Evaluation of the Activity of a Municipal Waste Landfill Site in the Operational and Non-Operational Sectors Based on Landfill Gas Productivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Facility
2.2. Statistics
2.3. Characteristics of the Landfill
3. Analysis of Research Results
3.1. Meteorological Parameters
3.2. LFG
3.3. Correlations
4. Discussion of the Results
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- The World Bank. Trends in Solid Waste Management. 2020. Available online: https://datatopics.worldbank.org/what-a-waste/trends_in_solid_waste_management.html (accessed on 21 February 2024).
- Shah, H.H.; Amin, M.; Pepe, F. Maximizing resource efficiency: Opportunities for energy recovery from municipal solid waste in Europe. J. Mater. Cycles Waste Manag. 2023, 25, 2766–2782. [Google Scholar] [CrossRef]
- Van, J.C.F.; Tham, P.E.; Lim, H.R.; Khoo, K.S.; Chang, J.S.; Show, P.L. Integration of internet-of-things as sustainable smart farming technology for the rearing of black soldier fly to mitigate food waste. J. Taiwan Inst. Chem. Eng. 2022, 137, 104235. [Google Scholar] [CrossRef]
- Przydatek, G. Recognition of systemic differences in municipal waste management in selected cities in Poland and the United States. Environ. Sci. Pollut. Res. 2023, 30, 76217–76226. [Google Scholar] [CrossRef] [PubMed]
- Pires, A.; Marthino, G. Waste hierarchy index for circular economy in waste management. Waste Manag. 2019, 95, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Rajaeifar, M.A.; Ghanavati, H.; Dashti, B.B.; Heijungs, R.; Aghbashlo, M.; Tabatabaei, M. Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: A comparative review. Renew. Sustain. Energy Rev. 2017, 79, 414–439. [Google Scholar] [CrossRef]
- Rahman, M.M.; Sultana, K.R.; Hoque, M.A. Suitable sites for urban solid waste disposal using GIS approach in Khulna city Bangladesh. Proc. Pak. Acad. Sci. 2008, 45, 1122. [Google Scholar]
- Gbanie, S.P.; Tengbe, P.B.; Momoh, J.S.; Medo, J.; Kabba, V.T.S. Modelling landfill location using Geographic Information Systems (GIS) and Multi-Criteria Decision Analysis (MCDA): Case study Bo, Southern Sierra Leone. Appl. Geogr. 2013, 36, 3–12. [Google Scholar] [CrossRef]
- Ersoy, H.; Bulut, F.; Berkün, M. Landfill site requirements on the rock environment: A case study. Eng. Geol. 2013, 154, 20–35. [Google Scholar] [CrossRef]
- Zheng, Q.-T.; Rowe, R.K.; Feng, S.-J. Design of vertical landfill gas collection wells considering non-homogeneity with depth. Waste Manag. 2018, 82, 26–36. [Google Scholar] [CrossRef]
- Barlaz, M.; Chanton, J.P.; Green, R.B. Controls on Landfill Gas Collection Efficiency: Instantaneous and Lifetime Performance. J. Air Waste Manage. Assoc. 2009, 59, 1399–1404. [Google Scholar] [CrossRef]
- Rowe, R.K. Protecting the Environment with Geosynthetics: 53rd Karl Terzaghi Lecture. J. Geotech. Geoenvironmental Eng. Arch. 2020, 146, 04020081. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Chen, H.; Guo, H.; Rui, C.; Xue, Q. Life cycle analysis of common landfill final cover systems focusing on carbon neutrality. Sci. Total Environ. 2024, 912, 168863. [Google Scholar] [CrossRef] [PubMed]
- Olczak, M.; Piebalgs, A. Energy Security Meets the Circular Economy: A Stronger Case for Sustainable Biomethane Production in the EU. European University Institute, 2022. Available online: https://op.europa.eu/en/publication-detail/-/publication/170bd5de-f03f-11ec-a534-01aa75ed71a1 (accessed on 23 January 2024).
