A Review of the Structure–Property Relationship of Nickel Phosphides in Hydrogen Production
Abstract
:1. Introduction
2. Structure Variation in NixPy: Phase, Morphology, and Composition
2.1. Crystal Structures of NixPy
2.2. Phase, Size, and Morphology Variations in NixPy Synthesis
3. Catalytic Performance of a Nanostructured Metal-Rich Nickel Phosphide (Ni5P4, Ni2P) Electrocatalyst in the HER
3.1. The Principle of Electrocatalytic Reactions
3.2. Electrocatalytic Activity of the Ni5P4 Electrocatalyst in the HER
3.3. Stability of the Ni5P4 Electrocatalyst in the HER
4. Structure Characterization of NixPy
4.1. Results of DFT
4.2. Electron Microscopy Characterization
5. Conclusions
- Although most mixed phases of Ni5P4, as synthesized by different methods, are reported to have good electrocatalytic activity for HER, they also have shortcomings like uncontrolled agglomeration, low hydrophilicity, and poor contact resistance, which hinder their mechanistic study and future application.
- So far, the Ni5P4 still has a large probability of intergrowth with Ni2P and other phosphide phases, which is linked closely with the thermodynamic non-equilibrium conditions. Thus, the preparation of a pure single-phase Ni5P4 phase, e.g., by using molecular beam epitaxy, remains very important for in-depth structural and catalytic mechanism study.
- The current techniques can help to correlate structural changes in the catalytic performance. However, there is still a lack of direct and in situ imaging and spectroscopy techniques that can deliver the temporal-scale crystal and electronic structural changes and interpret the micro-scale catalytic mechanism.
- Although the development of phosphide-based materials has achieved significant progress in the electrolysis of water, the long-term stability and overpotential, which are significantly lower than that of Pt above the exchange current density of 1000 mA cm2, are far from meeting industrial requirements. Therefore, improving their activity/stability via rational surface structural and compositional design is still needed to optimize their catalytic performance.
- According to current research, various sample preparation methods, such as impregnation techniques, precipitation [81], and deposition [82], have been employed to modify NixPy materials through single-atom doping or morphology control. These modifications have endowed Ni5P4 catalysts with diverse catalytic properties, including bifunctional catalysis [83,84,85,86,87], thus opening new avenues for the application of NixPy materials in hydrolysis reactions. Future investigations should prioritize understanding the underlying mechanisms behind these structural modifications and guide further in-depth studies on performance enhancement.
Funding
Acknowledgments
Conflicts of Interest
References
- Chatenet, M.; Pollet, B.G.; Dekel, D.R.; Dionigi, F.; Deseure, J.; Millet, P.; Braatz, R.D.; Bazant, M.Z.; Eikerling, M.; Staffell, I.; et al. Water Electrolysis: From Textbook Knowledge to the Latest Scientific Strategies and Industrial Developments. Chem. Soc. Rev. 2022, 51, 4583–4762. [Google Scholar] [CrossRef]
- Hu, C.; Lv, C.; Liu, S.; Shi, Y.; Song, J.; Zhang, Z.; Cai, J.; Watanabe, A. Nickel Phosphide Electrocatalysts for Hydrogen Evolution Reaction. Catalysts 2020, 10, 188. [Google Scholar] [CrossRef]
