Optimal Electrification Using Renewable Energies: Microgrid Installation Model with Combined Mixture k-Means Clustering Algorithm, Mixed Integer Linear Programming, and Onsset Method
Abstract
:1. Introduction
2. Theoretical Background
2.1. Scientific Models of Microgrid Technologies
2.2. Scientific Methods for Microgrid Deployment
2.2.1. Clustering Techniques
k-Means Clustering Model
Elbow Method
2.2.2. Haversine Method
2.2.3. Open-Source Spatial Planning for Electrification Method: Onsset
2.3. Bibliographical Reviews
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Microgrid System Model
3.2.2. Optimizations Problem Formulation
- Enter data for each vector
- Initialize the position of the centers:
- Calculate mk averages of vectors in cluster k
- -
- Until there are no more changes in the mk
- -
- Assign each Vi point to the nearest cluster
- -
- Calculate new mk
- -
- End As long as
3.2.3. Data
4. Results and Discussion
4.1. Optimization Results
4.1.1. Results for Cluster Formation: Physical Allocation of Microgrid Centers
4.1.2. Renewable Energy Resource Availability Results
4.1.3. Optimization Results for Technology Selection
4.1.4. Capacity and Connection Optimization Results
- (a)
- Scenario 1: results for voltage rate profile/distance
- (b)
- Scenario 2: influence of load capacity
4.1.5. Results of Microgrid Formation Evaluation Studies in Togo
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
solar power variable | |
charging (80%) and discharging (20%) rates | |
performance | |
performance rate | |
area | |
temperature differential | |
decision variable | |
standard temperature | |
battery storage at t + 1 | |
battery storage at t | |
battery power | |
number of batteries | |
battery capacity | |
battery volatge | |
battery efficiency | |
wind power | |
air density | |
area swept by the turbine | |
wind power efficiency | |
wind decision variable | |
probability density | |
scale factor | |
wind speed | |
standard deviation | |
average speed | |
average power | |
gamma function | |
hydroelectric power | |
density of water | |
acceleration | |
water flow rate | |
waterfall height | |
hydroelectric efficiency | |
i | index |
load vector matrix | |
vector i | |
, | latitudes |
, | longitudes |
j | substation index |
References
- Antonanzas-Torres, F.; Antonanzas, J.; Blanco-Fernandez, J. State-of-the-Art of Mini Grids for Rural Electrification in West Africa. Energies 2021, 14, 990. [Google Scholar] [CrossRef]
- Caron, P.; Châtaigner, J.M. Un Défi pour la Planète: Les Objectifs de Développement Durable en Débat; Casalini Libri: Fiesole, Italy, 2017. [Google Scholar]
- Swain, R.B.; Karimu, A. Renewable electricity and sustainable development goals in the EU. World Dev. 2020, 125, 104693. [Google Scholar] [CrossRef]
- Farhana, K.; Kadirgama, K.; Mahamude, A.S.F.; Mica, M.T. Energy consumption, environmental impact, and implementation of renewable energy resources in global textile industries: An overview towards circularity and sustainability Nano-fluid Technology View project NASA HUNCH-Sleeping Rack for Astronauts View pro. Mater. Circ. Econ. 2022, 4, 15. [Google Scholar] [CrossRef]
- Nazir, M.S.; Ali, Z.M.; Bilal, M.; Sohail, H.M.; Iqbal, H.M.N. Environmental impacts and risk factors of renewable energy paradigm—A review. Environ. Sci. Pollut. Res. 2020, 27, 33516–33526. [Google Scholar] [CrossRef]
- Sedzro, K.S.A.; Lamadrid, A.J.; Zuluaga, L.F. Allocation of resources using a microgrid formation approach for resilient electric grids. IEEE Trans. Power Syst. 2017, 33, 2633–2643. [Google Scholar] [CrossRef]
- Muqeet, H.A.; Javed, H.; Akhter, M.N.; Shahzad, M.; Munir, H.M.; Nadeem, M.U.; Sabir, S.; Bukhari, H.; Huba, M. Sustainable Solutions for Advanced Energy Management System of Campus Microgrids: Model Opportunities and Future Challenges. Sensors 2022, 22, 2345. [Google Scholar] [CrossRef]
- Khan, A.A.; Naeem, M.; Iqbal, M.; Qaisar, S.; Anpalagan, A. A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids. Renew. Sustain. Energy Rev. 2016, 58, 1664–1683. [Google Scholar] [CrossRef]
- Mariam, L.; Basu, M.; Conlon, M.F. A Review of Existing Microgrid Architectures. J. Eng. 2013, 2013, 937614. [Google Scholar] [CrossRef]
- Al-Ismail, F.S. DC Microgrid Planning, Operation, and Control: A Comprehensive Review. IEEE Access 2021, 9, 36154–36172. [Google Scholar] [CrossRef]
- Diego, S. Office of Electricity Delivery and Energy Reliability Smart Grid R&D Program DOE Microgrid Workshop Report; U.S. Department of Energy (DOE) Office of Electricity: Washington, DC, USA, 2014.