- Milanović, T.; Savić, G.; Martić, M.; Milanović, M.; Petrović, N. Development of the waste management composite index using DEA method as circular economy indicator: The case of European Union countries. Pol. J. Environ. Stud. 2022, 31, 771–784. [Google Scholar] [CrossRef] [PubMed]
- Przydatek, G. A Comparative Analysis of Municipal Waste Management Systems. Pol. J. Environ. Stud. 2016, 25, 2107–2112. [Google Scholar] [CrossRef] [PubMed]
- Yechiel, A.; Shevah, Y. Optimization of energy generation using landfill biogas. J. Energy Storage 2016, 7, 93–98. [Google Scholar] [CrossRef]
- Amini, H.R.; Reinhart, D.R.; Mackie, K.R. Determination of first-order landfill gas modeling parameters and uncertainties. Waste Manag. 2012, 32, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Wagner, T.; Bauer, M.; Sauerwald, T.; Kohl, C.-D.; Tiemann, M. X-ray absorption near-edge spectroscopy investigation of the oxidation state of Pd species in nanoporous SnO2 gas sensors for methane detection. Thin Solid Film. 2011, 520, 909–912. [Google Scholar] [CrossRef]
- Lau, C.S.; Tsolakis, A.; Wyszynski, M.L. Biogas upgrade to syn-gas (H2-CO) via dry and oxidative reforming. Int. J. Hydrogen Energy 2011, 36, 397–404. [Google Scholar] [CrossRef]
- Deublein, D.; Steinhauser, A. Biogas from Waste and Renewable Resources: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Wang, Q.; Gu, X.; Tang, S.; Mohammad, A.; Singh, D.N.; Xie, H.; Chen, Y.; Zuo, X.; Sun, Z. Gas transport in landfill cover system: A critical appraisal. J. Environ. Manag. 2022, 321, 116020. [Google Scholar] [CrossRef]
- Manheim, D.C.; Yeşiller, N.; Hanson, J.L. Gas Emissions from Municipal Solid Waste Landfills: A Comprehensive Review and Analysis of Global Dat. J. Indian Inst. Sci. 2021, 101, 625–657. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, L.; Ren, S.; Lin, J.; Meng, S.; Ren, G.; Gentzis, T. Multi-branched horizontal wells for coalbed methane production: Field performance and well structure analysis. Int. J. Coal Geol. 2014, 131, 52–64. [Google Scholar] [CrossRef]
- Wang, S.; Ma, F.; Ma, W.; Wang, P.; Zhao, G.; Lu, X. Influence of Temperature on Biogas Production Efficiency and Microbial Community in a Two-Phase Anaerobic Digestion System. Water 2019, 11, 133. [Google Scholar] [CrossRef]
- USEPA. US EPA—Landfill Gas Emissions Model (LandGEM) Version 3.02 User’s Guide. 2005. Available online: https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1009C8L.TXT (accessed on 12 February 2024).
