Effect of Biochar on Anaerobic Co-Digestion of Untreated Sewage Sludge with Municipal Organic Waste under Mesophilic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Organic Sludge and Leachate from Municipal Organic Waste
Characterization of Organic Sludge and Leachate
2.2. Biochar
Chemical Characterization of Biochar
2.3. Digestion Tests Setup and Biogas
2.4. Biochemical Potential of Methane
3. Results and Discussion
3.1. Characterizations of Biomass
3.1.1. Untreated Sewage Sludge
3.1.2. Leachate
3.1.3. Biochar
3.2. Influence of Biochar on COD Removal after the Co-Digestion Process
3.3. Influence of Biochar on VFA Variation before and after the Co-Digestion Process
3.4. Influence of Biochar on Ammonium Variation before and after the Co-Digestion Process
3.5. Influence of Total Organic Carbon (TOC)
3.6. Influence of Total Nitrogen (NT)
3.7. Influence of Biochar on SV Ratio Change before and after Co-Digestion
3.8. Influence of Biochar on Biogas Generation
3.9. Influence of Biochar on Biogas Composition
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Acosta Lorenzo, Y.; Obaaya Abreu, M.C. La Digestión Anaerobia. Aspectos Teóricos. Parte I. ICIDCA. Sobre Los Deriv. De La Caña De Azúcar 2005, 39, 35–48. [Google Scholar]
- Bharathiraja, B.; Sudharsana, T.; Jayamuthunagai, J.; Praveenkumar, R.; Chozhavendhan, S.; Iyyappan, J. RETRACTED: Biogas Production–A Review on Composition, Fuel Properties, Feed Stock and Principles of Anaerobic Digestion. Renew. Sustain. Energy Rev. 2018, 90, 570–582. [Google Scholar] [CrossRef]
- Kiss, G.; Aguilar, G. Los Productos y Los Impactos de La Descomposición de Residuos Sólidos Urbanos En Los Sitios de Disposición Final. Gaceta Ecológica 2006, 79, 39–51. [Google Scholar]
- Kougias, P.G.; Angelidaki, I. Biogas and Its Opportunities—A Review. Front. Environ. Sci. Eng. 2018, 12, 14. [Google Scholar] [CrossRef]
- Al Seadi, T.; Rutz, D.; Prassl, H.; Köttner, M.; Finsterwalder, T.; Volk, S.; Janssen, R. Biogas Handbook; Teodorita Al Seadi; University of Southern Denmark Esbjerg: Esbjerg, Denmark, 2008; ISBN 9788799296200. [Google Scholar]
- Rekleitis, G.; Haralambous, K.-J.; Loizidou, M.; Aravossis, K. Utilization of Agricultural and Livestock Waste in Anaerobic Digestion (A.D): Applying the Biorefinery Concept in a Circular Economy. Energies 2020, 13, 4428. [Google Scholar] [CrossRef]
- Gadirli, G.; Pilarska, A.A.; Dach, J.; Pilarski, K.; Kolasa-Więcek, A.; Borowiak, K. Fundamentals, Operation and Global Prospects for the Development of Biogas Plants—A Review. Energies 2024, 17, 568. [Google Scholar] [CrossRef]
- Franceschi, F.F.; Castillo, J.S.; Cherni, J.A.; Acosta-González, A.; Gómez, M.F. ADPMDesign: The Use of a Participatory Methodology to Design a Dry Anaerobic Digestion Power Plant for Municipal Solid Waste Treatment. Energy Sustain. Dev. 2023, 74, 173–184. [Google Scholar] [CrossRef]
- Barne, D.; Wadhwa, D. Resumen Anual: El Año 2018 En 14 Gráficos. 2018. Available online: https://www.bancomundial.org/es/news/feature/2018/12/21/year-in-review-2018-in-14-charts (accessed on 30 June 2023).
