Google Scholar] [CrossRef]
- Perri, C.; Giglio, C.; Corvello, V. Smart Users for Smart Technologies: Investigating the Intention to Adopt Smart Energy Consumption Behaviors. Technol. Forecast. Soc. Chang. 2020, 155, 119991. [Google Scholar] [CrossRef]
- Divina, F.; García Torres, M.; Goméz Vela, F.A.; Vázquez Noguera, J.L. A Comparative Study of Time Series Forecasting Methods for Short Term Electric Energy Consumption Prediction in Smart Buildings. Energy 2019, 12, 1934. [Google Scholar] [CrossRef]
- Pham, A.-D.; Ngo, N.-T.; Ha Truong, T.T.; Huynh, N.-T.; Truong, N.-S. Predicting Energy Consumption in Multiple Buildings Using Machine Learning for Improving Energy Efficiency and Sustainability. J. Clean. Prod. 2020, 260, 121082. [Google Scholar] [CrossRef]
- Muralidhara, S.; Hegde, N.; PM, R. An Internet of Things-Based Smart Energy Meter for Monitoring Device-Level Consumption of Energy. Comput. Electr. Eng. 2020, 87, 106772. [Google Scholar] [CrossRef]
- Imran; Iqbal, N.; Kim, D.H. IoT Task Management Mechanism Based on Predictive Optimization for Efficient Energy Consumption in Smart Residential Buildings. Energy Build. 2022, 257, 111762. [Google Scholar] [CrossRef]
- Ullah, I.; Fayaz, M.; Aman, M.; Kim, D.H. An Optimization Scheme for IoT Based Smart Greenhouse Climate Control with Efficient Energy Consumption. Computing 2022, 104, 433–457. [Google Scholar] [CrossRef]
- Liu, X.; Adebayo, T.S.; Ramzan, M.; Ullah, S.; Abbas, S.; Olanrewaju, V.O. Do Coal Efficiency, Climate Policy Uncertainty and Green Energy Consumption Promote Environmental Sustainability in the United States? An Application of Novel Wavelet Tools. J. Clean. Prod. 2023, 417, 137851. [Google Scholar] [CrossRef]
- Nematchoua, M.K.; Sadeghi, M.; Reiter, S. Strategies and Scenarios to Reduce Energy Consumption and CO2 Emission in the Urban, Rural and Sustainable Neighbourhoods. Sustain. Cities Soc. 2021, 72, 103053. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Liu, A.; Wang, S.; Liu, H. Minimizing Convergecast Time and Energy Consumption in Green Internet of Things. IEEE Trans. Emerg. Top. Comput. 2020, 8, 797–813. [Google Scholar] [CrossRef]
- Yumashev, A.; Ślusarczyk, B.; Kondrashev, S.; Mikhaylov, A. Global Indicators of Sustainable Development: Evaluation of the Influence of the Human Development Index on Consumption and Quality of Energy. Energy 2020, 13, 2768. [Google Scholar] [CrossRef]
- Mariano-Hernández, D.; Hernández-Callejo, L.; García, F.S.; Duque-Perez, O.; Zorita-Lamadrid, A.L. A Review of Energy Consumption Forecasting in Smart Buildings: Methods, Input Variables, Forecasting Horizon and Metrics. Appl. Sci. 2020, 10, 8323. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Bhandari, B.; Cheng, L. AI-Empowered Methods for Smart Energy Consumption: A Review of Load Forecasting, Anomaly Detection and Demand Response. Int. J. Precis. Eng. Manuf.-Green Technol. 2024, 11, 963–993. [Google Scholar] [CrossRef]
- Atikur Rahaman, M.; Bin Amin, M.; Taru, R.D.; Ahammed, M.R.; Rabbi, M.F. An Analysis of Renewable Energy Consumption in Visegrád Countries. Environ. Res. Commun. 2023, 5, 105013. [Google Scholar] [CrossRef]