- Mönkäre, T.J.; Palmroth, M.R.T.; Rintala, J.A. Stabilization of fine fraction from landfill mining in anaerobic and aerobic laboratory leach bed reactors. Waste Manag. 2015, 45, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Piao, S.; Bousquet, P.; Ciais, P.; Li, B.; Lin, X.; Tao, S.; Wang, Z.; Zhang, Y.; Zhou, F. Inventory of anthropogenic methane emissions in mainland China from 1980 to 2010. Atmos. Chem. Phys. 2016, 16, 14545–14562. [Google Scholar] [CrossRef]
- Białowiec, A.; Siudak, M.; Jakubowski, B.; Wiśniewski, D. The influence of leachate recirculation on biogas production in a landfill bioreactor. Environ. Prot. Eng 2017, 43, 113–120. [Google Scholar] [CrossRef]
- Castrillón, L.; Fernández-Nava, Y.; Ulmanu, M.; Anger, I.; Maranon, E. Physico-chemical and biological treatment of MSW landfill leachate. Waste Manag. 2010, 30, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Carriero, G.; Neri, L.; Famulari, D.; Lonardo, D.L.; Piscitelli, D. Composition and emission of VOC from biogas produced by illegally managed waste landfills in Giugliano (Campania, Italy) and potential impact on the local population. Sci. Total Environ. 2018, 640, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Ciuła, J.; Wiewiórska, I.; Banaś, M.; Pająk, T.; Szewczyk, P. Balance and Energy Use of Biogas in Poland: Prospects and Directions of Development for the Circular Economy. Energies 2023, 16, 3910. [Google Scholar] [CrossRef]
- Garcia, J.; Davies, S.; Villa, R.; Gomes, D.M.; Coulon, F.; Wagland, S.T. Compositional analysis of excavated landfill samples and the determination of residual biogas potential of the organic fraction. Waste Manag. 2016, 55, 336–344. [Google Scholar] [CrossRef]
- Przydatek, G.; Ciągło, K. Assessment of the Variability of the Landfill Gas Composition Captured on a Used Landfill. In Renewable Energy Sources: Engineering, Technology, Innovation; Wróbel, M., Jewiarz, M., Szlęk, A., Eds.; Springer: Cham, Switzerland, 2018; pp. 775–785. [Google Scholar]
- Przydatek, G.; Barsan, N.; Świgut, A. Study of Biogas Composition on Operational and Non-Operational Landfill Sites from Poland. Mater. Plast. 2022, 59, 33–39. [Google Scholar] [CrossRef]
- Njoku, P.O.; Piketh, S.; Makungo, R.; Edokpayi, J.N. Monitoring of Subsurface Emissions and the Influence of Meteorological Factors on Landfill Gas Emissions: A Case Study of a South African Landfill. Sustainability 2023, 15, 5989. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, T.; Feng, H.; Chen, S. Greenhouse gas emissions from landfills: A review and bibliometric analysis. Sustainability 2019, 11, 2282. [Google Scholar] [CrossRef]
- Rodrigo-Ilarri, J.; Rodrigo-Clavero, M.E. Mathematical Modeling of the Biogas Production in MSW Landfills. Impact of the Implementation of Organic Matter and Food Waste Selective Collection Systems. Atmosphere 2020, 11, 1306. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.H.; Plattner, G.K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y. Climate Change. In The Physical Science Basis, Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; WMO/UNEP: Cambridge, UK, 2013. [Google Scholar]
- Etminan, M.; Myhre, G.; Highwood, E.J.; Shine, K.P. Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing. Geophys. Res. Lett. 2016, 43, 12614–12623. [Google Scholar] [CrossRef]
- Chandrasekaran, R.; Busetty, S. Estimation of biogas generation rate and carbon sequestration potential from two landfill sites in southern India. Environ. Sci. Pollut. Res. 2023, 30, 95013–95024. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Update of the NDC of the European Union and its Member States. 2020. Available online: https://www.consilium.europa.eu/en/press/press-releases/2020/12/18/paris-agreement-council-transmits-ndc-submission-on-behalf-of-eu-and-member-states/ (accessed on 28 January 2024).