- Thakur, H.; Verma, N.K.; Dhar, A.; Powar, S. Anaerobic Co-Digestion of Food Waste and Bio Flocculated Sewage Sludge towards Bio-Methane Production. Energy Rep. 2024, 11, 2867–2876. [Google Scholar] [CrossRef]
- Brahim, A. DIGESTIÓN Y CODIGESTIÓN ANAEROBIA DE RESIDUOS AGRÍCOLAS, GANADEROS Y LODOS DE DEPURADORA. Ph.D. Thesis, Universidad de Málaga, Málaga, Spain, 2017. [Google Scholar]
- Hagos, K.; Zong, J.; Li, D.; Liu, C.; Lu, X. Anaerobic Co-Digestion Process for Biogas Production: Progress, Challenges and Perspectives. Renew. Sustain. Energy Rev. 2017, 76, 1485–1496. [Google Scholar] [CrossRef]
- Bardi, M.J.; Mutunga, J.M.; Ndiritu, H.; Koch, K. Effect of Pyrolysis Temperature on the Physiochemical Properties of Biochar and Its Potential Use in Anaerobic Digestion: A Critical Review. Environ. Technol. Innov. 2023, 32, 103349. [Google Scholar] [CrossRef]
- Jang, H.M.; Choi, Y.-K.; Kan, E. Effects of Dairy Manure-Derived Biochar on Psychrophilic, Mesophilic and Thermophilic Anaerobic Digestions of Dairy Manure. Bioresour. Technol. 2018, 250, 927–931. [Google Scholar] [CrossRef]
- Cui, Y.; Mao, F.; Zhang, J.; He, Y.; Tong, Y.W.; Peng, Y. Biochar Enhanced High-Solid Mesophilic Anaerobic Digestion of Food Waste: Cell Viability and Methanogenic Pathways. Chemosphere 2021, 272, 129863. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, C.; Wu, P.; Ding, P.; Zhang, Y.; Cui, M.; Liu, H. Algae Biochar Enhanced Methanogenesis by Enriching Specific Methanogens at Low Inoculation Ratio during Sludge Anaerobic Digestion. Bioresour. Technol. 2021, 338, 125493. [Google Scholar] [CrossRef]
- Dudek, M.; Świechowski, K.; Manczarski, P.; Koziel, J.A.; Białowiec, A. Białowiec The Effect of Biochar Addition on the Biogas Production Kinetics from the Anaerobic Digestion of Brewers’ Spent Grain. Energies 2019, 12, 1518. [Google Scholar] [CrossRef]
- He, D.; Luo, Y.; Zhu, B. Feedstock and Pyrolysis Temperature Influence Biochar Properties and Its Interactions with Soil Substances: Insights from a DFT Calculation. Sci. Total Environ. 2024, 922, 171259. [Google Scholar] [CrossRef]
- Cimon, C.; Kadota, P.; Eskicioglu, C. Effect of Biochar and Wood Ash Amendment on Biochemical Methane Production of Wastewater Sludge from a Temperature Phase Anaerobic Digestion Process. Bioresour. Technol. 2020, 297, 122440. [Google Scholar] [CrossRef]
- Cruz Viggi, C.; Simonetti, S.; Palma, E.; Pagliaccia, P.; Braguglia, C.; Fazi, S.; Baronti, S.; Navarra, M.A.; Pettiti, I.; Koch, C.; et al. Enhancing Methane Production from Food Waste Fermentate Using Biochar: The Added Value of Electrochemical Testing in Pre-Selecting the Most Effective Type of Biochar. Biotechnol. Biofuels 2017, 10, 303. [Google Scholar] [CrossRef]
- Rowan, M.; Umenweke, G.C.; Epelle, E.I.; Afolabi, I.C.; Okoye, P.U.; Gunes, B.; Okolie, J.A. Anaerobic Co-Digestion of Food Waste and Agricultural Residues: An Overview of Feedstock Properties and the Impact of Biochar Addition. Digit. Chem. Eng. 2022, 4, 100046. [Google Scholar] [CrossRef]
- Codignole Luz, F.; Cordiner, S.; Manni, A.; Mulone, V.; Rocco, V. Biochar Characteristics and Early Applications in Anaerobic Digestion-a Review. J. Environ. Chem. Eng. 2018, 6, 2892–2909. [Google Scholar] [CrossRef]
- Cai, J.; He, P.; Wang, Y.; Shao, L.; Lü, F. Effects and Optimization of the Use of Biochar in Anaerobic Digestion of Food Wastes. Waste Manag. Res. J. A Sustain. Circ. Econ. 2016, 34, 409–416. [Google Scholar] [CrossRef]