- Premadasa, P.N.D.; Silva, C.M.M.R.S.; Chandima, D.P.; Karunadasa, J.P. A multi-objective optimization model for sizing an off-grid hybrid energy microgrid with optimal dispatching of a diesel generator. J. Energy Storage 2023, 68, 107621. [Google Scholar] [CrossRef]
- Viteri, J.P.; Henao, F.; Cherni, J.; Dyner, I. Optimizing the insertion of renewable energy in the off-grid regions of Colombia. J. Clean. Prod. 2019, 235, 535–548. [Google Scholar] [CrossRef]
- Sedzro, K.S.A.; Salami, A.A.; Agbessi, P.A.; Kodjo, M.K. Comparative Study of Wind Energy Potential Estimation Methods for Wind Sites in Togo and Benin (West Sub-Saharan Africa). Energies 2022, 15, 8654. [Google Scholar] [CrossRef]
- Ashok, S. Optimised model for community-based hybrid energy system. Renew. Energy 2007, 32, 1155–1164. [Google Scholar] [CrossRef]
- Hassan, R.; Das, B.K.; Hasan, M. Integrated off-grid hybrid renewable energy system optimization based on economic, environmental, and social indicators for sustainable development. Energy 2022, 250, 123823. [Google Scholar] [CrossRef]
- Chen, X.R.; Li, J.Q.; Han, Y.; Niu, B.; Liu, L.; Zhang, B. An improved brain storm optimization for a hybrid renewable energy system. IEEE Access 2019, 7, 49513–49526. [Google Scholar] [CrossRef]
- Ming, M.; Wang, R.; Zha, Y.; Zhang, T. Multi-objective optimization of hybrid renewable energy system using an enhanced multi-objective evolutionary algorithm. Energies 2017, 10, 674. [Google Scholar] [CrossRef]
- Yang, H.; Lu, L.; Zhou, W. A novel optimization sizing model for hybrid solar-wind power generation system. Sol. Energy 2007, 81, 76–84. [Google Scholar] [CrossRef]
- Dhaked, D.K.; Gopal, Y.; Birla, D. Battery Charging Optimization of Solar Energy based Telecom Sites in India. Eng. Technol. Appl. Sci. Res. 2019, 9, 5041–5046. [Google Scholar] [CrossRef]
- Prakash Kumar, K.; Saravanan, B. Recent techniques to model uncertainties in power generation from renewable energy sources and loads in microgrids-A review. Renew. Sustain. Energy Rev. 2016, 71, 348–358. [Google Scholar] [CrossRef]
- Talari, S.; Yazdaninejad, M.; Haghifam, M.R. Stochastic-based scheduling of the microgrid operation including wind turbines, photovoltaic cells, energy storages and responsive loads. IET Gener. Transm. Distrib. 2015, 9, 1498–1509. [Google Scholar] [CrossRef]
- Zakariazadeh, A.; Jadid, S.; Siano, P. Smart microgrid energy and reserve scheduling with demand response using stochastic optimization. Int. J. Electr. Power Energy Syst. 2014, 63, 523–533. [Google Scholar] [CrossRef]
- Labeeuw, W.; Deconinck, G. Residential Electrical Load Model based on Mixture Model Clustering and Markov Models. IEEE Trans. Ind. Inform. 2013, 9, 1561–1569. [Google Scholar] [CrossRef]
- Syakur, M.A.; Khotimah, B.K.; Rochman, E.M.S.; Satoto, B.D. Integration K-Means Clustering Method and Elbow Method For Identification of The Best Customer Profile Cluster. IOP Conf. Ser. Mater. Sci. Eng. 2018, 336, 012017. [Google Scholar] [CrossRef]
- Umargono, E.; Suseno, J.E.; Gunawan, S.V. K-Means Clustering Optimization using the Elbow Method and Early Centroid Determination Based-on Mean and Median. In Proceedings of the 2nd International Seminar on Science and Technology (ISSTEC 2019), Yogyakarta, Indonesia, 25 November 2019. [Google Scholar]
