The Quality of Virginia Fanpetals Biomass as an Energy Source, Depending on the Type of Propagating Material and Plantation Age
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Laboratory Analyses
2.3. Statistical Analysis
3. Weather Conditions during the Harvest of Virginia Fanpetals Biomass (January)
4. Results and Discussion
4.1. Evaluation of the Thermophysical Properties of Virginia Fanpetals Biomass
4.2. Evaluation of the Elemental Composition of Virginia Fanpetals Biomass
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kwiatkowski, J. Byliny. In Wieloletnie Rośliny Energetyczne: Monografia; Szczukowski, S., Tworkowski, J., Stolarski, M.J., Kwiatkowski, J., Krzyżaniak, M., Lajszner, W., Graban, Ł., Eds.; MULTICO Oficyna Wydawnicza: Warsaw, Poland, 2012; pp. 105–122. [Google Scholar]
- Styk, B. Niektóre zagadnienia użytkowania, biologii i agrotechniki sidy. Postępy Nauk Rol. 1984, 3, 3–8. [Google Scholar]
- Spooner, D.M.; Cusick, A.W.; Hall, G.F.; Baskin, J.M. Observations on the Distribution and Ecology of Sida Hermaphrodita (L.) Rusby (Malvaceae). Contrib. Bot. 1985, 11, 215–225. [Google Scholar]
- Styk, B.; Styk, W. Ślazowiec pensylwański—Surowiec energetyczny. Ann. UMCS Sec. E 1994, 49, 85–87. [Google Scholar]
- Majlingová, A.; Zachar, M.; Lieskovský, M.; Mitterová, I. The analysis of mass loss and activation energy of selected fast-growing tree species and energy crops using the Arrhenius equation. Acta Fac. Xylologiae Zvolen 2018, 60, 175–186. [Google Scholar] [CrossRef]
- Budzyński, W.; Szczukowski, S.; Tworkowski, J. Wybrane problemy z zakresu produkcji roślinnej na cele energetyczne. I Kongres Nauk Rolniczych Nauka—Praktyce. In Proceedings of the Przyszłość Sektora Rolno-Spożywczego i Obszarów Wiejskich, Puławy, Poland, 14–15 May 2009; pp. 77–88. [Google Scholar]
- Šiaudinis, G.; Skuodienė, R.; Repšienė, R. The investigation of three potential energy crops: Common mugwort, cup plant and Virginia mallow on Western Lithuania’s Albeluvisol. Appl. Ecol. Environ. Res. 2017, 15, 611–620. [Google Scholar] [CrossRef]
- Jabłoński, B.; Kołtowski, Z. Nectar secretion and honey potential of honey plants growing under Poland’s conditions. Part. XV. J. Apic. Sci. 2005, 49, 59–63. [Google Scholar]
- Jablonowski, N.D.; Kollmann, T.; Nabel, M.; Damm, T.; Klose, H.; Müller, M.; Marc Bläsing, M.; Seebold, S.; Krafft, S.; Kuperjans, I.; et al. Valorization of Sida (Sida hermaphrodita) biomass for multiple energy purposes. GCB Bioenergy 2017, 9, 202–214. [Google Scholar] [CrossRef]
- Pokój, T.; Bułkowska, K.; Gusiatin, Z.M.; Klimiuk, E.; Jankowski, K.J. Semi-continuous anaerobic digestion of different silage crops: VFAs formation, methane yield from fiber and non-fiber components and digestate composition. Bioresour. Technol. 2015, 190, 201–210. [Google Scholar] [CrossRef]
- Smoliński, A.; Stańczyk, K.; Howaniec, N. Steam gasification of selected energy crops in a fixed bed reactor. Renew. Energy 2010, 35, 397–404. [Google Scholar] [CrossRef]
- Borkowska, H.; Styk, B. Ślazowiec Pensylwański (Sida Hermaphrodita Rusby). Uprawa i Wykorzystanie, 1st ed.; AR Lublin: Lublin, Poland, 2006. [Google Scholar]
- Žavoronkova, T.Û. Ocìnka perspektivnostì deâkih bagatorìčnih trav dlâ virobnictva bìopaliva. Promyšlennaâ Bot. 2010, 10, 197–201. [Google Scholar]
- Kwiatkowski, J.; Graban, Ł.; Stolarski, M.J. The energy efficiency of Virginia fanpetals biomass production for solid biofuel . Energy 2023, 264, 126180. [Google Scholar] [CrossRef]
