Permeabilities of Water–Oil Two-Phase Flow in Capillary Fractures with Different Wettabilities
Abstract
:1. Introduction
2. Permeability Performance of Water–Oil Flow
2.1. Absolute Permeability
2.2. Relative Permeability
3. Experimental Method and Setup
3.1. Wettability of Fracture Materials
3.2. Experimental Capillary Fractures
3.3. Experimental Setup
4. Results and Discussion
4.1. Relative Permeabilities in Saturated Capillary Fractures of Different Diameters
4.2. Relative Permeabilities in Saturated Capillary Fractures of Different Materials
4.3. Effect of Wettability on Relative Permeabilities
5. Conclusions
- (1)
- The relative permeabilities of stratified water–oil flow are relevant to wetted perimeter, saturation, interfacial slip coefficient and wettability coefficient. The relative permeabilities of dispersed water–oil flow hinge on saturation, viscosity and wettability coefficient.
- (2)
- Wettability coefficients are proposed to study the wettability effect on the relative permeabilities of water–oil flow. Wettability has little effect on the permeability performances of water–oil two-phase flow in water-saturated capillary fractures, but is significant for those in the oil-saturated capillary fractures.
- (3)
- The relative permeabilities of water–oil two-phase flow in a water-saturated capillary fracture are higher than those in an oil-saturated capillary fracture of the same material. As the hydraulic diameter of capillary fractures decreases, the influence of wettability on the relative permeabilities of water–oil two-phase flow increases. The relative permeabilities of water–oil two-phase flow in a PTFE capillary fracture are larger than those in a PMMA capillary fracture for the same saturated condition.
- (4)
- Both theoretical models and analysis of variance on experimental data show that wettability has an influence on the relative permeabilities.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dragila, M.I.; Weisbrod, N. Fluid motion through an unsaturated fracture junction. Water Resour. Res. 2004, 40, 2403. [Google Scholar] [CrossRef]
- Moodie, N.; Ampomah, W.; Jia, W.; McPherson, B. Relative permeability: A critical parameter in numerical simulations of multiphase flow in porous media. Energies 2021, 14, 2370. [Google Scholar] [CrossRef]
- Su, Y.L.; Xu, J.L.; Wang, W.D.; Wang, H.; Zhan, S.Y. Relative permeability estimation of oil−water two-phase flow in shale reservoir. Petrol. Sci. 2022, 19, 1153–1164. [Google Scholar] [CrossRef]
- Wu, K.; Chen, Z.; Li, J.; Li, X.; Xu, J.; Dong, X. Wettability effect on nanoconfined water flow. Proc. Natl. Acad. Sci. USA 2017, 114, 3358–3363. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Liu, L.; Xia, Z.; Wang, J.; Jing, Y.; Duan, L. Effects of wettability on relative permeability of rough-walled fracture at pore-scale: A lattice boltzmann analysis. Appl. Therm. Eng. 2021, 194, 117100. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, J.; Qiao, J.; Feng, X.; Dong, Y. Investigating the effect of the temperature and pressure on wettability in crude oil–brine–rock systems. Energy Fuels 2018, 32, 9010–9019. [Google Scholar] [CrossRef]
- Mirzaei-Paiaman, A.; Faramarzi-Palangar, M.; Djezzar, S.; Kord, S. A new approach to measure wettability by relative permeability measurements. J. Petrol. Sci. Eng. 2022, 208, 109191. [Google Scholar] [CrossRef]