- Liu, P.; Rodriguez, J.A. Catalytic Properties of Molybdenum Carbide, Nitride and Phosphide: A Theoretical Study. Catal. Lett. 2003, 91, 247–252. [Google Scholar] [CrossRef]
- Liu, P.; Rodriguez, J. Catalysts for Hydrogen Evolution from the [NiFe] Hydrogenase to the Ni2P(001) Surface: The Importance of Ensemble Effect. J. Am. Chem. Soc. 2005, 127, 14871–14878. [Google Scholar] [CrossRef]
- Popczun, E.J.; McKone, J.R.; Read, C.G.; Biacchi, A.J.; Wiltrout, A.M.; Lewis, N.S.; Schaak, R.E. Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.P.; Bae, E.J.; Yu, J.-S. Fe–P: A New Class of Electroactive Catalyst for Oxygen Reduction Reaction. J. Am. Chem. Soc. 2015, 137, 3165–3168. [Google Scholar] [CrossRef]
- Calvinho, K.U.D.; Laursen, A.B.; Yap, K.M.K.; Goetjen, T.A.; Hwang, S.; Murali, N.; Mejia-Sosa, B.; Lubarski, A.; Teeluck, K.M.; Hall, E.S.; et al. Selective CO2 Reduction to C-3 and C-4 Oxyhydrocarbons on Nickel Phosphides at Overpotentials as Low as 10 mV. Energy Environ. Sci. 2018, 11, 2550–2559. [Google Scholar] [CrossRef]
- Liu, P.; Rodriguez, J.A.; Takahashi, Y.; Nakamura, K. Water–Gas-Shift Reaction on a Ni2P(001) Catalyst: Formation of Oxy-Phosphides and Highly Active Reaction Sites. J. Catal. 2009, 262, 294–303. [Google Scholar] [CrossRef]
- Moon, J.-S.; Kim, E.-G.; Lee, Y.-K. Active Sites of Ni2P/SiO2 Catalyst for Hydrodeoxygenation of Guaiacol: A Joint XAFS and DFT Study. J. Catal. 2014, 311, 144–152. [Google Scholar] [CrossRef]
- Laursen, A.B.; Patraju, K.R.; Whitaker, M.J.; Retuerto, M.; Sarkar, T.; Yao, N.; Ramanujachary, K.V.; Greenblatt, M.; Dismukes, G.C. Nanocrystalline Ni5P4: A Hydrogen Evolution Electrocatalyst of Exceptional Efficiency in Both Alkaline and Acidic Media. Energy Environ. Sci. 2015, 8, 1027–1034. [Google Scholar] [CrossRef]
- Wei, X.-K.; Xiong, D.; Liu, L.; Dunin-Borkowski, R.E. Self-Epitaxial Hetero-Nanolayers and Surface Atom Reconstruction in Electrocatalytic Nickel Phosphides. ACS Appl. Mater. Interfaces 2020, 12, 21616–21622. [Google Scholar] [CrossRef]
- Polo-Garzon, F.; Bao, Z.; Zhang, X.; Huang, W.; Wu, Z. Surface Reconstructions of Metal Oxides and the Consequences on Catalytic Chemistry. ACS Catal. 2019, 9, 5692–5707. [Google Scholar] [CrossRef]
- Fang, J.; Du, S.; Lebedkin, S.; Li, Z.; Kruk, R.; Kappes, M.; Hahn, H. Gold Mesostructures with Tailored Surface Topography and Their Self-Assembly Arrays for Surface-Enhanced Raman Spectroscopy. Nano Lett. 2010, 10, 5006–5013. [Google Scholar] [CrossRef] [PubMed]
- Gross, L.; Mohn, F.; Moll, N.; Liljeroth, P.; Meyer, G. The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy. Science 2009, 325, 1110–1114. [Google Scholar] [CrossRef]
- Moreau, L.M.; Ha, D.-H.; Zhang, H.; Hovden, R.; Muller, D.A.; Robinson, R.D. Defining Crystalline/Amorphous Phases of Nanoparticles through X-Ray Absorption Spectroscopy and X-Ray Diffraction: The Case of Nickel Phosphide. Chem. Mater. 2013, 25, 2394–2403. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, B.; Lu, Y.; Su, Z.; Li, Y.; Wu, Q.; Yang, D.; Chen, Y.; Wang, S. NiP2/FeP Heterostructural Nanoflowers Interwoven by Carbon Nanotubes as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. J. Mater. Sci 2021, 56, 16000–16009. [Google Scholar] [CrossRef]