- Zhang, L.; Lim, E.Y.; Loh, K.-C.; Ok, Y.S.; Lee, J.T.E.; Shen, Y.; Wang, C.-H.; Dai, Y.; Tong, Y.W. Biochar Enhanced Thermophilic Anaerobic Digestion of Food Waste: Focusing on Biochar Particle Size, Microbial Community Analysis and Pilot-Scale Application. Energy Convers. Manag. 2020, 209, 112654. [Google Scholar] [CrossRef]
- Ma, H.; Hu, Y.; Kobayashi, T.; Xu, K.-Q. The Role of Rice Husk Biochar Addition in Anaerobic Digestion for Sweet Sorghum under High Loading Condition. Biotechnol. Rep. 2020, 27, e00515. [Google Scholar] [CrossRef]
- Sunyoto, N.M.S.; Zhu, M.; Zhang, Z.; Zhang, D. Effect of Biochar Addition on Hydrogen and Methane Production in Two-Phase Anaerobic Digestion of Aqueous Carbohydrates Food Waste. Bioresour. Technol. 2016, 219, 29–36. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, H.; He, S.; Zhao, Q.; Wei, L. A Review of Biochar in Anaerobic Digestion to Improve Biogas Production: Performances, Mechanisms and Economic Assessments. Bioresour. Technol. 2021, 341, 125797. [Google Scholar] [CrossRef] [PubMed]
- Lucian, M.; Volpe, M.; Merzari, F.; Wüst, D.; Kruse, A.; Andreottola, G.; Fiori, L. Hydrothermal Carbonization Coupled with Anaerobic Digestion for the Valorization of the Organic Fraction of Municipal Solid Waste. Bioresour. Technol. 2020, 314, 123734. [Google Scholar] [CrossRef]
- Tian, S.; Lishman, L.; Murphy, K.L. Investigations into Excess Activated Sludge Accumulation at Low Temperatures. Water Res. 1994, 28, 501–509. [Google Scholar] [CrossRef]
- Shewani, A.; Horgue, P.; Pommier, S.; Debenest, G.; Lefebvre, X.; Gandon, E.; Paul, E. Assessment of Percolation through a Solid Leach Bed in Dry Batch Anaerobic Digestion Processes. Bioresour. Technol. 2015, 178, 209–216. [Google Scholar] [CrossRef]
- TNT plus–Method 10212; Chemical Oxygen Demand. Hach Company: Loveland, CO, USA, 2019.
- TNT plus–Method 10240; Volatile Acids. Hach Company: Loveland, CO, USA, 2019.
- TNT plus–Method 10239; Alkalinity. Hach Company: Loveland, CO, USA, 2019.
- TNT plus–Method 10205; Ammonium-Nitrogen. Hach Company: Loveland, CO, USA, 2019.
- TNT plus 828–Method 10208; Total Nitrogen. Hach Company: Loveland, CO, USA, 2019.
- TNT plus–Method 10267; Total Organic Carbon. Hach Company: Loveland, CO, USA, 2019.
- ISO 10390; Soil, Treated Biowaste and Sludge–Determination of pH. ISO: Genebra, Switzerland, 2021.
- James, A.; Ramírez, J.; Cedeño, M.; Marín, N.; Serrano, E.; Álvarez, H. Avances de Proyecto Carbonización de Biomasa| Aprovechamiento de Residuos Agrícolas Para El Mejoramiento de Las Propiedades Físico-Químicas Del Suelo En Áreas de Cultivo. In Proceedings of the Congreso Nacional de Ciencia y Tecnología—APANAC 2021, Panama, Panama, 23–25 June 2021; pp. 300–308. [Google Scholar] [CrossRef]
- Valverde, A.; Sarria, B.; Monteagudo, J. Análisis Comparativo de Las Características Fisicoquímicas de La Cascarilla de Arroz. Sci. Tech. 2007, 1, 255–260. [Google Scholar]
- James, M.; Yuan, W.; Boyette, M.D.; Wang, D.; Kumar, A. Characterization of Biochar from Rice Hulls and Wood Chips Produced in a Top-Lit Updraft Biomass Gasifier. Trans. ASABE 2016, 59, 749–756. [Google Scholar] [CrossRef]
- Nsamba, H.K.; Hale, S.E.; Cornelissen, G.; Bachmann, R.T. Improved Gasification of Rice Husks for Optimized Biochar Production in a Top Lit Updraft Gasifier. J. Sustain. Bioenergy Syst. 2014, 4, 225–242. [Google Scholar] [CrossRef]