- Generowicz, A.; Gronba-Chyła, A.; Kulczycka, J.; Harazin, P.; Gaska, K.; Ciuła, J.; Ocłoń, P. Life Cycle Assessment for the environmental impact assessment of a city’ cleaning system. The case of Cracow (Poland). J. Clean. Prod. 2023, 382, 135184. [Google Scholar] [CrossRef]
- Lee, U.; Han, J.; Wang, M. Evaluation of landfill gas emissions from municipal solid waste landfills for the life-cycle analysis of waste-to-energy pathways. J. Clean. Prod. 2017, 166, 335–342. [Google Scholar] [CrossRef]
- Hrad, M.; Piringer, M.; Huber-Humer, M. Determining methane emissions from biogas plants—Operational and meteorological aspects. Bioresour. Technol. 2015, 191, 234–243. [Google Scholar] [CrossRef]
- Gollapalli, M.; Kota, S.H. Methane emissions from a landfill in north-east India: Performance of various landfill gas emission models. Environ. Pollut. 2018, 234, 174–180. [Google Scholar] [CrossRef]
- Karanjekar, R.V.; Bhatt, A.; Altouqui, S.; Jangikhatoonabad, N.; Durai, V.; Sattler, M.L.; Hossain, M.D.S.; Chen, V. Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model. Waste Manag. 2015, 46, 389–398. [Google Scholar] [CrossRef]
- Aghdam, E.F.; Scheutz, C.; Kjeldsen, P. Impact of meteorological parameters on extracted landfill gas composition and flow. Waste Manag. 2019, 87, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Barlaz, M.A.; Staley, B.F.; de los Reyes, F.L., III. Anaerobic biodegradation of solid waste. Environ. Microbiol. 2009, 281–299. [Google Scholar] [CrossRef]
- Scarlat, N.; Dallemand, J.F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Gaska, K.; Generowicz, A.; Gronba-Chyła, A.; Ciuła, J.; Wiewiórska, I.; Kwaśnicki, P.; Mala, M.; Chyła, K. Artificial Intelligence Methods for Analysis and Optimization of CHP Cogeneration Units Based on Landfill Biogas as a Progress in Improving Energy Efficiency and Limiting Climate Change. Energies 2023, 16, 5732. [Google Scholar] [CrossRef]
- Niskanen, A.; Värri, H.; Havukainen, J.; Uusitalo, V.; Horttanainen, M. Enhancing landfill gas recovery. J. Clean. Prod. 2013, 55, 67–71. [Google Scholar] [CrossRef]
- Dos Santos, I.F.S.; Vieira, N.D.B.; De Nóbrega, L.G.B.; Barros, R.M.; Filho, G.L.T. Assessment of potential biogas production from multiple organic wastes in Brazil: Impact on energy generation, use, and emissions abatement. Resour. Conserv. Recycl. 2018, 131, 54–63. [Google Scholar] [CrossRef]
- Ślęzak, R.; Krzystek, L.; Ledakowicz, S. Degradation of municipal solid waste in simulated landfill bioreactors under aerobic conditions. Waste Manag. 2015, 43, 293–299. [Google Scholar] [CrossRef]
- Andriani, D.; Atmaja, T.D. The potentials of landfill gas production: A review on municipal solid waste management in Indonesia. J. Mater. Cycles Waste 2019, 21, 1572–1586. [Google Scholar] [CrossRef]
- Parashar, C.K.; Das, P.; Samanta, S.; Ganguly, A.; Chatterjee, P.K. Municipal Solid Wastes—A Promising Sustainable Source of Energy: A Review on Different Waste-to-Energy Conversion Technologies. Energy Recovery Process. Wastes 2019, 151–163. [Google Scholar] [CrossRef]