- Sadeghian, O.; Moradzadeh, A.; Mohammadi-Ivatloo, B.; Abapour, M.; Anvari-Moghaddam, A.; Shiun Lim, J.; Garcia Marquez, F.P. A Comprehensive Review on Energy Saving Options and Saving Potential in Low Voltage Electricity Distribution Networks: Building and Public Lighting. Sustain. Cities Soc. 2021, 72, 103064. [Google Scholar] [CrossRef]
- Abir, S.M.A.A.; Anwar, A.; Choi, J.; Kayes, A.S.M. Iot-Enabled Smart Energy Grid: Applications and Challenges. IEEE Access 2021, 9, 50961–50981. [Google Scholar] [CrossRef]
- Ahmad, M.; Jiang, P.; Majeed, A.; Umar, M.; Khan, Z.; Muhammad, S. The Dynamic Impact of Natural Resources, Technological Innovations and Economic Growth on Ecological Footprint: An Advanced Panel Data Estimation. Resour. Policy 2020, 69, 101817. [Google Scholar] [CrossRef]
- Hodson de Jaramillo, E.; Niggli, U.; Kitajima, K.; Lal, R.; Sadoff, C. Boost Nature-Positive Production. Sci. Innov. Food Syst. Transform. 2023, 319–340. [Google Scholar] [CrossRef]
- Talal, M.; Zaidan, A.A.; Zaidan, B.B.; Albahri, A.S.; Alamoodi, A.H.; Albahri, O.S.; Alsalem, M.A.; Lim, C.K.; Tan, K.L.; Shir, W.L.; et al. Smart Home-Based IoT for Real-Time and Secure Remote Health Monitoring of Triage and Priority System Using Body Sensors: Multi-Driven Systematic Review. J. Med. Syst. 2019, 43, 42. [Google Scholar] [CrossRef]
- Yassine, A.; Singh, S.; Hossain, M.S.; Muhammad, G. IoT Big Data Analytics for Smart Homes with Fog and Cloud Computing. Future Gener. Comput. Syst. 2019, 91, 563–573. [Google Scholar] [CrossRef]
- Bharadwaj, A.S.; Rego, R.; Chowdhury, A. IoT Based Solid Waste Management System: A Conceptual Approach with an Architectural Solution as a Smart City Application. In Proceedings of the 2016 IEEE Annual India Conference (INDICON), Bangalore, India, 16–18 December 2016; pp. 1–6. [Google Scholar]
- Bourhnane, S.; Abid, M.R.; Lghoul, R.; Zine-Dine, K.; Elkamoun, N.; Benhaddou, D. Machine Learning for Energy Consumption Prediction and Scheduling in Smart Buildings. SN Appl. Sci. 2020, 2, 297. [Google Scholar] [CrossRef]
- Árpád, I.W.; Kiss, J.T.; Kocsis, D. Role of the Volume-Specific Surface Area in Heat Transfer Objects: A Critical Thinking-Based Investigation of Newton’s Law of Cooling. Int. J. Heat Mass Transf. 2024, 227, 125535. [Google Scholar] [CrossRef]
Rank | Title(s) | Pub. Year | References | GCS | GCS * |
---|---|---|---|---|---|
1 | Endorsing sustainable development in BRICS: The role of technological innovation | 2023 | [27] | 200 | 200.0 |
2 | Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid | 2010 | [28] | 2281 | 162.9 |
3 | Alternative energy and natural resources in determining environmental sustainability: a look at the role of government final consumption expenditures in France | 2023 | [29] | 137 | 137.0 |
4 | Do renewable energy consumption and financial development matter for environmental sustainability? New global evidence | 2021 | [3] | 284 | 94.7 |
5 | Do renewable energy consumption and financial globalization contribute to ecological sustainability in newly industrialized countries? | 2022 | [30] | 185 | 92.5 |
6 | The role of renewable energy consumption and financial development in environmental sustainability: implications for the Nordic Countries | 2023 | [31] | 90 | 90.0 |
7 | Economic growth, renewable energy consumption, and ecological footprint: Exploring the role of environmental regulations and democracy in sustainable development | 2022 | [32] | 176 | 88.0 |