- Ghedan, S.G.; Canbaz, C.H.; Boyd, D.A.; Mani, G.M.; Haggag, M.K. Wettability profile of a thick carbonate reservoir by the new rise in core wettability characterization method. In Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, United Arab Emirates, 1–4 November 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Liu, Y.; Upchurch, E.R.; Ozbayoglu, E.M. Experimental and theoretical studies on taylor bubbles rising in stagnant non-newtonian fluids in inclined non-concentric annuli. Int. J. Multiph. Flow 2022, 147, 103912. [Google Scholar] [CrossRef]
- Liu, Y.; Upchurch, E.R.; Ozbayoglu, E.M. Experimental study of single taylor bubble rising in stagnant and downward flowing non-newtonian fluids in inclined pipes. Energies 2021, 14, 578. [Google Scholar] [CrossRef]
- Kumar, A.; Mandal, A. Critical investigation of zwitterionic surfactant for enhanced oil recovery from both sandstone and carbonate reservoirs: Adsorption, wettability alteration and imbibition studies. Chem. Eng. Sci. 2019, 209, 115222. [Google Scholar] [CrossRef]
- Zhao, B.; MacMinn, C.W.; Juanes, R. Wettability control on multiphase flow in patterned microfluidics. Proc. Natl. Acad. Sci. USA 2016, 113, 10251–10256. [Google Scholar] [CrossRef]
- Paolinelli, L.D.; Rashedi, A.; Yao, J.; Singer, M. Study of water wetting and water layer thickness in oil-water flow in horizontal pipes with different wettability. Chem. Eng. Sci. 2018, 183, 200–214. [Google Scholar] [CrossRef]
- Riley, G.A.; Bultongez, K.K.; Derby, M.M. Oil-water flow regimes in 4-mm borosilicate glass and fluorinated ethylene propylene channels: Effects of wall wettability. J. Petrol. Sci. Eng. 2019, 173, 469–477. [Google Scholar] [CrossRef]
- Prakash, R.; Ghosh, S. Effect of jump in wettability on the hydrodynamics of liquid–liquid two-phase flow in a straight mini capillary tube. Chem. Eng. J. 2022, 435, 135194. [Google Scholar] [CrossRef]
- Oyenowo, O.P.; Wang, H.; Mirzaei-Paiaman, A.; Carrasco-Jaim, O.A.; Sheng, K.; Okuno, R. Geochemical impact of high-concentration formate solution injection on rock wettability for enhanced oil recovery and geologic carbon storage. Energy Fuels 2024, 38, 6138–6155. [Google Scholar] [CrossRef]
- Al-Futaisi, A.; Patzek, T.W. Impact of wettability alteration on two-phase flow characteristics of sandstones: A quasi-static description. Water Resour. Res. 2003, 39, 1042. [Google Scholar] [CrossRef]
- Zhao, X.; Blunt, M.J.; Yao, J. Pore-scale modeling: Effects of wettability on waterflood oil recovery. J. Petrol. Sci. Eng. 2010, 71, 169–178. [Google Scholar] [CrossRef]
- Ryazanov, A.V.; Sorbie, K.S.; van Dijke, M.I.J. Structure of residual oil as a function of wettability using pore-network modelling. Adv. Water Resour. 2014, 63, 11–21. [Google Scholar] [CrossRef]
- Zhao, J.; Kang, Q.; Yao, J.; Viswanathan, H.; Pawar, R.; Zhang, L.; Sun, H. The effect of wettability heterogeneity on relative permeability of two-phase flow in porous media: A lattice boltzmann study. Water Resour. Res. 2018, 54, 1295–1311. [Google Scholar] [CrossRef]
- Cheng, L.; Li, X.; Rong, G.; Zhou, C. The effect of surface wettability and wall roughness on the residual saturation for the drainage process in sinusoidal channels. Transp. Porous Media 2019, 129, 203–229. [Google Scholar] [CrossRef]
- Lee, C.Y.; Lee, S.Y. Influence of surface wettability on transition of two-phase flow pattern in round mini-channels. Int. J. Multiphas Flow 2008, 34, 706–711. [Google Scholar] [CrossRef]
