Paleoenvironment and Hydrocarbon Potential of Salinized Lacustrine Shale with High Terrigenous Input in the Paleogene Biyang Depression (East China): Evidence from Organic Petrography and Geochemistry
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Bulk Geochemistry
4.2. Organic Petrography and Vitrinite Reflectance
4.3. Elemental Compositions
4.4. Biomarkers
5. Discussion
5.1. Maturity
5.2. Organic Matter (OM) Source
5.3. Paleoenvironment Reconstruction
5.4. Hydrocarbon Potential and Implications for Regional Hydrocarbon Exploration
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruble, T.E.; Lewan, M.D.; Philp, R.P. New insights on the Green River petroleum system in the Uinta Basin from hydrous pyrolysis experiments. AAPG Bull. 2001, 85, 1333–1371. [Google Scholar] [CrossRef]
- Zou, C.; Zhu, R.; Chen, Z.Q.; Ogg, J.G.; Wu, S.; Dong, D.; Qiu, Z.; Wang, Y.; Wang, L.; Lin, S.; et al. Organic-Matter-Rich shales of China. Earth Sci. Rev. 2019, 189, 51–78. [Google Scholar] [CrossRef]
- Warren, J.K. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth Sci. Rev. 2010, 98, 217–268. [Google Scholar] [CrossRef]
- Wang, M.; Guo, Z.; Jiao, C.; Lu, S.; Li, J.; Xue, H.; Li, J.; Li, J.; Chen, G. Exploration progress and geochemical features of lacustrine shale oils in China. J. Pet. Sci. Eng. 2019, 178, 975–986. [Google Scholar] [CrossRef]
- Liu, B.; Song, Y.; Zhu, K.; Su, P.; Ye, X.; Zhao, W. Mineralogy and Element Geochemistry of Salinized Lacustrine Organic-Rich Shale in the Middle Permian Santanghu Basin: Implications for Paleoenvironment, Provenance, Tectonic Setting and Shale Oil Potential. Mar. Pet. Geol. 2020, 120, 104569. [Google Scholar] [CrossRef]
- Liu, B.; Wang, H.; Fu, X.; Bai, Y.; Bai, L.; Jia, M.; He, B. Lithofacies and Depositional Setting of a Highly Prospective Lacustrine Shale Oil Succession from the Upper Cretaceous Qingshankou Formation in the Gulong Sag, Northern Songliao Basin, Northeast China. AAPG Bull. 2019, 103, 405–432. [Google Scholar] [CrossRef]
- Hofmann, P.; Huc, A.Y.; Carpentier, B.; Schaeffer, P.; Albrecht, P.; Kelly, B.; Maxwell, J.R.; Damsté, J.S.S.; de Leeuw, J.W.; Leythaeuser, D. Organic matter of the Mulhouse Basin, France: A synthesis. Org. Geochem. 1993, 20, 1105–1123. [Google Scholar] [CrossRef]
- Mascle, A.; Vially, R. The petroleum systems of the southeast basin and Gulf of Lion (France). Geol. Soc. 1999, 156, 121–140. [Google Scholar] [CrossRef]
- Rodriguez, N.D.; Philp, R.P. Source Rock Facies Distribution predicted from oil geochemistry in the Central Sumatra Basin, Indonesia. AAPG Bull. 2015, 99, 2005–2022. [Google Scholar] [CrossRef]