- Ryu, H.-H.; Lim, H.-W.; Lee, S.G.; Sun, Y.-K. Near-Surface Reconstruction in Ni-Rich Layered Cathodes for High-Performance Lithium-Ion Batteries. Nat. Energy 2023, 9, 47–56. [Google Scholar] [CrossRef]
- Kawai, T.; Bando, K.; Lee, Y.; Oyama, S.; Chun, W.; Asakura, K. EXAFS Measurements of a Working Catalyst in the Liquid Phase: An in Situ Study of a Ni2P Hydrodesulfurization Catalyst. J. Catal. 2006, 241, 20–24. [Google Scholar] [CrossRef]
- An, C.; Wang, Y.; Jiao, P.; Wu, S.; Gao, L.; Zhu, C.; Li, J.; Hu, N. Se-Doped Ni5P4 Nanocatalysts for High-Efficiency Hydrogen Evolution Reaction. Catalysts 2022, 12, 1055. [Google Scholar] [CrossRef]
- Du, H.; Kong, R.-M.; Guo, X.; Qu, F.; Li, J. Recent Progress in Transition Metal Phosphides with Enhanced Electrocatalysis for Hydrogen Evolution. Nanoscale 2018, 10, 21617–21624. [Google Scholar] [CrossRef]
- Li, Y.; Dong, Z.; Jiao, L. Multifunctional Transition Metal-Based Phosphides in Energy-Related Electrocatalysis. Adv. Energy Mater. 2020, 10, 1902104. [Google Scholar] [CrossRef]
- Cai, W.; Liu, W.; Sun, H.; Li, J.; Yang, L.; Liu, M.; Zhao, S.; Wang, A. Ni5P4-NiP2 Nanosheet Matrix Enhances Electron-Transfer Kinetics for Hydrogen Recovery in Microbial Electrolysis Cells. Appl. Energy 2018, 209, 56–64. [Google Scholar] [CrossRef]
- Jung, C.S.; Park, K.; Lee, Y.; Kwak, I.H.; Kwon, I.S.; Kim, J.; Seo, J.; Ahn, J.-P.; Park, J. Nickel Phosphide Polymorphs with an Active (001) Surface as Excellent Catalysts for Water Splitting. CrystEngComm 2019, 21, 1143–1149. [Google Scholar] [CrossRef]
- Li, X.; Xing, W.; Hu, T.; Luo, K.; Wang, J.; Tang, W. Recent Advances in Transition-Metal Phosphide Electrocatalysts: Synthetic Approach, Improvement Strategies and Environmental Applications. Coord. Chem. Rev. 2022, 473, 214811. [Google Scholar] [CrossRef]
- Lv, X.; Wan, S.; Mou, T.; Han, X.; Zhang, Y.; Wang, Z.; Tao, X. Atomic-Level Surface Engineering of Nickel Phosphide Nanoarrays for Efficient Electrocatalytic Water Splitting at Large Current Density. Adv. Funct. Mater. 2023, 33, 2205161. [Google Scholar] [CrossRef]
- Feng, X.; Tang, M.; O’Neill, S.; Hu, Y.-Y. In Situ Synthesis and in Operando NMR Studies of a High-Performance Ni5P4-Nanosheet Anode. J. Mater. Chem. A 2018, 6, 22240–22247. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, G.; Liu, Y.; Liu, H.; Qu, J.; Li, J. Highly Active and Stable Catalysts of Phytic Acid-Derivative Transition Metal Phosphides for Full Water Splitting. J. Am. Chem. Soc. 2016, 138, 14686–14693. [Google Scholar] [CrossRef] [PubMed]
- Laursen, A.B.; Wexler, R.B.; Whitaker, M.J.; Izett, E.J.; Calvinho, K.U.D.; Hwang, S.; Rucker, R.; Wang, H.; Ji, J.; Garfunkel, E.; et al. Climbing the Volcano of Electrocatalytic Activity While Avoiding Catalyst Corrosion: Ni3P, a Hydrogen Evolution Electrocatalyst Stable in Both Acid and Alkali. ACS Catal. 2018, 8, 4408–4419. [Google Scholar] [CrossRef]
- Shi, Y.; Xu, Y.; Zhuo, S.; Zhang, J.; Zhang, B. Ni2P Nanosheets/Ni Foam Composite Electrode for Long-Lived and pH-Tolerable Electrochemical Hydrogen Generation. ACS Appl. Mater. Interfaces 2015, 7, 2376–2384. [Google Scholar] [CrossRef]