- Flipo, G.; Josset, C.; Bellettre, J.; Auvity, B. Clarification of the surface wettability effects on two-phase flow patterns in pemfc gas channels. Int. J. Hydrogen Energy 2016, 41, 15518–15527. [Google Scholar] [CrossRef]
- Yagodnitsyna, A.A.; Kovalev, A.V.; Bilsky, A.V. Flow patterns of immiscible liquid-liquid flow in a rectangular microchannel with t-junction. Chem. Eng. J. 2016, 303, 547–554. [Google Scholar] [CrossRef]
- Chinnov, E.; Ron’Shin, F.; Kabov, O.A. Two-phase flow patterns in short horizontal rectangular microchannels. Int. J. Multiph. Flow 2016, 80, 57–68. [Google Scholar] [CrossRef]
- Ganguli, A.A.; Pandit, A.B. Hydrodynamics of liquid-liquid flows in micro channels and its influence on transport properties: A review. Energies 2021, 14, 6066. [Google Scholar] [CrossRef]
- Moezzi, M.; Hannani, S.K.; Farhanieh, B. Hysteretic heat transfer study of liquid–liquid two-phase flow in a t-junction microchannel. Int. J. Heat Fluid Flow 2019, 77, 366–376. [Google Scholar] [CrossRef]
- Al-Azzawi, M.; Mjalli, F.S.; Husain, A.; Al-Dahhan, M. A review on the hydrodynamics of the liquid-liquid two-phase flow in the microchannels. Ind. Eng. Chem. Res. 2021, 60, 5049–5075. [Google Scholar] [CrossRef]
- Zhao, Y.C.; Chen, G.W.; Yuan, Q. Liquid-liquid two-phase flow patterns in a rectangular microchannel. AIChE J. 2006, 52, 4052–4060. [Google Scholar] [CrossRef]
- Huang, N.; Liu, L.; Zhang, X.; Ma, K.; Zhou, M.W. Analytical models and experimental verifications for relative permeabilities of oil-water two-phase flow in fractures. Petrol. Sci. Technol. 2023, 1–25. [Google Scholar] [CrossRef]
- Shah, R.K.; London, A.L.; White, F.M. Laminar flow forced convection in ducts. J. Fluid Eng. 1980, 102, 431–455. [Google Scholar] [CrossRef]
- Higdon, J.J.L. Multiphase flow in porous media. J. Fluid Mech. 2013, 730, 1–4. [Google Scholar] [CrossRef]
- Jia, K.; Zeng, J.; Wang, X.; Li, B.; Gao, X.; Wang, K. Wettability of tight sandstone reservoir and its impacts on the oil migration and accumulation: A case study of shahejie formation in dongying depression, bohai bay basin. Energies 2022, 15, 4267. [Google Scholar] [CrossRef]
- Lahey, R.T. Wave propagation phenomena in two-phase flow. In Boiling Heat Transfer; Elsevier: Amsterdam, The Netherlands, 1992; pp. 123–173. [Google Scholar] [CrossRef]
- Brauner, N.; Maron, D.M.; Rovinsky, J. A two-fluid model for stratified flows with curved interfaces. Int. J. Multiph. Flow 1998, 24, 975–1004. [Google Scholar] [CrossRef]
- Santos, D.S.; Faia, P.M.; Garcia, F.A.P.; Rasteiro, M.G. Experimental and simulated studies of oil/water fully dispersed flow in a horizontal pipe. J. Fluid Eng. 2019, 141, 111301. [Google Scholar] [CrossRef]
- Young, T. An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 1805, 95, 65–87. [Google Scholar] [CrossRef]
- Tian, X.; Bhushan, B. The micro-meniscus effect of a thin liquid film on the static friction of rough surface contact. J. Phys. D Appl. Phys. 1996, 29, 163. [Google Scholar] [CrossRef]
- Bertels, S.P.; Dicarlo, D.A.; Blunt, M.J. Measurement of aperture distribution, capillary pressure, relative permeability, and in situ saturation in a rock fracture using computed tomography scanning. Water Resour. Res. 2001, 37, 649–662. [Google Scholar] [CrossRef]
- Hashimoto, M.; Garstecki, P.; Stone, H.A.; Whitesides, G.M.J.S.M. Interfacial instabilities in a microfluidic hele-shaw cell. Soft Matter 2008, 4, 1403–1413. [Google Scholar] [CrossRef]
- Iso, E. Guide to the expression of uncertainty in measurement. Meas. Uncertain. 2008, 30, 105–107. [Google Scholar] [CrossRef]