- Guo, P.; Liu, C.; Gibert, L.; Huang, L.; Zhang, D.; Dai, J. How to find high-quality petroleum source rocks in saline lacustrine basins: A case study from the Cenozoic Qaidam Basin, NW China. Mar. Pet. Geol. 2020, 111, 603–623. [Google Scholar] [CrossRef]
- Xin, B.; Hao, F.; Han, W.; Xu, Q.; Zhang, B.; Tian, J. Paleoenvironment evolution of the lacustrine organic-rich shales in the second member of Kongdian Formation of Cangdong Sag, Bohai Bay Basin, China: Implications for organic matter accumulation. Mar. Pet. Geol. 2021, 133, 105244. [Google Scholar] [CrossRef]
- Liang, C.; Jiang, Z.; Cao, Y.; Wu, J.; Wang, Y.; Hao, F. Sedimentary characteristics and origin of lacustrine organic-rich shales in the salinized Eocene Dongying Depression. GSA Bull. 2018, 130, 154–174. [Google Scholar] [CrossRef]
- Kong, X.; Jiang, Z.; Zheng, Y.; Xiao, M.; Chen, C.; Yuan, H.; Chen, F.; Wu, S.; Zhang, J.; Han, C.; et al. Organic geochemical characteristics and organic matter enrichment of mudstones in an Eocene saline lake, Qianjiang Depression, Hubei Province, China. Mar. Pet. Geol. 2020, 114, 104194. [Google Scholar] [CrossRef]
- Guan, M.; Liu, X.; Jin, Z.; Zhao, W.; Liu, W.; Bian, L.; Dong, J.; Zeng, X.; Zeng, B.; Sun, B.; et al. The formation of the Paleocene lacustrine organic-rich shale in the Subei Basin, East China Associated with the Early Late Paleocene event and marine incursions. Mar. Pet. Geol. 2024, 162, 106730. [Google Scholar] [CrossRef]
- Song, Y.; Li, S.; Hu, S. Warm-humid paleoclimate control of salinized lacustrine organic-rich shale deposition in the Oligocene Hetaoyuan Formation of the Biyang Depression, East China. Int. J. Coal Geol. 2019, 202, 69–84. [Google Scholar] [CrossRef]
- Xu, S.; Wang, Y.; Bai, N.; Wu, S.; Liu, B. Organic matter enrichment mechanism in saline lacustrine basins: A review. Geol. J. 2024, 59, 155–168. [Google Scholar] [CrossRef]
- Li, S.; Hu, S.; Xie, X.; Lv, Q.; Huang, X.; Ye, J. Assessment of shale oil potential using a new free hydrocarbon index. Int. J. Coal Geol. 2016, 156, 74–85. [Google Scholar] [CrossRef]
- Li, J.; Liu, Z.; Zhang, X.; Feng, G.; Liu, J.; Ma, Y.; Lu, S.; Li, W.; Zhou, N. Effects of paleoenvironment on continental shale oil enrichment and producibility in the Biyang Depression. AAPG Bull. 2022, 106, 2043–2071. [Google Scholar] [CrossRef]
- Song, Y.; Cao, Q.; Li, S.; Hu, S.; Zhu, K.; Ye, X.; Wan, L. Salinized lacustrine organic-rich shale influenced by marine incursions: Algal-microbial community, paleoenvironment and shale oil potential in the Paleogene Biyang Depression, East China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 580, 110621. [Google Scholar] [CrossRef]