- Jablonowski, N.D.; Kollmann, T.; Meiller, M.; Dohrn, M.; Müller, M.; Nabel, M.; Zapp, P.; Schonhoff, A.; Schrey, S.D. Full assessment of Sida (Sida hermaphrodita) biomass as a solid fuel. GCB Bioenergy 2020, 12, 618–635. [Google Scholar] [CrossRef]
- Nahm, M.; Morhart, C. Virginia mallow (Sida hermaphrodita (L.) Rusby) as perennial multipurpose crop: Biomass yields, energetic valorization, utilization potentials, and management perspectives. Glob. Chang. Biol. Bioenergy 2018, 10, 393–404. [Google Scholar] [CrossRef]
- Von Gehren, P.; Gansberger, M.; Pichler, W.; Weigl, M.; Feldmeier, S.; Wopienka, E.; Bochmann, G. A practical field trial to assess the potential of Sida hermaphrodita as a versatile, perennial bioenergy crop for Central Europe. Biomass Bioenergy 2019, 122, 99–108. [Google Scholar] [CrossRef]
- Borkowska, H.; Wardzińska, K. Some effects of Sida hermaphrodita R. cultivation on sevage sludge. Pol. J. Environ. Stud. 2003, 12, 119–122. [Google Scholar]
- Mehmood, M.A.; Ibrahim, M.; Rashid, U.; Nawaz, M.; Ali, S.; Hussain, A.; Gull, M. Biomass production for bioenergy using marginal lands. Sustain. Prod. Consum. 2017, 9, 3–21. [Google Scholar] [CrossRef]
- Ţîţei, V. The mobilization of energy crop resources in Moldova. Rom. Agric. Res. 2023, 40, 645–654. [Google Scholar]
- Tworkowski, J.; Szczukowski, S.; Stolarski, M.J.; Kwiatkowski, J.; Graban, Ł. Productivity and properties of Virginia fanpetals biomass as fuel depending on the propagule and plant density. Fragm. Agron. 2014, 3, 115–125. [Google Scholar]
- Nabel, M.; Barbosa, D.B.P.; Horsch, D.; Jablonowski, N.D. Energy crop (Sida hermaphrodita) fertilization using digestate under marginal soil conditions: A dose-response experiment. Energy Procedia 2014, 59, 127–133. [Google Scholar] [CrossRef]
- Kurucz, E.; Fári, M.G.; Antal, G.; Gabnai, Z.; Popp, J.; Bai, A. Opportunities for the production and economics of Virginia fanpetals (Sida hermaphrodita). Renew. Sustain. Energy Rev. 2018, 90, 824–834. [Google Scholar] [CrossRef]
- Zachar, M.; Lieskovský, M.; Majlingová, A.; Mitterová, I. Comparison of thermal properties of the fast-growing tree species and energy crop species to be used as a renewable and energy-efficient resource. J. Therm. Anal. Calorim. 2018, 134, 543–548. [Google Scholar] [CrossRef]
- Cumplido-Marin, L.; Burgess, P.J.; Facciotto, G.; Coaloa, D.; Morhart, C.; Bury, M.; Paris, P.; Nahm, M.; Graves, A.R. Comparative economics of Sida hermaphrodita (L.) Rusby and Silphium perfoliatum L. as bioenergy crops in Europe. Energy Nexus 2022, 6, 100084. [Google Scholar] [CrossRef]
- Packa, D.; Kwiatkowski, J.; Graban, Ł.; Lajszner, W. Germination and dormancy of Sida hermaphrodita seeds. Seed Sci. Technol. 2014, 42, 1–15. [Google Scholar] [CrossRef]
- PN-EN ISO 18134-1:2015-11; Biofuels–Determination of Moisture Content–Dryer Method–Part 1: Total Moisture– Reference Method. Polish Standardization Committee: Warsaw, Poland, 2017.
- PN-EN ISO 14780:2017-07; Solid Biofuels— Sample Preparation. Polish Standardization Committee: Warsaw, Poland, 2020.
- PN-EN ISO 16948:2015-07; Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen. Polish Standardization Committee: Warsaw, Poland, 2015.
- PN-EN ISO 16994:2016-10; Solid Biofuels—Determination of Total Content of Sulfur and Chlorine. Polish Standardization Committee: Warsaw, Poland, 2016.
- PN-EN ISO 18122:2016-01; Solid Biofuels—Determination of Ash Content. Polish Standardization Committee: Warsaw, Poland, 2016.
- PN-EN ISO 18125:2017-07; Solid Biofuels—Determination of Calorific Value. Polish Standardization Committee: Warsaw, Poland, 2017.