- Brinkmann, H.C. The viscosity of concentraed suspensions and solutions. J. Chem. Phys. 1952, 20, 571. [Google Scholar] [CrossRef]
- Pal, R. Viscosity–concentration equation for emulsions of nearly spherical droplets. J. Colloid Interface Sci. 2001, 231, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Einstein, A. Eine neue bestimmung der moleküldimensionen. Ann. Phys. 1905, 19, 289–306. [Google Scholar] [CrossRef]
- Srivastava, M. Analysis of variance and covariance. J. Appl. Stat. 2010, 37, 1781–1782. [Google Scholar] [CrossRef]
- Ou, J.; Perot, B.; Rothstein, J.P. Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys. Fluid 2004, 16, 4635–4643. [Google Scholar] [CrossRef]
Physical Quantity | Equation |
---|---|
Seepage velocity for fluid 1 | |
Seepage velocity for fluid 2 | |
Wall shear stress for fluid 1 | |
Wall shear stress for fluid 2 | |
Interfacial shear stress between fluids 1 and 2 | |
Darcy friction coefficient for fluid 1 | |
Darcy friction coefficient for fluid 2 | |
Reynolds number for fluid 1 | |
Reynolds number for fluid 2 | |
Hydraulic diameters of fluids 1 and 2 | u1 > u2, |
u1 = u2, | |
u1 < u2, |
u1 = u2 | u1 > u2 | u1 < u2 | |
---|---|---|---|
a | 1 | ||
b | 1 |
Physical Quantity | Equation |
---|---|
Wall shear stress for dispersed flow | |
Darcy friction coefficient for dispersed flow | |
Reynolds number for dispersed flow | |
Density for two-phase flow |
Fracture | W/mm | H/mm | H/W | A/mm2 | Po | k/× 10−7 m2 | B/mm | dh/mm |
---|---|---|---|---|---|---|---|---|
PTFE | 1.15 | 10.0 | 8.7 | 11.5 | 83.28 | 1.02 | 22.3 | 2.06 |
PMMA | 1.15 | 10.0 | 8.7 | 11.5 | 83.28 | 1.02 | 22.3 | 2.06 |
PMMA | 2.15 | 10.0 | 4.7 | 21.5 | 75.23 | 3.33 | 24.3 | 3.54 |
PMMA | 4 | 10.0 | 2.5 | 40 | 65.50 | 9.97 | 28 | 5.71 |
Factors | F Values for Relative Permeabilities in Saturated PMMA Capillary Fractures | F Critical Values | |||||
---|---|---|---|---|---|---|---|
dh = 2.06 mm | dh = 3.54 mm | dh = 5.71 mm | |||||
kro | krw | kro | krw | kro | krw | ||
Volumetric oil content | 630.25 | 800.86 | 1648.28 | 1704.72 | 1950.27 | 3892.66 | 1.86 |
wettability situation | 594.23 | 30.79 | 805.45 | 28.69 | 343.87 | 26.24 | 4.18 |
Factors | F Values for Relative Permeabilities in Saturated Capillary Fractures of Different Materials | F Critical Values | |||
---|---|---|---|---|---|
Water Saturated | Oil Saturated | ||||
kro | krw | kro | krw | ||
Volumetric oil content | 860.20 | 3020.35 | 451.85 | 800.86 | 1.86 |
Wettability situation | 384.41 | 41.52 | 603.99 | 30.79 | 4.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, N.; Liu, L.; Chen, H.; Huang, Y. Permeabilities of Water–Oil Two-Phase Flow in Capillary Fractures with Different Wettabilities. Energies 2024, 17, 2353. https://doi.org/10.3390/en17102353
Huang N, Liu L, Chen H, Huang Y. Permeabilities of Water–Oil Two-Phase Flow in Capillary Fractures with Different Wettabilities. Energies. 2024; 17(10):2353. https://doi.org/10.3390/en17102353
Chicago/Turabian StyleHuang, Na, Lei Liu, Heng Chen, and Yanyan Huang. 2024. "Permeabilities of Water–Oil Two-Phase Flow in Capillary Fractures with Different Wettabilities" Energies 17, no. 10: 2353. https://doi.org/10.3390/en17102353
APA StyleHuang, N., Liu, L., Chen, H., & Huang, Y. (2024). Permeabilities of Water–Oil Two-Phase Flow in Capillary Fractures with Different Wettabilities. Energies, 17(10), 2353. https://doi.org/10.3390/en17102353