- Song, Y.; Wan, L.; Xu, S.; Gao, B.; Li, C.; Li, Z.; Paerzhana, P. Lake-level-fluctuation control on shale oil enrichment of the salinized lacustrine organic-rich shale in the Paleogene Biyang Depression, East China. Minerals 2024, 14, 94. [Google Scholar] [CrossRef]
- Yuan, Y.Z.; Luo, J.Q.; Zhu, Y.; Liu, G.; Li, L.; Yu, M. Petroleum exploration history and enlightenment of Biyang Sag and Nanyang Sag in Nanxiang Basin. Xinjiang Petro. Geol. 2021, 42, 364–373, (In Chinese with English abstract). [Google Scholar]
- Dong, Y.; Zhu, X.; Xian, B.; Hu, T.; Geng, X.; Liao, J.; Luo, Q. Seismic Geomorphology Study of the Paleogene Hetaoyuan Formation, Central-South Biyang Sag, Nanxiang Basin, China. Mar. Pet. Geol. 2015, 64, 104–124. [Google Scholar] [CrossRef]
- Xu, K.; Chen, H.; Huang, C.; Ogg, J.G.; Zhu, J.; Lin, S.; Yang, D.; Zhao, P.; Kong, L. Astronomical Time Scale of the Paleogene Lacustrine Paleoclimate Record from the Nanxiang Basin, Central China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 532, 109253. [Google Scholar] [CrossRef]
- Taylor, G.H.; Teichmüller, M.; Davis, A.; Diessel, C.F.K.; Littke, R.; Petrology, P.R. RobertOrganic Petrology. In A New Handbook Incorporating Some Revised Parts of Stach’s Textbook of Coal Petrology; Gebrüder Borntraeger: Berlin, Stuttgart, 1998; Geological Magazine; Volume 136, pp. 697–711. ISBN 3–443–01036–9. [Google Scholar]
- Shen, J.; Schoepfer, S.D.; Feng, Q.; Zhou, L.; Yu, J.; Song, H.; Wei, H.; Algeo, T.J. Marine Productivity Changes during the End-Permian Crisis and Early Triassic Recovery. Earth Sci. Rev. 2015, 149, 136–162. [Google Scholar] [CrossRef]
- Tribovillard, N.; Algeo, T.J.; Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol. 2006, 232, 12–32. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In Treatise on Geochemistry, 2nd ed.; Newnes: Boston, UK, 2014; pp. 1–51. [Google Scholar]
- Cassani, F.; Gallango, O.; Talukdar, S.; Vallejos, C.; Ehrmann, U. Methylphenanthrene maturity index of marine source rock extracts and crude oils from the Maracaibo Basin. Org. Geochem. 1988, 13, 73–80. [Google Scholar] [CrossRef]
- Radke, M.; Welte, D.H.; Willsch, H. Maturity Parameters Based on Aromatic Hydrocarbons: Influence of the Organic Matter Type. Org. Geochem. 1986, 10, 51–63. [Google Scholar] [CrossRef]
- Peters, K.E.; Walters, C.C.; Moldowan, J.M. The Biomarker Guide: Column 2, Biomarkers and Isotopes in Petroleum Systems and Earth History, 2nd ed.; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Hanson, A.D.; Zhang, S.C.; Moldowan, J.M.; Liang, D.G.; Zhang, B.M. Molecular organic geochemistry of the Tarim Basin, northwest China. AAPG Bull. 2000, 84, 1109–1128. [Google Scholar]