- Boyette, M.D.; Alston, B.P.; Macialek, J.A. The Rapid Production of Biochar. In Proceedings of the 2012 ASABE Annual International Meeting, Dallas, TX, USA, 29 July–1 August 2012; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2012; Volume 1, pp. 257–264. [Google Scholar]
- Shackley, S.; Carter, S.; Knowles, T.; Middelink, E.; Haefele, S.; Sohi, S.; Cross, A.; Haszeldine, S. Sustainable Gasification–Biochar Systems? A Case-Study of Rice-Husk Gasification in Cambodia, Part I: Context, Chemical Properties, Environmental and Health and Safety Issues. Energy Policy 2012, 42, 49–58. [Google Scholar] [CrossRef]
- Bethancourt, G.; James, A.; Villarreal, J.E.; Marin-Calvo, N. Biomass Carbonization—Production and Characterization of Biochar from Rice Husks. In Proceedings of the 2019 7th International Engineering, Sciences and Technology Conference (IESTEC), Panama, Panama, 9–11 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 40–45. [Google Scholar]
- Devlin, D.C.; Esteves, S.R.R.; Dinsdale, R.M.; Guwy, A.J. The Effect of Acid Pretreatment on the Anaerobic Digestion and Dewatering of Waste Activated Sludge. Bioresour. Technol. 2011, 102, 4076–4082. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Reyes, C.; Patiño-Iglesias, M.E.; Alcántara-Flores, J.L.; Reyes-Ortega, Y.; Pérez-Cruz, M.A.; Ortiz-Muñoz, E. Determinación del potencial bioquímico de metano (pbm) de residuos de frutas y verduras en hogares. Rev. Int. De Contam. Ambient. 2016, 32, 191–198. [Google Scholar] [CrossRef]
- Ortiz Jordá, V. PUESTA A PUNTO DE UNA METODOLOGÍA PARA LA DETERMINACIÓN DE LA ACTIVIDAD METANOGÉNICA ESPECÍFICA (AME) DE UN FANGO ANAEROBIO MEDIANTE EL SISTEMA OXITOP ®. INFLUENCIA DE LAS PRINCIPALES VARIABLES EXPERIMENTALES. Master’s Thesis, Universitat Politecnica de Valencia, Valencia, Spain, 2011. [Google Scholar]
- Alexis, P.-O.B.; Patricia, T.-L.; Fernando, M.-R.L.; Marcela, C.-C.L.; Carlos, V.-F.; Alexander, T.-L.W.; Abdón, O.-A.J. Efecto de La Relación Sustrato-Inóculo Sobre El Potencial Bioquímico de Metano de Biorresiduos de Origen Municipal. Ing. Investig. Tecnol. 2015, 16, 515–526. [Google Scholar] [CrossRef]
- Ihoeghian, N.A.; Amenaghawon, A.N.; Ogofure, A.; Oshoma, C.E.; Ajieh, M.U.; Erhunmwunse, N.O.; Obuekwe, I.S.; Edosa, V.I.O.; Tongo, I.; Emokaro, C.; et al. Biochar-Facilitated Batch Co-Digestion of Food Waste and Cattle Rumen Content: An Assessment of Process Stability, Kinetic Studies, and Pathogen Fate. Green Technol. Sustain. 2023, 1, 100035. [Google Scholar] [CrossRef]
- Orangun, A.; Kaur, H.; Kommalapati, R.R. Batch Anaerobic Co-Digestion and Biochemical Methane Potential Analysis of Goat Manure and Food Waste. Energies 2021, 14, 1952. [Google Scholar] [CrossRef]
- Meegoda, J.; Li, B.; Patel, K.; Wang, L. A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion. Int. J. Environ. Res. Public Health 2018, 15, 2224. [Google Scholar] [CrossRef] [PubMed]
- Sillero, L.; Solera, R.; Perez, M. Improvement of the Anaerobic Digestion of Sewage Sludge by Co-Digestion with Wine Vinasse and Poultry Manure: Effect of Different Hydraulic Retention Times. Fuel 2022, 321, 124104. [Google Scholar] [CrossRef]
- Sillero, L.; Solera, R.; Perez, M. Agronomic and Phytotoxicity Test with Biosolids from Anaerobic CO-DIGESTION with Temperature and Micro-Organism Phase Separation, Based on Sewage Sludge, Vinasse and Poultry Manure. J. Environ. Manag. 2024, 354, 120146. [Google Scholar] [CrossRef]