- Bulletin of the National Hydrological and Meteorological Service; IMGW: Warszawa, Poland, 2010–2022; ISSN 1730-6124. No. 13 (98-254). Available online: https://danepubliczne.imgw.pl/data/dane_pomiarowo_obserwacyjne/Biuletyn_PSHM/ (accessed on 1 October 2023).
- Stolarski, M.; Krzyżaniak, M.; Śnieg, M.; Słomińska, E.; Piórkowski, M.; Filipkowski, R. Thermohysical and chemical properties of perennial energy crops depending of harvest period. Int. Agrophys. 2014, 28, 201–211. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Śnieg, M.; Krzyżaniak, M.; Tworkowski, J.; Szczukowski, S.; Graban, Ł.; Lajszner, W. Short rotation coppices, grasses and other herbaceous crops: Biomass properties versus 26 genotypes and harvest time. Ind. Crops Prod. 2018, 119, 22–32. [Google Scholar] [CrossRef]
- Pszczółkowska, A.; Romanowska-Duda, Z.; Pszczółkowski, W.; Grzesik, M.; Wysokińska, Z. Biomass production of selected energy plants: Economic analysis and logistic strategies. Comp. Econ. Res. Cent. East. Eur. 2012, 15, 77–103. [Google Scholar] [CrossRef]
- Bilandžija, N.; Krička, T.; Matin, A.; Leto, J.; Grubor, M. Effect of harvest season on the fuel properties of Sida hermaphrodita (L.) Rusby biomass as solid biofuel. Energies 2018, 11, 3398. [Google Scholar] [CrossRef]
- Šurić, J.; Voća, N.; Peter, A.; Bilandžija, N.; Brandić, I.; Pezo, L.; Leto, J. Use of artificial neural networks to model biomass properties of miscanthus (Miscanthus × giganteus) and Virginia mallow (Sida hermaphrodita L.) in view of harvest season. Energies 2023, 16, 4312. [Google Scholar] [CrossRef]
- Banks, S.W.; Śnieg, M.; Nowakowski, D.J.; Stolarski, M.; Bridgwater, A.V. Potential of Virginia Mallow as an Energy Feedstock. Waste Biomass Valor. 2021, 12, 2375–2388. [Google Scholar] [CrossRef]
- Papamatthaiakis, N.; Laine, A.; Haapala, A.; Ikonen, R.; Kuittinen, S.; Pappinen, A.; Kolström, M.; Mola-Yudego, B. New energy crop alternatives for Northern Europe: Yield, chemical and physical properties of Giant knotweed (Fallopia sachalinensis var. ‘Igniscum’) and Virginia mallow (Sida hermaphrodita). Fuel 2021, 304, 121349. [Google Scholar] [CrossRef]
- Šurić, J.; Šic Žlabur, J.; Peter, A.; Brandić, I.; Voća, S.; Dujmović, M.; Leto, J.; Voća, N. Energy vs. Nutritional Potential of Virginia Mallow (Sida hermaphrodita L.) and Cup Plant (Silphium perfoliatum L.). Plants 2022, 11, 2906. [Google Scholar] [CrossRef] [PubMed]
- Stolarski, M.J.; Szczukowski, S.; Tworkowski, J.; Krzyżaniak, M.; Gulczyński, P.; Mleczek, M. Comparison of quality and production cost of briquettes made from agricultural and forest origin biomass. Renew. Energy 2013, 57, 20–26. [Google Scholar] [CrossRef]
- Šiaudinis, G.; Jasinskas, A.; Šarauskis, E.; Steponavičius, D.; Karčauskiene, D.; Liaudanskiene, I. The assessment of Virginia mallow (Sida hermaphrodita Rusby) and cup plant (Silphium perfoliatum L.) productivity, physico-mechanical properties and energy expenses. Energy 2015, 93, 606–612. [Google Scholar] [CrossRef]
- Franzaring, J.; Holz, I.; Kauf, Z.; Fangmeier, A. Responses of the novel bioenergy plant species Sida hermaphrodita (L.) Rusby and Silphium perfoliatum L. to CO2 fertilization at different temperatures and water supply. Biomass Bioenergy 2015, 81, 574–583. [Google Scholar] [CrossRef]