- Volkman, J.K.; Allen, D.I.; Stevenson, P.L.; Burton, H.R. Bacterial and algal hydrocarbons from a saline Antarctic lake, Ace Lake. Org. Geochem. 1986, 10, 671–681. [Google Scholar] [CrossRef]
- Volkman, J.K.; Barrett, S.M.; Blackburn, S.I. Eustigmatophyte microalgae are potential sources of C29 sterols, C22–C28 n-alcohols and C28–C32 n-alkyl diols in freshwater environments. Org. Geochem. 1999, 30, 307–318. [Google Scholar] [CrossRef]
- Otto, A.; Wilde, V. Sesqui-, di-, and triterpenoids as chemosystematic markers in extant conifers; a review. Bot. Rev. 2001, 67, 141–238. [Google Scholar] [CrossRef]
- Ourisson, G.; Albrecht, P.; Rohmer, M. The hopanoids: Palaeochemistry and biochemistry of a group of natural products. Pure Appl. Chem. 1979, 51, 709–729. [Google Scholar] [CrossRef]
- Rohmer, M.; Bisseret, P.; Neunlist, S. The hopanoids, prokaryotic triterpenoids and precursors of ubiquitous molecular fossils. In Biological Markers in Sediments and Petroleum; Moldowan, J.M., Albrecht, P., Philp, R.P., Eds.; Prentice Hall: Englewood Cliffs, NJ, USA, 1992; pp. 1–17. [Google Scholar]
- Shiea, J.; Brassell, S.C.; Ward, D.M. Mid-chain branched mono- and dimethyl alkanes in hot spring cyanobacterial mats: A direct biogenic source for branched alkanes in ancient sediments? Org. Geochem. 1990, 15, 223–231. [Google Scholar] [CrossRef]
- Wei, W.; Algeo, T.J. Elemental proxies for paleosalinity analysis of ancient shales and mudrocks. Geochim. Cosmochim. Acta 2020, 287, 341–366. [Google Scholar] [CrossRef]
- Didyk, B.M.; Simoneit, B.R.T.; Brassell, S.C.; Eglinton, G. Organic geochemical indicators of paleoenvironmental conditions of sedimentation. Nature 1978, 272, 216–222. [Google Scholar] [CrossRef]
- Asif, M.; Alexander, R.; Fazeelat, T.; Pierce, K. Geosynthesis of dibenzothiophene and alkyl dibenzothiophenes in crude oils and sediments by carbon catalysis. Org. Geochem. 2009, 40, 895–901. [Google Scholar] [CrossRef]
- Algeo, T.J.; Tribovillard, N. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation. Chem. Geol. 2009, 268, 211–225. [Google Scholar] [CrossRef]
- Schoepfer, S.D.; Shen, J.; Wei, H.; Tyson, R.V.; Ingall, E.; Algeo, T.J. Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity. Earth Sci. Rev. 2015, 149, 23–52. [Google Scholar] [CrossRef]
- Rosen, M. The importance of groundwater in playas: A review of playa classifications and the sedimentology and hydrology of playas. GSA Bull. 1994, 289, 1–18. [Google Scholar]