- Bautista Lenes, G. ESTANDARIZACIÓN DE LOS MÉTODOS ANALITICOS ALCALINIDAD Y DUREZA UNA MUESTRA DE AGUA RECREATIVA DE LA UNIVERSIDAD BELTRAN SEDE BOGOTÁ. Bachelor’s Thesis, Corporación Tecnológica de Bogotá, Bogotá, Colombia, 2019. [Google Scholar]
- Moradi, M.; Sadani, M.; Shahsavani, A.; Bakhshoodeh, R.; Alavi, N. Enhancing Anaerobic Digestion of Automotive Paint Sludge through Biochar Addition. Heliyon 2023, 9, e17640. [Google Scholar] [CrossRef]
- Liu, M.; Li, Z.; Qi, X.; Chen, Z.; Ni, H.; Gao, Y.; Liu, X. Improvement of Cow Manure Anaerobic Digestion Performance by Three Different Crop Straw Biochars. Environ. Technol. Innov. 2023, 31, 103233. [Google Scholar] [CrossRef]
- Prasanna Kumar, D.J.; Mishra, R.K.; Chinnam, S.; Binnal, P.; Dwivedi, N. A Comprehensive Study on Anaerobic Digestion of Organic Solid Waste: A Review on Configurations, Operating Parameters, Techno-Economic Analysis and Current Trends. Biotechnol. Notes 2024, 5, 33–49. [Google Scholar] [CrossRef]
- Cubero-Cardoso, J.; Maluf Braga, A.F.; Trujillo-Reyes, Á.; Alonso-Segovia, G.; Serrano, A.; Borja, R.; Fermoso, F.G. Effect of Metals on Mesophilic Anaerobic Digestion of Strawberry Extrudate in Batch Mode. J. Environ. Manag. 2023, 326, 116783. [Google Scholar] [CrossRef]
- Molina, E.; Espinosa, J. Acidez y Encalado de Suelos(Soil Acidity and Liming); International Plant Nutrition Institute: Quito, Ecuador, 1999; Volume 1, pp. 5–14. [Google Scholar] [CrossRef]
- Mulka, R.; Szulczewski, W.; Szlachta, J.; Prask, H. The Influence of Carbon Content in the Mixture of Substrates on Methane Production. Clean. Technol. Environ. Policy 2016, 18, 807–815. [Google Scholar] [CrossRef]
- Shen, R.; Jing, Y.; Feng, J.; Luo, J.; Yu, J.; Zhao, L. Performance of Enhanced Anaerobic Digestion with Different Pyrolysis Biochars and Microbial Communities. Bioresour. Technol. 2020, 296, 122354. [Google Scholar] [CrossRef] [PubMed]
- Qian, K.; Kumar, A.; Patil, K.; Bellmer, D.; Wang, D.; Yuan, W.; Huhnke, R. Effects of Biomass Feedstocks and Gasification Conditions on the Physiochemical Properties of Char. Energies 2013, 6, 3972–3986. [Google Scholar] [CrossRef]
- Yu, Q.; Sun, C.; Liu, R.; Yellezuome, D.; Zhu, X.; Bai, R.; Liu, M.; Sun, M. Anaerobic Co-Digestion of Corn Stover and Chicken Manure Using Continuous Stirred Tank Reactor: The Effect of Biochar Addition and Urea Pretreatment. Bioresour. Technol. 2021, 319, 124197. [Google Scholar] [CrossRef] [PubMed]
- Atukunda, A.; Ibrahim, M.G.; Fujii, M.; Ookawara, S.; Nasr, M. Dual Biogas/Biochar Production from Anaerobic Co-Digestion of Petrochemical and Domestic Wastewater: A Techno-Economic and Sustainable Approach. Biomass Convers. Biorefin. 2022, 14, 8793–8803. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Bassler, G.C. Spectrometric Identification of Organic Compounds. J. Chem. Educ. 1962, 39, 546. [Google Scholar] [CrossRef]
- Wei, L.; Huang, Y.; Li, Y.; Huang, L.; Mar, N.N.; Huang, Q.; Liu, Z. Biochar Characteristics Produced from Rice Husks and Their Sorption Properties for the Acetanilide Herbicide Metolachlor. Environ. Sci. Pollut. Res. 2017, 24, 4552–4561. [Google Scholar] [CrossRef]
- Armynah, B.; Atika; Djafar, Z.; Piarah, W.H.; Tahir, D. Analysis of Chemical and Physical Properties of Biochar from Rice Husk Biomass. J. Phys. Conf. Ser. 2018, 979, 012038. [Google Scholar] [CrossRef]
- Margoshes, M.; Fassel, V.A. The Infrared Spectra of Aromatic Compounds. Spectrochim. Acta 1955, 7, 14–24. [Google Scholar] [CrossRef]