- Gunawan, W.; Kaburuan, E.R.; Rudianto, B.; Puspitasari, A.; Sudrajat, B.; Erri, D.; Hidayah, A.N.; Chowanda, A.; Sudha, S. Design and build of searching system for the nearest fish shop on an ornamental fish market website using the haversine. J. Theor. Appl. Inf. Technol. 2023, 101, 6257–6263. [Google Scholar]
- Jaya, N.; Asst, S.; Professor, A. Pragmatic investigations to smart dusts location appraisal precisely using machine learning. J. Theor. Appl. Inf. Technol. 2023, 31, 6301–6309. [Google Scholar]
- Peña Balderrama, J.G.; Balderrama Subieta, S.; Lombardi, F.; Stevanato, N.; Sahlberg, A.; Howells, M.; Colombo, E.; Quoilin, S. Incorporating high-resolution demand and techno-economic optimization to evaluate micro-grids into the Open Source Spatial Electrification Tool (OnSSET). Energy Sustain. Dev. 2020, 56, 98–118. [Google Scholar] [CrossRef]
- Moyème, K.; Yao, B.; Sedzro, K.S.; Aragah, M.; Pidéname, T.; Yendoubé, L. Global atlas of renewables energies: A complementary to an optimal electrification planning method at short and long terms–Case study of togo. Int. J. Eng. Sci. Res. Technol. 2023, 12, 18–35. [Google Scholar]
- Gao, K.; Wang, T.; Han, C.; Xie, J.; Ma, Y.; Peng, R. A Review of Optimization of Microgrid Operation. Energies 2021, 14, 2842. [Google Scholar] [CrossRef]
- Li, B.; Roche, R.; Miraoui, A. Microgrid sizing with combined evolutionary algorithm and MILP unit commitment. Appl. Energy 2017, 188, 547–562. [Google Scholar] [CrossRef]
- Parisio, A.; Rikos, E.; Glielmo, L. A Model Predictive Control Approach to Microgrid Operation Optimization. IEEE Trans. Control Syst. Technol. 2014, 22, 1813. [Google Scholar] [CrossRef]
- Guo, L.; Liu, W.; Cai, J.; Hong, B.; Wang, C. A two-stage optimal planning and design method for combined cooling, heat and power microgrid system. Energy Convers. Manag. 2013, 74, 433–445. [Google Scholar] [CrossRef]
- E Silva, D.P.; Queiroz, M.D.; Fardin, J.F.; Sales, J.L.F.; Orlando, M.T.D. Hybrid modeling of energy storage system and electrical loads in a pilot-microgrid. In Proceedings of the 2018 13th IEEE International Conference on Industry Applications (INDUSCON), Sao Paulo, Brazil, 12–14 November 2018; pp. 433–438. [Google Scholar]
- Mah, A.X.Y.; Ho, W.S.; Hassim, M.H.; Hashim, H.; Ling, G.H.T.; Ho, C.S.; Muis, Z.A. Optimization of a standalone photovoltaic-based microgrid with electrical and hydrogen loads. Energy 2021, 235, 121218. [Google Scholar] [CrossRef]
- Al-Saadi, M.; Al-Greer, M.; Short, M.; Štreimikien, D.; Baležentis, T. Strategies for controlling microgrid networks with energy storage systems: A review. Energies 2021, 14, 7234. [Google Scholar] [CrossRef]
- Nazari, A.A.; Keypour, R. Participation of responsive electrical consumers in load smoothing and reserve providing to optimize the schedule of a typical microgrid. Energy Syst. 2020, 11, 885–908. [Google Scholar] [CrossRef]
- Aiswariya, L.; Imthias Ahamed, T.P.; Mohammed, S.S. Optimal Microgrid Battery Scheduling Using Simulated Annealing. In Proceedings of the 2020 International Conference on Power Electronics and Renewable Energy Applications (PEREA), Kannur, India, 27–28 November 2020. [Google Scholar]