- Jiang, P.; Liu, Q.; Sun, X. NiP2 Nanosheet Arrays Supported on Carbon Cloth: An Efficient 3D Hydrogen Evolution Cathode in Both Acidic and Alkaline Solutions. Nanoscale 2014, 6, 13440–13445. [Google Scholar] [CrossRef]
- Lai, C.; Liu, X.; Deng, Y.; Yang, H.; Jiang, H.; Xiao, Z.; Liang, T. Rice-Shape Nanocrystalline Ni5P4: A Promising Bifunctional Electrocatalyst for Hydrogen Evolution Reaction and Oxygen Evolution Reaction. Inorg. Chem. Commun. 2018, 97, 98–102. [Google Scholar] [CrossRef]
- Ledendecker, M.; Calderon, S.K.; Papp, C.; Steinrueck, H.-P.; Antonietti, M.; Shalom, M. The Synthesis of Nanostructured Ni5P4 Films and Their Use as a Non-Noble Bifunctional Electrocatalyst for Full Water Splitting. Angew. Chem. Int. Ed. 2015, 54, 12361–12365. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Liu, Y.; Zhao, J.; Yang, K.; Liang, J.; Liu, D.; Hu, W.; Liu, D.; Liu, Y.; Liu, C. Monodispersed Nickel Phosphide Nanocrystals with Different Phases: Synthesis, Characterization and Electrocatalytic Properties for Hydrogen Evolution. J. Mater. Chem. A 2015, 3, 1656–1665. [Google Scholar] [CrossRef]
- Yao, L.; Qiu, Z.; Yin, X.; Yang, Y.; Hong, X.; Yang, Z. Single-Phase Ultrathin Holey Nanoflower Ni5P4 as a Bifunctional Electrocatalyst for Efficient Water Splitting. Dalton Trans. 2023, 52, 8030–8039. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Xia, H.; Huang, Z.; Lv, C.; Wang, J.; Humphrey, M.G.; Zhang, C. Phase Separation Synthesis of Trinickel Monophosphide Porous Hollow Nanospheres for Efficient Hydrogen Evolution. J. Mater. Chem. A 2016, 4, 10925–10932. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, Z.; Chen, Z.; Lv, C.; Meng, H.; Zhang, C. Ni12P5 Nanoparticles as an Efficient Catalyst for Hydrogen Generation via Electrolysis and Photoelectrolysis. ACS Nano 2014, 8, 8121–8129. [Google Scholar] [CrossRef]
- Ouyang, C.; Wang, X.; Wang, C.; Zhang, X.; Wu, J.; Ma, Z.; Dou, S.; Wang, S. Hierarchically Porous Ni3S2 Nanorod Array Foam as Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction and Oxygen Evolution Reaction. Electrochim. Acta 2015, 174, 297–301. [Google Scholar] [CrossRef]
- Callejas, J.F.; McEnaney, J.M.; Read, C.G.; Crompton, J.C.; Biacchi, A.J.; Popczun, E.J.; Gordon, T.R.; Lewis, N.S.; Schaak, R.E. Electrocatalytic and Photocatalytic Hydrogen Production from Acidic and Neutral-pH Aqueous Solutions Using Iron Phosphide Nanoparticles. ACS Nano 2014, 8, 11101–11107. [Google Scholar] [CrossRef]
- Popczun, E.J.; Read, C.G.; Roske, C.W.; Lewis, N.S.; Schaak, R.E. Highly Active Electrocatalysis of the Hydrogen Evolution Reaction by Cobalt Phosphide Nanoparticles. Angew. Chem. Int. Ed. 2014, 53, 5427–5430. [Google Scholar] [CrossRef]
- Merki, D.; Fierro, S.; Vrubel, H.; Hu, X. Amorphous Molybdenum Sulfide Films as Catalysts for Electrochemical Hydrogen Production in Water. Chem. Sci. 2011, 2, 1262–1267. [Google Scholar] [CrossRef]
- Lukowski, M.A.; Daniel, A.S.; Meng, F.; Forticaux, A.; Li, L.; Jin, S. Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS2 Nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299. [Google Scholar] [CrossRef] [PubMed]
- Jakšić, J.M.; Vojnović, M.V.; Krstajić, N.V. Kinetic Analysis of Hydrogen Evolution at Ni–Mo Alloy Electrodes. Electrochim. Acta 2000, 45, 4151–4158. [Google Scholar] [CrossRef]