- Pant, A.; Rai, J.P.N. Application of Biochar on Methane Production through Organic Solid Waste and Ammonia Inhibition. Environ. Chall. 2021, 5, 100262. [Google Scholar] [CrossRef]
- Su, C.; Zhao, L.; Liao, L.; Qin, J.; Lu, Y.; Deng, Q.; Chen, M.; Huang, Z. Application of Biochar in a CIC Reactor to Relieve Ammonia Nitrogen Stress and Promote Microbial Community during Food Waste Treatment. J. Clean. Prod. 2019, 209, 353–362. [Google Scholar] [CrossRef]
- Ngo, T.; Khudur, L.S.; Hassan, S.; Jansriphibul, K.; Ball, A.S. Enhancing Microbial Viability with Biochar for Increased Methane Production during the Anaerobic Digestion of Chicken Manure. Fuel 2024, 368, 131603. [Google Scholar] [CrossRef]
- Aramrueang, N.; Zhang, R.; Liu, X. Application of Biochar and Alkalis for Recovery of Sour Anaerobic Digesters. J. Environ. Manag. 2022, 307, 114538. [Google Scholar] [CrossRef]
- Deng, C.; Kang, X.; Lin, R.; Wu, B.; Ning, X.; Wall, D.; Murphy, J.D. Boosting Biogas Production from Recalcitrant Lignin-Based Feedstock by Adding Lignin-Derived Carbonaceous Materials within the Anaerobic Digestion Process. Energy 2023, 278, 127819. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, N.; Sun, E.; Wang, X.; Jin, H. Potential of Hydrochar/Pyrochar Derived from Sawdust of Oriental Plane Tree for Stimulating Methanization by Mitigating Propionic Acid Inhibition in Mesophilic Anaerobic Digestion of Swine Manure. Heliyon 2023, 9, e13984. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Mu, H.; Zhao, L.; He, S.; Liu, Y.; Gao, Z.; Hu, T.; Zhao, Q.; Wei, L. Enhancement of Biogas Production from Sludge Anaerobic Digestion via Supplementing Magnetic Co-Pyrolysis Biochar: Dosage Response and Syntrophic Metabolism. Environ. Funct. Mater. 2024. [Google Scholar] [CrossRef]
- López Ruíz, A. ANÁLISIS DE LA DINÁMICA DEL NITRÓGENO EN UN SISTEMA CONTINUO ACOPLADO DE MEMBRANA HIDROFÓBICA/ REACTOR ANAEROBIO. Bachelor’s Thesis, Universitat Politécnica de Catalunya BarcelonaTECH, Barcelona, Spain, 2009. [Google Scholar]
- El Gnaoui, Y.; Frimane, A.; Lahboubi, N.; Herrmann, C.; Barz, M.; EL Bari, H. Biological Pre-Hydrolysis and Thermal Pretreatment Applied for Anaerobic Digestion Improvement: Kinetic Study and Statistical Variable Selection. Clean. Waste Syst. 2022, 2, 100005. [Google Scholar] [CrossRef]
- Ovi, D.; Chang, S.W.; Wong, J.W.C.; Johnravindar, D.; Varjani, S.; Hoon Jeung, J.; Chung, W.J.; Thirupathi, A.; Ravindran, B. Effect of Rice Husk and Palm Tree-Based Biochar Addition on the Anaerobic Digestion of Food Waste/Sludge. Fuel 2022, 315, 123188. [Google Scholar] [CrossRef]
- Hou, J.; Huang, L.; Yang, Z.; Zhao, Y.; Deng, C.; Chen, Y.; Li, X. Adsorption of Ammonium on Biochar Prepared from Giant Reed. Environ. Sci. Pollut. Res. 2016, 23, 19107–19115. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, A.; Lansing, S. Biochar Addition with Fe Impregnation to Reduce H2S Production from Anaerobic Digestion. Bioresour. Technol. 2020, 306, 123121. [Google Scholar] [CrossRef] [PubMed]
- Kizito, S.; Wu, S.; Kipkemoi Kirui, W.; Lei, M.; Lu, Q.; Bah, H.; Dong, R. Evaluation of Slow Pyrolyzed Wood and Rice Husks Biochar for Adsorption of Ammonium Nitrogen from Piggery Manure Anaerobic Digestate Slurry. Sci. Total Environ. 2015, 505, 102–112. [Google Scholar] [CrossRef]
- García Amado, K. CODIGESTIÓN ANAERÓBICA DE ESTIÉRCOL Y LODOS DE DEPURADORA PARA PRODUCCIÓN DE BIOGÁS. Master’s Thesis, Universidad de Cádiz, Cádiz, Spain, 2009. [Google Scholar]