- Rutenbar, R.A. Simulated annealing algorithms: An overview. IEEE Circuits Devices Mag. 1989, 5, 19–26. [Google Scholar] [CrossRef]
- Liang, H.; Zhuang, W. Stochastic modeling and optimization in a microgrid: A survey. Energies 2014, 7, 2027–2050. [Google Scholar] [CrossRef]
- Nikmehr, N.; Najafi-Ravadanegh, S.; Khodaei, A. Probabilistic optimal scheduling of networked microgrids considering time-based demand response programs under uncertainty. Appl. Energy 2017, 198, 267–279. [Google Scholar] [CrossRef]
- Wu, T.; Wang, J. Artificial intelligence for operation and control: The case of microgrids. Electr. J. 2021, 34, 106890. [Google Scholar] [CrossRef]
- Leonori, S.; Paschero, M.; Mascioli, F.M.F.; Rizzi, A. Optimization strategies for Microgrid energy management systems by Genetic Algorithms. Appl. Soft Comput. 2020, 86, 105903. [Google Scholar] [CrossRef]
- Khatib, T.; Mohamed, A.; Sopian, K. Optimization of a PV/wind micro-grid for rural housing electrification using a hybrid iterative/genetic algorithm: Case study of Kuala Terengganu, Malaysia. Energy Build. 2012, 47, 321–331. [Google Scholar] [CrossRef]
- Das, A.; Ni, Z. A computationally efficient optimization approach for battery systems in islanded microgrid. IEEE Trans. Smart Grid 2017, 9, 6489–6499. [Google Scholar] [CrossRef]
- Tenfen, D.; Finardi, C. A mixed integer linear programming model for the energy management problem of microgrids. Electr. Power Syst. Res. 2015, 122, 19–28. [Google Scholar] [CrossRef]
- Sigalo, M.B.; Pillai, A.C.; Das, S.; Abusara, M. An energy management system for the control of battery storage in a grid-connected microgrid using mixed integer linear programming. Energies 2021, 14, 6212. [Google Scholar] [CrossRef]
- Dawoud, S.M.; Lin, X.; Okba, M.I. Hybrid renewable microgrid optimization techniques: A review. Renew. Sustain. Energy Rev. 2018, 82, 2039–2052. [Google Scholar] [CrossRef]
- Rubino, L.; Rubino, G.; Esempio, R. Linear Programming-Based Power Management for a Multi-Feeder Ultra-Fast DC Charging Station. Energies 2023, 16, 1213. [Google Scholar] [CrossRef]
- Ramakumar, R.; Shetty, P.S.; Ashenayi, K. Linear programming approach to the design of integrated renewable energy systems for developing countries. IEEE Trans. Energy Convers. 1986, EC-1, 18–24. [Google Scholar] [CrossRef]
- Ramakumar, R.; Abouzahr, I.; Ashenayi, K. A knowledge-based approach to the design of integrated renewable energy systems. IEEE Trans. Energy Convers. 1992, 7, 648–659. [Google Scholar] [CrossRef]
- Tabares, A.; Muñoz-Delgado, G.; Franco, J.F.; Arroyo, J.M.; Contreras, J. Multistage reliability-based expansion planning of AC distribution networks using a mixed-integer linear programming model. Int. J. Electr. Power Energy Syst. 2022, 138, 107916. [Google Scholar] [CrossRef]
- Twaha, S.; Ramli, M.A.M. A review of optimization approaches for hybrid distributed energy generation systems: Off-grid and grid-connected systems. Sustain. Cities Soc. 2018, 41, 320–331. [Google Scholar] [CrossRef]
- Ajiboye, O.K.; Ochiegbu, C.V.; Ofosu, E.A.; Gyamfi, S. A review of hybrid renewable energies optimisation: Design, methodologies, and criteria. Int. J. Sustain. Energy 2023, 42, 648–684. [Google Scholar] [CrossRef]