- Alrbai, M.; Abubaker, A.M.; Ahmad, A.D.; Al-Dahidi, S.; Ayadi, O.; Hjouj, D.; Al-Ghussain, L. Optimization of energy production from biogas fuel in a closed landfill using artificial neural networks: A case study of Al Ghabawi Landfill, Jordan. Waste Manag. 2022, 150, 218–226. [Google Scholar] [CrossRef]
- Palmiotto, M.; Fattore, E.; Paiano, V.; Celeste, G.; Colombo, A.; Davoli, E. Influence of a municipal solid waste landfill in the surrounding environment: Toxicological risk and odor nuisance effects. Environ. Int. 2014, 68, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Abu-Qdais, H.; Al-Ghazawi, Z.D.; Awawdeh, A. Assessment of Greenhouse Gas Emissions and Energetic Potential from Solid Waste Landfills in Jordan: A Comparative Modelling Analysis. Water 2023, 15, 155. [Google Scholar] [CrossRef]
- Nanda, S.; Berruti, F. Municipal solid waste management and landfilling technologies: A review. Environ. Chem. Lett. 2021, 19, 1433–1456. [Google Scholar] [CrossRef]
- Wdowczyk, A.; Szymańska-Pulikowska, A. Analysis of the possibility of conducting a comprehensive assessment of landfill leachate contamination using physicochemical indicators and toxicity test. Ecotoxicol. 2021, 221, 112434. [Google Scholar] [CrossRef] [PubMed]
- Ghasemzade, R.; Pazoki, M. Estimation and modeling of gas emissions in municipal landfill (Case study: Landfill of Jiroft City). Pollution 2017, 3, 689–700. [Google Scholar]
- Mønster, J.; Kjeldsen, P.; Scheutz, C. Methodologies for measuring fugitive methane emissions from landfills—A review. Waste Manag. 2019, 87, 835–859. [Google Scholar] [CrossRef] [PubMed]
- Verbeeck, K.; Buelens, L.C.; Galvita, V.V.; Guy, B.M.; Van Geem, K.M.; Rabaey, K. Upgrading the value of anaerobic digestion via chemical production from grid injected biomethane. Energy Environ. Sci. 2018, 11, 1788–1802. [Google Scholar] [CrossRef]
- Bakkaloglu, S.; Lowry, D.; Fisher, E.R.; France, J.L.; Nisbet, E.G. Carbon isotopic characterisation and oxidation of UK landfill methane emissions by atmospheric measurements. Waste Manag. 2021, 132, 162–175. [Google Scholar] [CrossRef] [PubMed]
- Damanhuri, E.; Handoko, W.; Padmi, T. Municipal solid waste management in Indonesia. In Municipal Solid Waste Management in Asia and the Pacific Islands: Challenges and Strategic Solutions; Springer: Singapore, 2014; pp. 139–155. [Google Scholar]
- Krause, M.J.; Detwiler, N.; Eades, W.; Marro, D.; Schwarber, A.; Tolaymat, T. Understanding landfill gas behavior at elevated temperature landfill. Waste Manag. 2023, 165, 83–93. [Google Scholar] [CrossRef]
- Schupp, S.; Cruz, F.; Cheng, Q.; Call, D.; Barlaz, M. Evaluation of the Temperature Range for Biological Activity in Landfills Experiencing Elevated Temperatures. ACS EST Eng. 2020, 1, 216–227. [Google Scholar] [CrossRef]
- Xiaoli, C.; Ziyang, L.; Shimaoka, T.; Nakayama, H.; Ying, Z.; Xiaoyan, C.; Komiya, T.; Ishizaki, T.; Youcai, Z. Characteristics of environmental factors and their effects on CH4 and CO2 emissions from a closed landfill: An ecological case study of Shanghai. Waste Manag. 2010, 30, 446–451. [Google Scholar] [CrossRef] [PubMed]
- Stolecka, K.; Rusin, A. Potential hazards posed by biogas plants. Renew. Sustain. Energy Rev. 2021, 135, 110225. [Google Scholar] [CrossRef]