- McKone, J.R.; Sadtler, B.F.; Werlang, C.A.; Lewis, N.S.; Gray, H.B. Ni–Mo Nanopowders for Efficient Electrochemical Hydrogen Evolution. ACS Catal. 2013, 3, 166–169. [Google Scholar] [CrossRef]
- Sheng, W.; Gasteiger, H.A.; Shao-Horn, Y. Hydrogen Oxidation and Evolution Reaction Kinetics on Platinum: Acid vs. Alkaline Electrolytes. J. Electrochem. Soc. 2010, 157, B1529. [Google Scholar] [CrossRef]
- Wang, X.; Kolen’ko, Y.V.; Bao, X.-Q.; Kovnir, K.; Liu, L. One-Step Synthesis of Self-Supported Nickel Phosphide Nanosheet Array Cathodes for Efficient Electrocatalytic Hydrogen Generation. Angew. Chem. Int. Ed. 2015, 54, 8188–8192. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Du, Y.; Liu, X.; Yu, X.; Teng, C.; Cheng, X.; Chen, Y.; Wu, Q. Three-Dimensional (3D) Hierarchical Coral-like Mn-Doped Ni2P–Ni5P4/NF Catalyst for Efficient Oxygen Evolution. J. Alloys Compd. 2020, 826, 154210. [Google Scholar] [CrossRef]
- Wexler, R.B.; Martirez, J.M.P.; Rappe, A.M. Stable Phosphorus-Enriched (0001) Surfaces of Nickel Phosphides. Chem. Mater. 2016, 28, 5365–5372. [Google Scholar] [CrossRef]
- Haga, K.; Shiratori, Y.; Nojiri, Y.; Ito, K.; Sasaki, K. Phosphorus Poisoning of Ni-Cermet Anodes in Solid Oxide Fuel Cells. J. Electrochem. Soc. 2010, 157, B1693. [Google Scholar] [CrossRef]
- Callejas, J.F.; Read, C.G.; Roske, C.W.; Lewis, N.S.; Schaak, R.E. Synthesis, Characterization, and Properties of Metal Phosphide Catalysts for the Hydrogen-Evolution Reaction. Chem. Mater. 2016, 28, 6017–6044. [Google Scholar] [CrossRef]
- Whitmire, K.H.; Caudell, J.B. First Row Transition Metal Phosphides. In Encyclopedia of Inorganic and Bioinorganic Chemistry; Scott, R.A., Ed.; Wiley: Hoboken, NJ, USA, 2004; pp. 1–8. [Google Scholar]
- Owens-Baird, B.; Xu, J.; Petrovykh, D.Y.; Bondarchuk, O.; Ziouani, Y.; González-Ballesteros, N.; Yox, P.; Sapountzi, F.M.; Niemantsverdriet, H.; Kolen’ko, Y.V. NiP2: A Story of Two Divergent Polymorphic Multifunctional Materials. Chem. Mater. 2019, 31, 3407–3418. [Google Scholar] [CrossRef]
- Liu, G.; Hou, F.; Peng, S.; Wang, X.; Fang, B. Synthesis, Physical Properties and Electrocatalytic Performance of Nickel Phosphides for Hydrogen Evolution Reaction of Water Electrolysis. Nanomaterials 2022, 12, 2935. [Google Scholar] [CrossRef]
- Wei, X.; Bihlmayer, G.; Zhou, X.; Feng, W.; Kolen’ko, Y.V.; Xiong, D.; Liu, L.; Blügel, S.; Dunin-Borkowski, R.E. Discovery of Real-Space Topological Ferroelectricity in Metallic Transition Metal Phosphides. Adv. Mater. 2020, 32, 2003479. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Kadam, S.R.; Houben, L.; Bar-Ziv, R.; Bar-Sadan, M. Nickel Phosphide Catalysts for Hydrogen Generation through Water Reduction, Ammonia-Borane and Borohydride Hydrolysis. Appl. Mater. Today 2020, 20, 100693. [Google Scholar] [CrossRef]
- Das, M.; Jena, N.; Purkait, T.; Kamboj, N.; De Sarkar, A.; Dey, R.S. Single-Phase Ni5P4-Copper Foam Superhydrophilic and Aerophobic Core-Shell Nanostructures for Efficient Hydrogen Evolution Reaction. J. Mater. Chem. A 2019, 7, 23989–23999. [Google Scholar] [CrossRef]
- Ray, A.; Sultana, S.; Paramanik, L.; Parida, K.M. Recent Advances in Phase, Size, and Morphology-Oriented Nanostructured Nickel Phosphide for Overall Water Splitting. J. Mater. Chem. A 2020, 8, 19196–19245. [Google Scholar] [CrossRef]