- Rezkallah, M.; Chandra, A.; Singh, B.; Singh, S. Microgrid: Configurations, control and applications. IEEE Trans. Smart Grid 2017, 10, 1290–1302. [Google Scholar] [CrossRef]
- Badal, F.R.; Das, P.; Sarker, S.K.; Das, S.K. A survey on control issues in renewable energy integration and microgrid. Prot. Control Mod. Power Syst. 2019, 4, 1–27. [Google Scholar] [CrossRef]
- Alzahrani, A.; Ferdowsi, M.; Shamsi, P.; Dagli, C.H. Modeling and simulation of microgrid. Procedia Comput. Sci. 2017, 114, 392–400. [Google Scholar] [CrossRef]
- Mahmoud, M.S.; Saif Ur Rahman, M.; AL-Sunni, F.M. Review of microgrid architectures-a system of systems perspective. IET Renew. Power Gener. 2015, 9, 1064–1078. [Google Scholar] [CrossRef]
- Kamal, M.M.; Ashraf, I.; Fernandez, E. Efficient two-layer rural electrification planning and techno-economic assessment integrating renewable sources. Energy Storage 2022, 4, e314. [Google Scholar] [CrossRef]
- Al Afif, R.; Ayed, Y.; Maaitah, O.N. Feasibility and optimal sizing analysis of hybrid renewable energy systems: A case study of Al-Karak, Jordan. Renew. Energy 2023, 204, 229–249. [Google Scholar] [CrossRef]
Months | Solar Radiation (W/m2) | Temperature (Degrees) | Relative Humidity (%) | Wind Speed (m/s) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Min | Max | Min | Max | Min | Max | |||||||||
Jan | 85.46 | 115.71 | 99.01 | 5.87 | 26.12 | 28.41 | 27.59 | 0.59 | 60.56 | 85.62 | 75.25 | 6.92 | 2.04 | 4.45 | 3.27 | 0.68 |
Fev | 85.98 | 113.63 | 103.63 | 6.95 | 27.58 | 28.57 | 28.05 | 0.23 | 69.75 | 85.19 | 80.92 | 2.97 | 2.21 | 5.17 | 3.94 | 0.76 |
Mar | 84.98 | 122.43 | 108.85 | 9.69 | 27.83 | 28.96 | 28.38 | 0.23 | 78.44 | 86.31 | 81.99 | 1.89 | 3.99 | 6.11 | 4.78 | 0.57 |
Apr | 109.64 | 137.14 | 127.32 | 7.0 | 26.95 | 28.38 | 27.67 | 0.46 | 78.31 | 88.31 | 83.72 | 2.35 | 1.86 | 5.49 | 3.7 | 0.91 |
May | 108.89 | 132.91 | 126.36 | 4.72 | 26.49 | 28.11 | 27.41 | 0.41 | 76.19 | 88.62 | 85.21 | 2.59 | 1.91 | 4.47 | 3.41 | 0.56 |
June | 112.42 | 128.5 | 121.95 | 3.63 | 25.09 | 27.42 | 26.25 | 0.73 | 79.0 | 92.88 | 87.34 | 3.28 | 1.9 | 5.6 | 3.69 | 0.85 |
Jul | 117.48 | 129.11 | 123.56 | 2.93 | 24.44 | 25.9 | 25.10 | 0.36 | 82.19 | 90.81 | 87.35 | 2.33 | 3.42 | 6.55 | 5.06 | 0.66 |
Aug | 117.97 | 134.07 | 127.02 | 3.74 | 23.64 | 25.35 | 24.34 | 0.46 | 82.62 | 92.31 | 87.89 | 2.0 | 2.4 | 7.82 | 5.29 | 1.36 |
Sep | 125.77 | 140.23 | 134.24 | 3.19 | 24.95 | 25.87 | 25.45 | 0.24 | 82.88 | 91.5 | 87.28 | 2.18 | 3.26 | 6.55 | 4.85 | 0.88 |
Oct | 113.06 | 133.61 | 125.49 | 4.72 | 25.17 | 27.4 | 26.32 | 0.63 | 84.62 | 90.69 | 87.60 | 1.55 | 2.16 | 5.55 | 3.19 | 0.89 |
Nov | 106.05 | 122.58 | 114.64 | 4.22 | 26.64 | 27.83 | 27.24 | 0.3 | 79.44 | 87.0 | 83.24 | 1.78 | 1.65 | 4.77 | 3.03 | 0.71 |
Dec | 90.72 | 111.33 | 103.36 | 4.46 | 25.9 | 27.8 | 27.01 | 0.35 | 61.62 | 86.62 | 78.24 | 6.64 | 1.62 | 4.3 | 2.94 | 0.61 |
Indicators | Min | Max | |||
---|---|---|---|---|---|
Data | 100 | 0.028 | 0.9 | 0.455 | 0.25 |
Costs/Systems | PV (USD/kW) | Batteries/6 V (USD/Unit) | Wind (USD/kW) | Hydraulic (USD/kW) | Biodiesel (USD/kW) |
---|---|---|---|---|---|