- Yilmaz, İ.; Alabaş, B.; Taştan, M.; Tunç, G. Effect of oxygen enrichment on the flame stability and emissions during biogas combustion: An experimental study. Fuel 2020, 280, 118703. [Google Scholar] [CrossRef]
- Sawyerr, N.; Trois, C.; Workneh, T.; Okudoh, V. An Overview of Biogas Production: Fundamentals, Applications and Future Research. Int. J. Energy Econ. Policy 2019, 9, 105–116. [Google Scholar]
- Masebinu, S.O.; Aboyade, A.O.; Muzenda, E. Parametric study of single and double stage membrane configuration in methane enrichment process. World Congr. Eng. Comput. Sci. 2014, 2, 22–24. [Google Scholar]
- Yang, L.; Chen, Z.; Zhang, X.; Liu, Y.; Xie, Y. Comparison study of landfill gas emissions from subtropical landfill with various phases: A case study in Wuhan, China. J. Air Waste Manag. Assoc. 2015, 65, 980–986. [Google Scholar] [CrossRef] [PubMed]
- Purmessur, B.; Surroop, D. Power generation using landfill gas generated from new cell at the existing landfill site. J. Environ. Chem. Eng. 2019, 7, 103060. [Google Scholar] [CrossRef]
- Ogata, Y.; Ishigaki, T.; Nakagawa, M.; Yamada, M. Effect of increasing salinity on biogas production in waste landfills with leachate recirculation: A lab-scale model study. Biotechnol. Rep. 2016, 10, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Harborth, P.; Fuß, R.; Münnich, K.; Flessa, H.; Fricke, K. Spatial variability of nitrous oxide and methane emissions from an MBT landfill in operation: Strong N2O hotspots at the working face. Waste Manag. 2013, 33, 2099–2107. [Google Scholar] [CrossRef]
- Javadinejad, S.; Eslamian, S.; Ostad-Ali-Askari, K. Investigation of monthly and seasonal changes of methane gas with respect to climate change using satellite data. Appl. Water Sci. 2019, 9, 180. [Google Scholar] [CrossRef]
- Singh, C.K.; Kumar, A.; Roy, S.S. Quantitative analysis of the methane gas emissions from municipal solid waste in India. Sci. Rep. 2018, 8, 2913. [Google Scholar] [CrossRef] [PubMed]
- Khaliq, M.A.; Mustafa, F.; Rehman, S.U.; Shahzaman, M.; Javed, Z.; Sagir, M.; Bashir, S.; Zuo, H. Spatiotemporal investigation of near-surface CH4 and factors influencing CH4 over South, East, and Southeast Asia. Sci. Total Environ. 2024, 922, 171311. [Google Scholar] [CrossRef] [PubMed]
- Ruoso, A.C.; Nora, M.D.; Siluk, J.C.M.; Ribeiro, J.L.D. The impact of landfill operation factors on improving biogas generation in Brazil. Renew. Sustain. Energy Rev. 2022, 154, 111868. [Google Scholar] [CrossRef]
- Wang, J.; Xia, F.F.; Bai, Y.; Fang, C.R.; Shen, D.S.; He, R. Methane oxidation in landfill waste biocover soil: Kinetics and sensitivity to ambient conditions. Waste Manag. 2011, 31, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Zha, H.; Yan, X.; Cai, Z.; Zhang, Y. Effect of rainfall on the diurnal variations of CH4, CO2, and N2O fluxes from a municipal solid waste landfill. Sci. Total Environ. 2013, 442, 73–76. [Google Scholar]
- Delgado, M.; López, A.; Esteban, A.L.; Lobo, A. Some findings on the spatial and temporal distribution of methane emissions in landfills. J. Clean. Prod. 2022, 362, 132334. [Google Scholar] [CrossRef]