- Chaudhari, N.K.; Jin, H.; Kim, B.; Lee, K. Nanostructured Materials on 3D Nickel Foam as Electrocatalysts for Water Splitting. Nanoscale 2017, 9, 12231–12247. [Google Scholar] [CrossRef]
- Li, C.; Clament Sagaya Selvam, N.; Fang, J. Shape-Controlled Synthesis of Platinum-Based Nanocrystals and Their Electrocatalytic Applications in Fuel Cells. Nano-Micro Lett. 2023, 15, 83. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Wang, D.; Jin, H.; Wang, P.; Chen, D.; Liu, B.; Mu, S. Construction of an Iron and Oxygen Co-Doped Nickel Phosphide Based on MOF Derivatives for Highly Efficient and Long-Enduring Water Splitting. J. Mater. Chem. A 2020, 8, 4570–4578. [Google Scholar] [CrossRef]
- Kibsgaard, J.; Tsai, C.; Chan, K.; Benck, J.D.; Nørskov, J.K.; Abild-Pedersen, F.; Jaramillo, T.F. Designing an Improved Transition Metal Phosphide Catalyst for Hydrogen Evolution Using Experimental and Theoretical Trends. Energy Environ. Sci. 2015, 8, 3022–3029. [Google Scholar] [CrossRef]
- Shifa, T.A.; Yusupov, K.; Solomon, G.; Gradone, A.; Mazzaro, R.; Cattaruzza, E.; Vomiero, A. In Situ-Generated Oxide in Sn-Doped Nickel Phosphide Enables Ultrafast Oxygen Evolution. ACS Catal. 2021, 11, 4520–4529. [Google Scholar] [CrossRef]
- Rosser, T.E.; Sousa, J.P.S.; Ziouani, Y.; Bondarchuk, O.; Petrovykh, D.Y.; Wei, X.-K.; Humphrey, J.J.L.; Heggen, M.; Kolen’ko, Y.V.; Wain, A.J. Enhanced Oxygen Evolution Catalysis by Aluminium-Doped Cobalt Phosphide through in Situ Surface Area Increase. Catal. Sci. Technol. 2020, 10, 2398–2406. [Google Scholar] [CrossRef]
- Qi, J.; Xu, T.; Cao, J.; Guo, S.; Zhong, Z.; Feng, J. Fe Doped Ni5P4 Nanosheet Arrays with Rich P Vacancies via Phase Transformation for Efficient Overall Water Splitting. Nanoscale 2020, 12, 6204–6210. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Dou, X.; Zhao, Y.; Wu, C. Enhanced Oxygen Evolution Reaction of Metallic Nickel Phosphide Nanosheets by Surface Modification. Inorg. Chem. Front. 2016, 3, 1021–1027. [Google Scholar] [CrossRef]
- He, Y.; He, Q.; Wang, L.; Zhu, C.; Golani, P.; Handoko, A.D.; Yu, X.; Gao, C.; Ding, M.; Wang, X.; et al. Self-Gating in Semiconductor Electrocatalysis. Nat. Mater. 2019, 18, 1098–1104. [Google Scholar] [CrossRef]
- Wexler, R.B.; Martirez, J.M.P.; Rappe, A.M. Active Role of Phosphorus in the Hydrogen Evolving Activity of Nickel Phosphide (0001) Surfaces. ACS Catal. 2017, 7, 7718–7725. [Google Scholar] [CrossRef]
- Yang, Y.; Lin, X.; Li, Y.; Sheng, T.; Cheng, S.; Sun, X.; Lin, W.-F. Insights into the Origin of High Activity of Ni5P4 (0001) for Hydrogen Evolution Reaction. J. Phys. Chem. C 2023, 127, 5385–5394. [Google Scholar] [CrossRef]
- Bednyakov, P.S.; Sturman, B.I.; Sluka, T.; Tagantsev, A.K.; Yudin, P.V. Physics and Applications of Charged Domain Walls. npj Comput. Mater. 2018, 4, 65. [Google Scholar] [CrossRef]
- Wei, X.-K.; Sluka, T.; Fraygola, B.; Feigl, L.; Du, H.; Jin, L.; Jia, C.-L.; Setter, N. Controlled Charging of Ferroelastic Domain Walls in Oxide Ferroelectrics. ACS Appl. Mater. Interfaces 2017, 9, 6539–6546. [Google Scholar] [CrossRef]
- Wexler, R.B.; Martirez, J.M.P.; Rappe, A.M. Chemical Pressure-Driven Enhancement of the Hydrogen Evolving Activity of Ni2P from Nonmetal Surface Doping Interpreted via Machine Learning. J. Am. Chem. Soc. 2018, 140, 4678–4683. [Google Scholar] [CrossRef]