- Peters, K.E. Guidelines for petroleum source rock using programmed pyrolysis. AAPG Bull. 1986, 70, 318–329. [Google Scholar]
Strata | Depth (m) | TOC (wt. %) | S1 + S2 (mg/g) | HI (mg/g TOC) | Tmax (°C) | PI | OSI (mg/g TOC) | Maceral Compositions (vol. %) | 102 × P/Al | Babio | B/ Ga | Sr/ Ba | UEF | MoEF | TiO2 | Al2O3 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Telalg | Ter Lip | Lipto | Vitr | Iner | ||||||||||||||||
Eh35 | 3195.2 | 1.0 | 1.8 | 149 | 456 | 0.18 | 33 | 0.3 | 0.7 | 0.1 | 0.9 | 0.6 | ||||||||
3196.2 | 0.8 | 1.6 | 162 | 448 | 0.19 | 37 | 2.0 | 241 | 1.0 | 2.7 | 4.2 | 8.6 | 0.65 | 15.3 | ||||||
3205.9 | 0.6 | 1.2 | 130 | 452 | 0.29 | 52 | 0.7 | 181 | 0.5 | 2.5 | 1.7 | 2.1 | 0.73 | 17.7 | ||||||
3206.5 | 0.8 | 1.6 | 148 | 442 | 0.31 | 65 | 0.1 | 0.2 | 0.2 | 0.4 | 0.1 | 0.8 | 238 | 0.9 | 2.6 | 1.6 | 4.3 | 0.62 | 14.4 | |
3207 | 0.4 | 0.7 | 123 | 455 | 0.37 | 71 | 1.0 | 285 | 2.6 | 3.5 | 3.2 | 1.5 | 0.28 | 6.7 | ||||||
3208.5 | 0.9 | 1.7 | 142 | 451 | 0.24 | 44 | 0.3 | 0.2 | 0.1 | 0.5 | 0.4 | 0.7 | 353 | 1.5 | 2.8 | 2.8 | 4.4 | 0.46 | 10.5 | |
3209.7 | 1.3 | 2.8 | 166 | 455 | 0.22 | 46 | 0.4 | 0.0 | 0.1 | 1.1 | 0.6 | 1.4 | 82 | 0.9 | 3.8 | 3.7 | 8.9 | 0.59 | 16.1 | |
3210.2 | 1.8 | 4.1 | 162 | 444 | 0.28 | 62 | 0.8 | 0.8 | 0.2 | 1.9 | 0.8 | 2.4 | 298 | 0.8 | 2.1 | 4.3 | 18.4 | 0.65 | 15.7 | |
3212 | 0.6 | 1.0 | 126 | 447 | 0.18 | 27 | 1.9 | 367 | 2.8 | 2.5 | 4.9 | 7.7 | 0.27 | 7.3 | ||||||
3213 | 1.0 | 1.9 | 154 | 454 | 0.22 | 43 | 1.3 | 125 | 0.5 | 2.6 | 3.5 | 4.9 | 0.76 | 18.4 | ||||||
3214 | 0.3 | 0.5 | 100 | 431 | 0.39 | 63 | 1.0 | 172 | 0.7 | 1.9 | 1.4 | 15.5 | 0.72 | 15.9 | ||||||
3214.5 | 1.1 | 2.2 | 151 | 442 | 0.23 | 46 | 191 | 1.8 | 1.7 | 7.0 | 12.5 | 0.56 | 13.8 | |||||||
Eh36 | 3342.6 | 2.2 | 2.9 | 81 | 443 | 0.40 | 54 | 0.8 | 57 | 0.8 | 3.1 | 3.8 | 19.8 | 0.60 | 14.8 | |||||
3342.7 | 2.0 | 2.3 | 71 | 442 | 0.37 | 42 | 0.3 | 0.6 | 0.1 | 1.6 | 0.7 | 1.1 | 46 | 0.6 | 4.6 | 3.6 | 28.6 | 0.66 | 15.7 | |
3349.2 | 1.5 | 2.0 | 93 | 445 | 0.29 | 39 | 0.2 | 0.2 | 0.2 | 1.2 | 0.6 | 0.9 | 87 | 1.7 | 5.4 | 5.2 | 34.0 | 0.53 | 13.4 | |
3349.6 | 1.6 | 2.5 | 98 | 459 | 0.35 | 54 | 0.3 | 0.5 | 0.2 | 2.0 | 0.5 | 0.8 | 277 | 1.0 | 3.2 | 2.7 | 12.2 | 0.66 | 12.5 | |
3357.2 | 1.2 | 1.8 | 111 | 462 | 0.28 | 43 | 0.1 | 0.2 | 0.2 | 0.7 | 0.5 | 232 | 0.8 | 3.2 | 9.8 | 27.4 | 0.52 | 12.8 | ||
3357.6 | 0.8 | 1.3 | 119 | 452 | 0.27 | 44 | 1.1 | 15 | 1.1 | 2.8 | 4.4 | 24.3 | 0.65 | 15.7 | ||||||
3382.8 | 1.4 | 2.1 | 91 | 459 | 0.38 | 55 | 1.7 | 97 | 1.5 | 3.8 | 3.7 | 14.9 | 0.50 | 13.2 | ||||||
3383.6 | 1.6 | 2.2 | 81 | 439 | 0.42 | 58 | 0.3 | 0.5 | 0.1 | 2.5 | 0.4 | 0.7 | 76 | 1.0 | 2.9 | 2.8 | 19.3 | 0.56 | 15.3 |