Installation cost | 800–2000 | 900–1300 | 1800 | 2000 | 650 |
Maintenance and operating costs | 8–200 | 9–14 | 700–1000 | 100/year | 20/year |
Replacement cost | 700 | 1300 | - | - | - |
Centroid/Axis | x | y |
---|---|---|
Centroid 1 | 0.92463054 | 0.11527094 |
Centroid 2 | 0.75952381 | 0.74047619 |
Centroid 3 | 0.29246429 | 0.48892857 |
Month/Resources | Objective Function | Batteries (Injection/Consumption) | Storage | Solar | Wind | Hydro |
---|---|---|---|---|---|---|
Cost (USD) | P (kW) | E (kWh) | P (kW) | P (kW) | P (kW) | |
January | 86,993.372 | −5.9521873 | 125 | 32.78232 | 1.2654927 | 5.05 |
February | 107,862.57 | −4.3408207 | 119.04781 | 33.91956 | 1.7396193 | 5.05 |
March | 137,518.88 | −2.1732186 | 114.70699 | 35.40348 | 2.4233014 | 5.05 |
April | 113,170.6 | 2.9308321 | 112.53377 | 41.62752 | 1.3033121 | 5.05 |
May | 102,321.29 | 2.0975483 | 115.46461 | 41.04108 | 1.0564683 | 5.05 |
Jun | 106,827.33 | 1.7328749 | 117.56215 | 40.5162 | 1.2166749 | 5.05 |
Jully | 162,312.84 | 3.5950199 | 119.29503 | 40.9212 | 2.6738199 | 5.05 |
August | 177,942.34 | 5.0149667 | 122.89005 | 42.00336 | 3.0116067 | 5.05 |
September | 154,083.06 | 4.4502273 | 127.90502 | 42.08436 | 2.3658673 | 5.05 |
October | 91,055.383 | 0.5818162 | 132.35524 | 39.72888 | 0.8529362 | 5.05 |
November | 79,623.893 | −2.4906887 | 132.93706 | 36.73836 | 0.7709513 | 5.05 |
December | 69,867.2 | −5.44637 | 130.44637 | 33.8256 | 0.72803 | 5.05 |
Horizon/Years | 2024–2030 | 2030–2050 | ||
Population | 8,095,498 | >12,000,000 | ||
Scenarios | Scenario 2 | Scenario 4 | ||
Technologies/costs | Capacity (MW) | Investment (In million USD) | Capacity (MW) | Investment (In million USD) |
Mini-grid PV hybrid | 320 | 564 | 720 | 1371 |
Mini-grid hydraulic | <1 | 1.12 | 1 | 4.42 |
Mini-grid wind, biodiesel | 0 | 0 | 0 | 0 |
Extension | - | - | 274 | 964 |
Stand-alone PV systems | - | - | 62 | 280 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabe, M.; Bokovi, Y.; Sedzro, K.S.; Takouda, P.; Lare, Y. Optimal Electrification Using Renewable Energies: Microgrid Installation Model with Combined Mixture k-Means Clustering Algorithm, Mixed Integer Linear Programming, and Onsset Method. Energies 2024, 17, 3022. https://doi.org/10.3390/en17123022
Kabe M, Bokovi Y, Sedzro KS, Takouda P, Lare Y. Optimal Electrification Using Renewable Energies: Microgrid Installation Model with Combined Mixture k-Means Clustering Algorithm, Mixed Integer Linear Programming, and Onsset Method. Energies. 2024; 17(12):3022. https://doi.org/10.3390/en17123022
Chicago/Turabian StyleKabe, Moyème, Yao Bokovi, Kwami Senam Sedzro, Pidéname Takouda, and Yendoubé Lare. 2024. "Optimal Electrification Using Renewable Energies: Microgrid Installation Model with Combined Mixture k-Means Clustering Algorithm, Mixed Integer Linear Programming, and Onsset Method" Energies 17, no. 12: 3022. https://doi.org/10.3390/en17123022
APA StyleKabe, M., Bokovi, Y., Sedzro, K. S., Takouda, P., & Lare, Y. (2024). Optimal Electrification Using Renewable Energies: Microgrid Installation Model with Combined Mixture k-Means Clustering Algorithm, Mixed Integer Linear Programming, and Onsset Method. Energies, 17(12), 3022. https://doi.org/10.3390/en17123022