- Kissas, K.; Ibrom, A.; Kjeldsen, P.; Scheutz, C. Methane emission dynamics from a Danish landfill: The effect of changes in barometric pressure. Waste Manag. 2022, 138, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, L.T.; Cattanio, J.H.; Imbiriba, B.; Castellon, S.E.M.; Elesbão, S.A.; de Souza Ramos, J.R. Carbon Dioxide and methane flux measurements at a large unsanitary dumping site in the Amazon Region. Braz. J. Environ. Sci. 2019, 54, 13–33. [Google Scholar]
- Kowalski, Z.; Kulczycka, J.; Makara, A.; Verhé, R.; De Clercq, G. Assessment of Energy Recovery from Municipal Waste Man-790 agement Systems Using Circular Economy Quality Indicators. Energies 2022, 15, 8625. [Google Scholar] [CrossRef]
- Taylor, D.M.; Chow, F.K.; Delkash, M.; Imhoff, P.T. Atmospheric modeling to assess wind dependence in tracer dilution method measurements of landfill methane emissions. Waste Manag. 2018, 73, 197–209. [Google Scholar] [CrossRef]
- Saunois, M.; Jackson, R.B.; Bousquet, P.; Poulter, B.; Canadell, J.G. The growing role of methane in anthropogenic climate change. Environ. Res. Lett. 2016, 11, 120207. [Google Scholar] [CrossRef]
- Kasinath, A.; Fudala-Ksiazek, S.; Szopinska, M.; Bylinski, H.; Artichowicz, W.; Remiszewska-Skwarek, A.; Luczkiewicz, A. Biomass in biogas production: Pretreatment and codigestion. Renew. Sustain. Energy Rev. 2021, 150, 111509. [Google Scholar] [CrossRef]
- Ciuła, J.; Generowicz, A.; Gaska, K.; Gronba-Chyła, A. Efficiency Analysis of the Generation of Energy in a Biogas CHP System and its Management in a Waste Landfill—Case Study. J. Ecol. Eng. 2022, 23, 143–156. [Google Scholar] [CrossRef]
- Makara, A.; Kowalski, Z.; Sówka, I. Possibility to eliminate emission of odor from pig manure treated using AMAK filtration method. Desalin. Water Treat. 2016, 57, 1543–1551. [Google Scholar] [CrossRef]
- Mavridis, S.; Voudrias, E.A. Using biogas from municipal solid waste for energy production: Comparison between anaerobic digestion and sanitary landfilling. Energy Convers. Manag. 2021, 247, 114613. [Google Scholar] [CrossRef]
- Ciuła, J.; Kowalski, S.; Generowicz, A.; Barbusiński, K.; Matuszak, Z.; Gaska, K. Analysis of Energy Generation Efficiency and Reliability of a Cogeneration Unit Powered by Biogas. Energies 2023, 16, 2180. [Google Scholar] [CrossRef]
- Czechowska-Kosacka, A.; Lubańska, Z.; Dragan, P. Natural Processes in Mitigation of CO2 and CH4 Emission. Annu. Set Environ. Prot. 2016, 18, 1039–1048. [Google Scholar]
- Gaze, B.; Knutel, B.; Zając, K.; Jajczyk, M.; Bukowski, P. Comparison of Selected Technologies to Improve the Quality of Exhaust Gases from Landfill Gas Combustion. Energies 2022, 15, 778. [Google Scholar] [CrossRef]
- Amini, H.R.; Reinhart, D.R. Regional prediction of long-term landfill gas to energy potential. Waste Manag. 2011, 31, 2020–2026. [Google Scholar] [CrossRef]
Parameters | Unit | Quantity | Min–Max | Average | Standard Deviation | Coefficient of Variation [%] |
---|---|---|---|---|---|---|
Monthly average temperature | °C | 80 | −7.2–22.3 | 9.9 | 7.7 | 77 |
Monthly average sunshine | hours | 79 | 18.9–326.7 | 157.9 | 93.5 | 53 |
Monthly average rainfall | mm | 83 | 0.0–211.4 | 54.4 | 40.1 | 74 |
Monthly average wind speed | m/s | 70 | 1.0–2.4 | 1.6 | 0.3 | 19 |
Monthly average relative humidity | % | 79 | 61.7–87.2 | 76.1 | 5.8 | 8 |
Monthly average pressure | hPa | 79 | 982.5–1002.9 | 991.6 | 3.4 | 0.3 |