Strata | Depth (m) | A (wt. %) | B (wt. %) | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R (%) | S (%) | T (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Eh35 | 3195.2 | 0.10 | 85.8 | 3.4 | 1.31 | 0.44 | 0.36 | 0.88 | 1.48 | 0.24 | 0.60 | 0.60 | 0.46 | 1.66 | 0.52 | 0.67 | 0.88 | 0.84 | 32 | 46 | 22 |
3196.2 | 0.09 | 82.0 | 4.4 | 1.12 | 0.39 | 0.33 | 0.70 | 1.43 | 0.37 | 0.64 | 0.59 | 0.71 | 2.21 | 0.52 | 0.66 | 0.87 | 0.96 | 35 | 42 | 23 | |
3206.5 | 0.08 | 85.2 | 2.9 | 1.05 | 0.36 | 0.38 | 1.11 | 1.71 | 0.37 | 0.62 | 0.59 | 0.51 | 1.64 | 0.51 | 0.67 | 0.91 | 0.86 | 41 | 29 | 30 | |
3208.5 | 0.11 | 82.7 | 3.9 | 1.12 | 0.38 | 0.34 | 1.09 | 1.47 | 0.38 | 0.63 | 0.58 | 0.64 | 2.32 | 0.51 | 0.66 | 0.96 | 0.93 | 31 | 41 | 28 | |
3209.7 | 0.14 | 85.0 | 3.4 | 0.98 | 0.42 | 0.29 | 0.96 | 1.66 | 0.21 | 0.73 | 0.61 | 0.5 | 1.50 | 0.54 | 0.66 | 1.01 | 0.91 | 36 | 36 | 28 | |
3210.2 | 0.16 | 88.2 | 3.0 | 1.37 | 0.51 | 0.33 | 0.88 | 1.54 | 0.32 | 0.57 | 0.57 | 0.51 | 1.85 | 0.51 | 0.63 | 0.86 | 0.89 | 28 | 51 | 21 | |
Eh36 | 3342.7 | 0.13 | 88.5 | 3.2 | 1.01 | 0.28 | 0.28 | 1.80 | 2.11 | 0.47 | 0.76 | 0.59 | 0.64 | 1.89 | 0.57 | 0.70 | 0.95 | 0.95 | 34 | 30 | 36 |
3349.2 | 0.17 | 94.4 | 4.5 | 0.99 | 0.12 | 0.13 | 1.63 | 2.28 | 0.51 | 0.68 | 0.60 | 0.59 | 2.64 | 0.54 | 0.71 | 0.97 | 0.98 | 28 | 41 | 31 | |
3349.6 | 0.11 | 89.7 | 2.8 | 0.87 | 0.24 | 0.17 | 1.33 | 1.66 | 0.46 | 0.67 | 0.61 | 0.71 | 2.81 | 0.58 | 0.68 | 1.07 | 1.02 | 32 | 30 | 38 | |
3357.2 | 0.10 | 87.1 | 3.8 | 0.89 | 0.31 | 0.32 | 1.13 | 1.87 | 0.38 | 0.75 | 0.58 | 0.82 | 2.65 | 0.53 | 0.67 | 1.01 | 0.95 | 24 | 28 | 48 | |
3383.6 | 0.10 | 87.1 | 3.1 | 0.91 | 0.2 | 0.22 | 1.21 | 1.97 | 0.66 | 0.72 | 0.6 | 0.67 | 2.43 | 0.55 | 0.7 | 0.89 | 1.00 | 22 | 27 | 51 |
Figure | m/z | Abbreviation | Compound | Figure | m/z | Abbreviation | Compound |
---|---|---|---|---|---|---|---|
Figure 7A | TIC | 15-33 | C15-C33 n-alkanes | Figure 7D | 217 | C27 ββS (S) | 5α,14β,17β-cholestane (20S) |
i18 | C18 iso-alkane | C27 S (R) | 5α,14α,17α-cholestane (20R) | ||||
Pr | Pristane | C28 S (S) | 24-methyl-5α,14α,17α-cholestane (20S) | ||||
Me-hep | Methylheptadecanes | C28 ββS (R) | 24-methyl-5α,14β,17β-cholestane (20R) | ||||
Ph | Phytane | C28 ββS (S) | 24-methyl-5α,14β,17β-cholestane (20S) | ||||
Figure 7B | 123 | RDs | Rearranged drimanes | C28 S (R) | 24-methyl-5α,14α,17α-cholestane (20R) | ||
βD | 8β-drimane | C29 S (S) | 24-ethyl-5α,14α,17α-cholestane (20S) | ||||
αD | 8α-drimane | C29 ββS (R) | 24-ethyl-5α,14β,17β-cholestane (20R) | ||||