- Jia, C.L.; Mi, S.B.; Barthel, J.; Wang, D.W.; Dunin-Borkowski, R.E.; Urban, K.W.; Thust, A. Determination of the 3D Shape of a Nanoscale Crystal with Atomic Resolution from a Single Image. Nat. Mater. 2014, 13, 1044–1049. [Google Scholar] [CrossRef]
- Jones, L.; MacArthur, K.E.; Fauske, V.T.; Van Helvoort, A.T.J.; Nellist, P.D. Rapid Estimation of Catalyst Nanoparticle Morphology and Atomic-Coordination by High-Resolution Z-Contrast Electron Microscopy. Nano Lett. 2014, 14, 6336–6341. [Google Scholar] [CrossRef] [PubMed]
- Moula, M.G.; Suzuki, S.; Chun, W.-J.; Otani, S.; Oyama, S.T.; Asakura, K. Surface Structures of Ni2P (0001)—Scanning Tunneling Microscopy (STM) and Low-Energy Electron Diffraction (LEED) Characterizations. Surf. Interface Anal. 2006, 38, 1611–1614. [Google Scholar] [CrossRef]
- Liu, K.; Ma, Z.; Li, J.; Wang, X. Theoretical Expectation and Experimental Investigation on the Feasibility of N-Doped Ni2P as Highly Active Hydrogen Evolution Catalyst. Int. J. Hydrogen Energy 2023, 51, 713–724. [Google Scholar] [CrossRef]
- Chang, J.; Li, K.; Wu, Z.; Ge, J.; Liu, C.; Xing, W. Sulfur-Doped Nickel Phosphide Nanoplates Arrays: A Monolithic Electrocatalyst for Efficient Hydrogen Evolution Reactions. ACS Appl. Mater. Interfaces 2018, 10, 26303–26311. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.-K.; Domingo, N.; Sun, Y.; Balke, N.; Dunin-Borkowski, R.E.; Mayer, J. Progress on Emerging Ferroelectric Materials for Energy Harvesting, Storage and Conversion. Adv. Energy Mater. 2022, 12, 2201199. [Google Scholar] [CrossRef]
- Lu, X.; He, K. Temperature-Dependent Structural Evolution of Pt-Ni Nanoparticles Observed by In Situ TEM. Microsc. Microanal. 2021, 27, 1236–1237. [Google Scholar] [CrossRef]
- Yang, L.; Huang, L.; Yao, Y.; Jiao, L. In-Situ Construction of Lattice-Matching NiP2/NiSe2 Heterointerfaces with Electron Redistribution for Boosting Overall Water Splitting. Appl. Catal. B 2021, 282, 119584. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y.; Hao, H.; Yuan, M.; Lv, Z.; Xu, L.; Wei, B. In Situ Unraveling Surface Reconstruction of Ni5P4@FeP Nanosheet Array for Superior Alkaline Oxygen Evolution Reaction. Appl. Catal. B 2022, 305, 121033. [Google Scholar] [CrossRef]
- He, Q.; Tian, D.; Jiang, H.; Cao, D.; Wei, S.; Liu, D.; Song, P.; Lin, Y.; Song, L. Achieving Efficient Alkaline Hydrogen Evolution Reaction over a Ni5P4 Catalyst Incorporating Single-Atomic Ru Sites. Adv. Mater. 2020, 32, e1906972. [Google Scholar] [CrossRef]
- Feng, X.; Zhao, Y.; Liu, D.; Mo, Y.; Liu, Y.; Chen, X.; Yan, W.; Jin, X.; Chen, B.; Duan, X.; et al. Towards High Activity of Hydrogen Production from Ammonia Borane over Efficient Non-Noble Ni5P4 Catalyst. Int. J. Hydrogen Energy 2018, 43, 17112–17120. [Google Scholar] [CrossRef]
- Li, C.-F.; Zhao, J.-W.; Xie, L.-J.; Wu, J.-Q.; Li, G.-R. Fe Doping and Oxygen Vacancy Modulated Fe-Ni5P4/NiFeOH Nanosheets as Bifunctional Electrocatalysts for Efficient Overall Water Splitting. Appl. Catal. B 2021, 291, 119987. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, H.; Ma, H.; Zhan, S.; Zhou, Q. Three-Dimensional Crystalline-Ni5P4@amorphous-NiOx Core–Shell Nanosheets as Bifunctional Electrode for Urea Electro-Oxidation and Hydrogen Evolution. Fuel 2022, 315, 123279. [Google Scholar] [CrossRef]