Parameters | Unit | Quantity | Min–Max | Average | Standard Deviation | Coefficient of Variation [%] | |
---|---|---|---|---|---|---|---|
Gas volume flow | m3 | 76 | 46,626–149,569 | 96,673 | 30,712 | 32 | |
Sectors I–IV | Methane CH4 | % | 83 | 30.1–62.9 | 44.4 | 7.4 | 16 |
Carbon dioxide CO2 | % | 83 | 18.6–42.2 | 31.0 | 5.0 | 16 | |
Oxygen O2 | % | 83 | 0.3–6.3 | 0.66 | 0.76 | 115 | |
Other gases | % | 83 | 6.5–45.4 | 24.0 | 9.1 | 38 | |
Sector V | Methane CH4 | % | 83 | 31.2–64.3 | 46.6 | 7.3 | 16 |
Carbon dioxide CO2 | % | 83 | 17.7–42.1 | 33.6 | 4.7 | 14 | |
Oxygen O2 | % | 83 | 0.3–9.8 | 0.69 | 1.18 | 170 | |
Other gases | % | 83 | 3.7–40.3 | 19.1 | 9.1 | 48 |
Parameters | Unit | Median | Quartile | Results of Mann-Whitney U Test | |||||
---|---|---|---|---|---|---|---|---|---|
Q1 | Q3 | Q1 | Q3 | ||||||
I–IV | V | I–IV | V | Values of Statistic (Z) | Probability Test (p) | ||||
Methane CH4 | % | 43.3 | 44.9 | 40.7 | 47.7 | 42.1 | 53.2 | −2.12 | 0.03 |
Carbon dioxide CO2 | % | 31.5 | 34.4 | 28.1 | 34.2 | 31.3 | 36.7 | −3.71 | <0.001 |
Oxygen O2 | % | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | −0.66 | 0.51 |
Other gases | % | 24.5 | 19.5 | 18.2 | 30.5 | 9.6 | 24.6 | 3.40 | <0.001 |
Parameters | Unit | Gas Volume Flow (m3) | Sectors I–IV | Sector V | ||||||
---|---|---|---|---|---|---|---|---|---|---|
CH4 | CO2 | O2 | Others | CH4 | CO2 | O2 | Others | |||
Average monthly temperature | °C | 0.20 | 0.05 | 0.14 | 0.04 | −0.10 | 0.18 | 0.31 | −0.11 | −0.25 |
Average monthly sunshine | hours | 0.09 | −0.01 | 0.05 | −0.06 | −0.01 | 0.15 | 0.28 | −0.20 | −0.21 |
Average monthly rainfall | mm | 0.31 | 0.16 | 0.29 | 0.10 | −0.26 | 0.19 | 0.22 | 0.08 | −0.24 |
Average monthly wind speed | m/s | −0.20 | −0.18 | −0.15 | 0.01 | 0.19 | −0.29 | 0.21 | 0.08 | 0.33 |
Average monthly relative humidity | % | 0.23 | 0.30 | 0.22 | 0.16 | −0.32 | 0.14 | −0.01 | 0.27 | −0.11 |
Average monthly pressure | hPa | −0.07 | 0.08 | −0.02 | −0.04 | −0.04 | 0.16 | 0.09 | 0.01 | −0.15 |
Gas volume flow | m3 | − | 0.59 | 0.50 | 0.20 | −0.66 | 0.42 | 0.36 | 0.05 | −0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przydatek, G.; Generowicz, A.; Kanownik, W. Evaluation of the Activity of a Municipal Waste Landfill Site in the Operational and Non-Operational Sectors Based on Landfill Gas Productivity. Energies 2024, 17, 2421. https://doi.org/10.3390/en17102421
Przydatek G, Generowicz A, Kanownik W. Evaluation of the Activity of a Municipal Waste Landfill Site in the Operational and Non-Operational Sectors Based on Landfill Gas Productivity. Energies. 2024; 17(10):2421. https://doi.org/10.3390/en17102421
Chicago/Turabian StylePrzydatek, Grzegorz, Agnieszka Generowicz, and Włodzimierz Kanownik. 2024. "Evaluation of the Activity of a Municipal Waste Landfill Site in the Operational and Non-Operational Sectors Based on Landfill Gas Productivity" Energies 17, no. 10: 2421. https://doi.org/10.3390/en17102421
APA StylePrzydatek, G., Generowicz, A., & Kanownik, W. (2024). Evaluation of the Activity of a Municipal Waste Landfill Site in the Operational and Non-Operational Sectors Based on Landfill Gas Productivity. Energies, 17(10), 2421. https://doi.org/10.3390/en17102421