- Shen, Y.; Linville, J.L.; Urgun-Demirtas, M.; Schoene, R.P.; Snyder, S.W. Producing Pipeline-Quality Biomethane via Anaerobic Digestion of Sludge Amended with Corn Stover Biochar with in-Situ CO2 Removal. Appl. Energy 2015, 158, 300–309. [Google Scholar] [CrossRef]
- Wojnárovits, L.; Homlok, R.; Kovács, K.; Tegze, A.; Takács, E. Wastewater Characterization: Chemical Oxygen Demand or Total Organic Carbon Content Measurement? Molecules 2024, 29, 405. [Google Scholar] [CrossRef] [PubMed]
- Cardelli, R.; Giussani, G.; Marchini, F.; Saviozzi, A. Short-Term Effects on Soil of Biogas Digestate, Biochar and Their Combinations. Soil Res. 2018, 56, 623. [Google Scholar] [CrossRef]
- Shen, Y.; Linville, J.L.; Ignacio-de Leon, P.A.A.; Schoene, R.P.; Urgun-Demirtas, M. Towards a Sustainable Paradigm of Waste-to-Energy Process: Enhanced Anaerobic Digestion of Sludge with Woody Biochar. J. Clean. Prod. 2016, 135, 1054–1064. [Google Scholar] [CrossRef]
- Koch, K.; Hafner, S.D.; Weinrich, S.; Astals, S. Identification of Critical Problems in Biochemical Methane Potential (BMP) Tests From Methane Production Curves. Front. Environ. Sci. 2019, 7, 178. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Rene, E.R.; Dupont, C.; Wongrod, S.; van Hullebusch, E.D. Anaerobic Digestion of Fruit Waste Mixed With Sewage Sludge Digestate Biochar: Influence on Biomethane Production. Front. Energy Res. 2020, 8, 1–14. [Google Scholar] [CrossRef]
- Quintana-Najera, J.; Blacker, A.J.; Fletcher, L.A.; Bray, D.G.; Ross, A.B. The Influence of Biochar Augmentation and Digestion Conditions on the Anaerobic Digestion of Water Hyacinth. Energies 2022, 15, 2524. [Google Scholar] [CrossRef]
- Shin, D.-C.; Kim, I.-T.; Jung, J.; Jeong, Y.; Lee, Y.-E.; Ahn, K.-H. Increasing Anaerobic Digestion Efficiency Using Food-Waste-Based Biochar. Fermentation 2022, 8, 282. [Google Scholar] [CrossRef]
BL | BM | BH | |||
---|---|---|---|---|---|
Analysis | Method | Units | Results | Results | Results |
Carbon | UNE-EN-15407 | % DB | 50.90 ± 5.09 | 50.42 ± 5.04 | 13.77 ± 1.38 |
Hydrogen | UNE-EN-15407 | % DB | 1.57 ± 0.16 | 1.95 ± 0.20 | 0.41 ± 0.04 |
Oxygen | ASTM-D5622-95 | % DB | 7.66 ± 0.77 | 13.62 ± 1.36 | 0.6 ± 0.06 |
Nitrogen | UNE-EN-15407 | % DB | >0.10 ± 0.01 | >0.10 ± 0.01 | >0.10 ± 0.01 |
Sulfur | APPLICATION NOTE 42151 THERMO SCIENTIFIC | % DB | >0.10 ± 0.01 | >0.10 ± 0.01 | >0.10 ± 0.01 |
Fixed Total Solids | SM-2540-G | % DB | 39.87 ± 0.68 | 34.01 ± 0.68 | 85.22 ± 0.68 |
Total oxidizable organic carbon | Oxidant/Titulometry/NTC 5167 | % | 4.01 | 11.3 | 6.07 |
Total organic nitrogen | Kjeldahl/Titulometry/NTC 370 | % | 0.427 | 0.092 | 0.203 |
Total phosphorus | MAR/Spectrophotometry/NTC 234 | % | 0.028 | 0.068 | 0.36 |
Total sulfur | MAR/Gravimetry/NTC 1154 | % | 0.135 | 0.075 | 0.156 |
Total sodium | MAR/A.A/NTC 5167 | % | 0.0766 | 0.0579 | 0.0998 |
Total potassium | MAR/A.A/NTC 5167 | % | 1.12 | 1.0138 | 1.453 |
Total calcium | MAR/A.A/NTC 5167 | % | 0.615 | 0.278 | 0.325 |
COD | VFA | Alkalinity | Ammonium | TOC | NT | C/N Ratio | pH |
---|---|---|---|---|---|---|---|
mg/L | |||||||
3179.17 | 687.83 | 5212.5 | 954.75 | 463.5 | 949.5 | 0.49 | 7.86 |
COD | VFA | Alkalinity | NT | TOC | C/N Ratio |
---|---|---|---|---|---|
mg/L | |||||
800 | 5337.5 | 4025 | 250 | 6560 | 26.24 |
Samples | VFA i (mg/L) | Std. Dev | Tukey HSD | VFA f (mg/L) | Std. Dev | Tukey HSD |
---|---|---|---|---|---|---|
CBL0 | 1157.5 | 3.54 | A | 1755 | 7.07 | A |
CBM0 | 937.5 | 2.12 | B | 1200 | 0 | B |
CBH0 | 941.25 | 12.37 | B | 560.5 | 2.12 | C |