Bi | Bisabolane | C29 ββS (S) | 24-ethyl-5α,14β,17β-cholestane (20S) | ||||
βHD | 8β-homodrimane | C29 S (R) | 24-ethyl-5α,14α,17α-cholestane (20R) | ||||
Figure 7C | 191 | C21-C30 TT | C21-C30 tricyclic terpanes | Figure 8A | TIC | TeMNs | Tetramethylnaphthalenes |
C24 TeT | C24 tetracyclic terpane | Phe | Phenanthrene | ||||
Ts | 18α-trisnorhopane | C2 Fls | C2 fluorenes | ||||
Tm | 17α-trisnorhopane | C4 Fls | C4 fluorenes | ||||
C29 H | 17α,21β-norhopane | MPs | Methylphenanthrenes | ||||
C29 M | 17β,21α-norhopane | DMPs | Dimethylphenanthrenes | ||||
C30 H | 17α,21β-hopane | TMPs | Trimethylphenanthrenes | ||||
C30 M | 17β,21α-hopane | Chr | Chrysene | ||||
C31 H | 17α,21β-homohopane (22S+22R) | MChrs | Methylchrysenes | ||||
Gam | Gammacerane | B[e]P | Benzo[e]pyrene | ||||
C32 H | 17α,21β-bishomohopane (22S+22R) | Figure 8C | 168 | 3-MB | 3-methylbiphenyl | ||
Figure 7D | 217 | C27 DiaS (S/R) | 13α,17β-diacholestane (20S/20R) | 4-MB | 4-methylbiphenyl | ||
C27 S (S) | 5α,14α,17α-cholestane (20S) | Figure 8D | 170 | TMN | Trimethylnaphthalene | ||
C27 ββS (R) | 5α,14β,17β-cholestane (20R) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Paerhati, P.; Xu, S.; Jiang, S.; Gao, B.; Li, S.; Cao, Q.; Li, Z.; Wan, L.; Li, C. Paleoenvironment and Hydrocarbon Potential of Salinized Lacustrine Shale with High Terrigenous Input in the Paleogene Biyang Depression (East China): Evidence from Organic Petrography and Geochemistry. Energies 2024, 17, 3003. https://doi.org/10.3390/en17123003
Song Y, Paerhati P, Xu S, Jiang S, Gao B, Li S, Cao Q, Li Z, Wan L, Li C. Paleoenvironment and Hydrocarbon Potential of Salinized Lacustrine Shale with High Terrigenous Input in the Paleogene Biyang Depression (East China): Evidence from Organic Petrography and Geochemistry. Energies. 2024; 17(12):3003. https://doi.org/10.3390/en17123003
Chicago/Turabian StyleSong, Yu, Paerzhana Paerhati, Shilin Xu, Shu Jiang, Bo Gao, Shuifu Li, Qiang Cao, Zhonghui Li, Li Wan, and Chuang Li. 2024. "Paleoenvironment and Hydrocarbon Potential of Salinized Lacustrine Shale with High Terrigenous Input in the Paleogene Biyang Depression (East China): Evidence from Organic Petrography and Geochemistry" Energies 17, no. 12: 3003. https://doi.org/10.3390/en17123003
APA StyleSong, Y., Paerhati, P., Xu, S., Jiang, S., Gao, B., Li, S., Cao, Q., Li, Z., Wan, L., & Li, C. (2024). Paleoenvironment and Hydrocarbon Potential of Salinized Lacustrine Shale with High Terrigenous Input in the Paleogene Biyang Depression (East China): Evidence from Organic Petrography and Geochemistry. Energies, 17(12), 3003. https://doi.org/10.3390/en17123003