- Chen, A.; Fu, L.; Xiang, W.; Wei, W.; Liu, D.; Liu, C. Facile Synthesis of Ni5P4 Nanosheets/Nanoparticles for Highly Active and Durable Hydrogen Evolution. Int. J. Hydrogen Energy 2021, 46, 11701–11710. [Google Scholar] [CrossRef]
- Lalwani, S.; Lu, X.; Yuan, L.; Abbas Abdelsalam, M.; Zhang, T.; Lalwani, S. Nanoengineered Bifunctional Porous Ni5P4 Electrocatalyst with Accelerated Bubble Departure and Reduced Overpotential for Solar-Driven Water Splitting. ECS Meet. Abstr. 2023, MA2023-02, 2774. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Ge, R.; Cairney, J.M.; Zheng, R.; Khan, A.; Li, S.; Liu, B.; Dai, L.; Li, W. Tailoring the Electronic Structure of Ni5P4/Ni2P Catalyst by Co2P for Efficient Overall Water Electrolysis. Appl. Energy 2023, 349, 121582. [Google Scholar] [CrossRef]
Catalyst, Morphology | Tafel Slope/mVdec−1 (pH) | Overpotential (η)/mV (j/mAcm−2; pH) | Exchange Current Density/A cm−2 | Duration/h (Overpotential/mV) | Ref. |
---|---|---|---|---|---|
Ni2P NPs/Ni | ~46 | 116 (10; 0) | 3.3 × 10−5 | - | [5] |
Ni2P NS/Ni foam | 68 | 115 (10; 0) | - | 65 (175) | [29] |
NiP2 NS/CC | 51 | 75 (10; 0) | 2.60 × 10−4 | 57 (130) | [30] |
Ni5P4 MP | 30 | 43 (10; 0) | 5.8 × 10−4 | - | [28] |
Ni5P4 nc-MP | 33 | 33 (10; −0.5) | 2.1 × 10−3 | 16 (21) | [10] |
Ni5P4 NS/NF | 53 | 108 (10; 0) | - | - | [11] |
Ni5P4 NPs | 42 | 118 (10; 0) | - | 8.33 (150) | [33] |
Ni5P4 3D Nanoflower | 79.38 | 106 (10; 14) | - | 22 (147) | [34] |
Ni5P4 Rice-shape/NF | 64 | 64 (10; 14) | - | 11.11 (120) | [31] |
Ni3P PHNs | 50 | 85 (10; 0) | - | - | [35] |
Ni3P MP | 41 | 66 (10; 0) | 3 × 10−3 | - | [28] |
Ni12P5 | 63 | 107 (10; 0) | 2 × 10−4 | - | [36] |
Ni3S2/AT-NF | 107 | 200 (10; 0) | - | - | [37] |
Pt | 30 | 23 (10; 0) | 2.5 × 10−3 | - | [38] |
FeP | 37 | 48 (10; 0) | 4.3 × 10−4 | 16 (52) | [38] |
CoP NP | 50 | 74 (10; 0) | 1.4 × 10−4 | 24 (100) | [39] |
MoSx thinfilm | 40 | 202 (10; −0.5) | 1.3 × 10−7 | - | [40] |
MoS2 | 43 | 187 (10; 0) | 4.2 × 10−7 | - | [41] |
MoS2/rGO | 41 | 154 (10; 0) | 2.5 × 10−5 | - | [42] |
NiMo Alloy | 132 | 288 (10; 14) | 7.9 × 10−5 | - | [43] |
NiMo NP | - | 82 (10; 14) | - | - | [44] |
Ni3P MP | 119 | 291 (10; 14) | 5.2 ± 0.9 × 10−5 | - | [28] |
Ni5P4 MP | - | 193 (10; 14) | - | - | [28] |
Ni5P4 nc-MP | 98 | 49 (10; 14) | 4.2 × 10−3 | - | [10] |
Pt | 120 | 155 (10; 13) | 6.9 × 10−4 | - | [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Wei, X.-K. A Review of the Structure–Property Relationship of Nickel Phosphides in Hydrogen Production. Energies 2024, 17, 2294. https://doi.org/10.3390/en17102294
Chen L, Wei X-K. A Review of the Structure–Property Relationship of Nickel Phosphides in Hydrogen Production. Energies. 2024; 17(10):2294. https://doi.org/10.3390/en17102294
Chicago/Turabian StyleChen, Linyuan, and Xian-Kui Wei. 2024. "A Review of the Structure–Property Relationship of Nickel Phosphides in Hydrogen Production" Energies 17, no. 10: 2294. https://doi.org/10.3390/en17102294
APA StyleChen, L., & Wei, X. -K. (2024). A Review of the Structure–Property Relationship of Nickel Phosphides in Hydrogen Production. Energies, 17(10), 2294. https://doi.org/10.3390/en17102294