CBL3 | 1170 | 0 | A | 1610 | 0 | A |
CBM3 | 962 | 2.83 | B | 945.5 | 7.78 | B |
CBH3 | 962.5 | 14.1 | B | 569.5 | 2.12 | C |
CBL6 | 1180 | 14.1 | A | 1690 | 0 | A |
CBM6 | 953 | 2.83 | C | 1480 | 0 | B |
CBH6 | 1017.5 | 3.54 | B | 582.5 | 6.36 | C |
Samples | Ammonium i (mg/L) | Std. Dev | Tukey HSD | Ammonium f (mg/L) | Std. Dev | Tukey HSD | Removal Percentage (%) |
---|---|---|---|---|---|---|---|
CBL0 | 1143.75 | 1.77 | C | 628 | 0 | C | 45.09 |
CBM0 | 2970 | 0 | A | 6315 | 7.07 | A | - |
CBH0 | 1357.5 | 0 | B | 892 | 0 | B | 34.29 |
CBL3 | 1098.75 | 1.77 | C | 868 | 0 | C | 21.00 |
CBM3 | 3290 | 0 | A | 5320 | 0 | A | - |
CBH3 | 1362.5 | 0 | B | 886.5 | 0.707 | B | 34.94 |
CBL6 | 1157.5 | 0 | C | 774.5 | 0.707 | B | 33.09 |
CBM6 | 2975 | 7.07 | A | 7535 | 7.07 | A | - |
CBH6 | 1356.25 | 1.77 | B | 554 | 0 | C | 59.15 |
Samples | TOC i (mg/L) | Std. Dev. | Tukey HSD | TOC f (mg/L) | Std. Dev. | Tukey HSD | Percent Increase (%) |
---|---|---|---|---|---|---|---|
CBL0 | 380 | 0 | C | 1365 | 7.07 | B | 72.161 |
CBM0 | 570 | 7.07 | A | 920 | 0 | A | 38.043 |
CBH0 | 475 | 0 | B | 1145 | 0 | C | 58.515 |
CBL3 | 570 | 0 | B | 1550 | 0 | A | 63.226 |
CBM3 | 387.5 | 0 | A | 690 | 0.707 | B | 43.841 |
CBH3 | 472.5 | 17.7 | C | 1120 | 0 | C | 57.813 |
CBL6 | 450 | 0 | C | 1920 | 0 | A | 76.563 |
CBM6 | 590 | 0 | A | 1450 | 0 | C | 59.310 |
CBH6 | 520 | 0 | B | 1685 | 0 | B | 69.139 |
Samples | Nitrogen i (mg/L) | Std. Dev. | Tukey HSD | Nitrogen f (mg/L) | Std. Dev. | Tukey HSD |
---|---|---|---|---|---|---|
CBL0 | 243.75 | 0.707 | C | 1590 | 0 | A |
CBM0 | 952 | 0 | B | 1140 | 0 | C |
CBH0 | 1033.75 | 1.77 | A | 1250 | 0 | B |
CBL3 | 250 | 0 | C | 4110 | 0 | A |
CBM3 | 1040 | 0 | B | 1015 | 7.07 | C |
CBH3 | 1911.25 | 1.77 | A | 1280 | 0 | B |
CBL6 | 242.75 | 0 | B | 2250 | 0 | A |
CBM6 | 965.5 | 0.707 | A | 1120 | 0 | C |
CBH6 | 1160 | 177 | A | 1310 | 0 | B |
BL | BM | BH | |||||||
---|---|---|---|---|---|---|---|---|---|
Samples | SV i (g/L) | SV f (g/L) | % Reduction | SV i (g/L) | SV f (g/L) | % Reduction | SV i (g/L) | SV f (g/L) | % Reduction |
LD | 32.88 | 24.95 | 24.12 | 24.62 | 16.875 | 31.45 | 27.075 | 22.85 | 15.60 |
COD | 30.95 | 25.8 | 16.64 | 23.1 | 16.25 | 29.65 | 38.78 | 33.75 | 12.97 |
3.33 g/L | 28.45 | 23.725 | 16.61 | 28.22 | 18.725 | 33.66 | 49.02 | 42.2 | 13.91 |
6.67 g/L | 28.38 | 34.4 | - | 28.05 | 18.35 | 34.58 | 36.89 | 30.35 | 17.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez, J.; Deago, E.; James Rivas, A.M.C. Effect of Biochar on Anaerobic Co-Digestion of Untreated Sewage Sludge with Municipal Organic Waste under Mesophilic Conditions. Energies 2024, 17, 2393. https://doi.org/10.3390/en17102393
Ramírez J, Deago E, James Rivas AMC. Effect of Biochar on Anaerobic Co-Digestion of Untreated Sewage Sludge with Municipal Organic Waste under Mesophilic Conditions. Energies. 2024; 17(10):2393. https://doi.org/10.3390/en17102393
Chicago/Turabian StyleRamírez, Joisleen, Euclides Deago, and Arthur Mc Carty James Rivas. 2024. "Effect of Biochar on Anaerobic Co-Digestion of Untreated Sewage Sludge with Municipal Organic Waste under Mesophilic Conditions" Energies 17, no. 10: 2393. https://doi.org/10.3390/en17102393
APA StyleRamírez, J., Deago, E., & James Rivas, A. M. C. (2024). Effect of Biochar on Anaerobic Co-Digestion of Untreated Sewage Sludge with Municipal Organic Waste under Mesophilic Conditions. Energies, 17(10), 2393. https://doi.org/10.3390/en17102393