8 | Clean energy consumption, economic growth, and environmental sustainability: What is the role of economic policy uncertainty? | 2022 | [33] | 174 | 87.0 |
9 | Unleashing the dynamic impact of the tourism industry on energy consumption, economic output, and environmental quality in China: A way forward towards environmental sustainability | 2023 | [34] | 83 | 83.0 |
10 | Towards sustainable production and consumption: Assessing the impact of energy productivity and eco-innovation on consumption-based carbon dioxide emissions (CO2) in G-7 nations | 2021 | [35] | 245 | 81.7 |
Clusters | Author(s) | References | Citations | Pub. Year |
---|---|---|---|---|
1 | Khan, I.; Zakari, A.; Ahmad, M.; Irfan, M.; Hou, F | [37] | 131 | 2022 |
Wang, R.; Usman, M.; Radulescu, M.; Cifuentes-Faura, J.; Balsalobre-Lorente, D. | [38] | 58 | 2023 | |
Bibi, A.; Zhang, X.; Umar, M. | [39] | 50 | 2021 | |
2 | Miao, Y.; Razzaq, A.; Adebayo, T.S.; Awosusi, A.A. | [30] | 163 | 2022 |
Adebayo, T.S | [40] | 87 | 2022 | |
He, Y.; Li, X.; Huang, P.; Wang, J. | [41] | 57 | 2022 | |
3 | Mughal, N.; Arif, A.; Jain, V.; Chupradit, S.; Shabbir, M.S.; Ramos-Meza, C.S.; Zhanbayev, R. | [42] | 148 | 2022 |
Ulucak, R.; Danish; Ozcan, B. | [43] | 144 | 2020 | |
Nathaniel, S.P.; Adeleye, N. | [44] | 132 | 2021 | |
4 | Ding, Q.; Khattak, S.I.; Ahmad, M. | [35] | 235 | 2021 |
Ahmed, Z.; Ahmad, M.; Rjoub, H.; Kalugina, O.A.; Hussain, N. | [32] | 162 | 2022 | |
Zafar, M.W.; Saeed, A.; Zaidi, S.A.H.; Waheed, A. | [45] | 76 | 2021 | |
5 | Saint Akadiri, S.; Alola, A.A.; Akadiri, A.C.; Alola, U.V. | [46] | 227 | 2019 |
Paramati, S.R.; Apergis, N.; Ummalla, M | [47] | 86 | 2018 | |
Zaharia, A.; Diaconeasa, M.C.; Brad, L.; Lădaru, G.R.; Ioanăs, C. | [48] | 58 | 2019 | |
6 | Zaman, K.; Moemen, M.A. el | [49] | 288 | 2017 |
Rehman, A.; Ma, H.; Ozturk, I.; Ulucak, R | [50] | 93 | 2022 | |
Anser, M.K.; Usman, M.; Godil, D.I.; Shabbir, M.S.; Sharif, A.; Tabash, M.I.; Lopez, L.B. | [51] | 62 | 2021 | |
7 | Xue, C.; Shahbaz, M.; Ahmed, Z.; Ahmad, M.; Sinha, A. | [33] | 156 | 2022 |
Vasylieva, T.; Lyulyov, O.; Bilan, Y.; Streimikiene, D. | [52] | 146 | 2019 | |
Qudrat-Ullah, H.; Nevo, C.M. | [53] | 53 | 2021 | |
8 | Adebayo, T.S.; Ullah, S.; Kartal, M.T.; Ali, K.; Pata, U.K.; Ağa, M. | [27] | 165 | 2023 |
Ikram, M.; Zhang, Q.; Sroufe, R.; Shah, S.Z.A. | [54] | 158 | 2020 | |
Jiang, Z.; Lyu, P.; Ye, L.; Zhou, Y.W. | [55] | 95 | 2020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buri, Z.; Sipos, C.; Szűcs, E.; Máté, D. Smart and Sustainable Energy Consumption: A Bibliometric Review and Visualization. Energies 2024, 17, 3336. https://doi.org/10.3390/en17133336
Buri Z, Sipos C, Szűcs E, Máté D. Smart and Sustainable Energy Consumption: A Bibliometric Review and Visualization. Energies. 2024; 17(13):3336. https://doi.org/10.3390/en17133336
Chicago/Turabian StyleBuri, Zsolt, Csanád Sipos, Edit Szűcs, and Domicián Máté. 2024. "Smart and Sustainable Energy Consumption: A Bibliometric Review and Visualization" Energies 17, no. 13: 3336. https://doi.org/10.3390/en17133336
APA StyleBuri, Z., Sipos, C., Szűcs, E., & Máté, D. (2024). Smart and Sustainable Energy Consumption: A Bibliometric Review and Visualization. Energies, 17(13), 3336. https://doi.org/10.3390/en17133336