- Szyszlak, J.; Piekarski, W.; Krzaczek, P.; Borkowska, H. Ocena wartości energetycznych ślazowca pensylwańskiego dla różnych grubości pędów rośliny. Inż. Roln. 2006, 8, 223–230. [Google Scholar]
- Cumplido-Marin, L.; Graves, A.R.; Burgess, P.J.; Morhart, C.; Paris, P.; Jablonowski, N.D.; Facciotto, G.; Bury, M.; Martens, R.; Nahm, M. Two novel energy crops: Sida hermaphrodita (L.) Rusby and Silphium perfoliatum L.—State of knowledge. Agronomy 2020, 10, 928. [Google Scholar] [CrossRef]
- Tilvikiene, V.; Kadziuliene, Z.; Liaudanskiene, I.; Zvicevicius, E.; Cerniauskiene, Z.; Cipliene, A.; Raila, A.J.; Baltrusaitis, J. The quality and energy potential of introduced energy crops in northern part of temperate climate zone. Renew. Energy 2020, 151, 887–895. [Google Scholar] [CrossRef]
- Slepetys, J.; Kadziuliene, Z.; Sarunaite, L.; Tilvikiene, V.; Kryzeviciene, A. Biomass potential of plants grown for bioenergy production. In Growing and Processing Technologies of Energy Crops, Proceedings of the International Scientific Conference Renewable Energy and Energy Efficiency, Jelgava, Latvia, 28–30 May 2012; University of Agriculture: Jelgava, Latvia, 2012; pp. 66–72. [Google Scholar]
Year | Range of Maximum Daily Temperature (°C) | Range of Minimum Daily Temperature (°C) | Average Daily Temperature (°C) | Total Daily Rainfall (mm) | Average Daily Relative Humidity (%) | ||
---|---|---|---|---|---|---|---|
2010 | 0.0 | −13.8 | −4.5 | −25.3 | −8.9 | 29.1 | 85.3 |
2011 | 6.3 | −6.1 | 4 | −11.8 | −1.4 | 36.8 | 93.4 |
2012 | 8.0 | −9.2 | 3.8 | −16.3 | −1.7 | 66.0 | 91.5 |
2013 | 6.9 | −11.8 | 3.9 | −18.0 | −4.7 | 44.3 | 90.3 |
2014 | 8.0 | −12.5 | 4.1 | −19.5 | −3.9 | 64.3 | 86.4 |
2015 | 9.2 | −5.3 | 4.4 | −12.3 | 0.4 | 47.9 | 85.1 |
2016 | 7.8 | −11.3 | 3.6 | −16.9 | −3.9 | 21.1 | 86.8 |
2017 | 2.8 | −10.7 | 0.3 | −20.7 | −3.3 | 19.0 | 84.8 |
2018 | 9.5 | −6.4 | 4.3 | −8.9 | −0.3 | 40.6 | 87.2 |
2019 | 6.1 | −5.6 | 2.4 | −11.7 | −2.4 | 52.7 | 86.1 |
2020 | 9.2 | 0.9 | 6.1 | −3.6 | 2.6 | 44.9 | 88.1 |
2021 | 7.2 | −11.8 | 2.8 | −21.8 | −2.1 | 41.4 | 89.3 |
2022 | 10.2 | −1.7 | 6.4 | −8.3 | 0.8 | 64.2 | 90.6 |
2023 | 15.7 | −2.0 | 12.1 | −4.7 | 2.2 | 45.8 | 88.1 |
Year | Thermal Conditions in January | Precipitation Levels in January |
---|---|---|
2010 | very cool | dry |
2011 | normal | normal |
2012 | normal | extremely humid |
2013 | moderately cool | humid |
2014 | normal | extremely humid |
2015 | moderately warm | very humid |
2016 | normal | very dry |
2017 | normal | very dry |
2018 | moderately warm | normal |
2019 | normal | very humid |
2020 | warm | normal |
2021 | normal | normal |
2022 | very warm | extremely humid |
2023 | warm | normal |
Parameter | Mean | Median | Minimum Value | Maximum Value | Lower Quartile | Upper Quartile | Standard Deviation | Coefficient of Variation (%) |
---|---|---|---|---|---|---|---|---|
Moisture content (%) | 25.25 | 24.83 | 17.02 | 46.17 | 22.88 | 26.67 | 3.85 | 15.27 |
Ash content (% DM) | 2.78 | 2.65 | 1.41 | 6.14 | 2.23 | 3.19 | 0.76 | 27.17 |
Higher heating value (GJ Mg−1 DM) | 18.97 | 19.00 | 17.83 | 19.60 | 18.85 | 19.16 | 0.25 | 1.33 |
Lower heating value (GJ Mg−1) | 12.69 | 12.87 | 8.21 | 14.60 | 12.31 | 13.21 | 0.85 | 6.68 |
Carbon content (% DM) | 49.20 | 49.64 | 43.27 | 53.09 | 47.51 | 50.77 | 2.05 | 4.17 |
Hydrogen content (% DM) | 5.98 | 5.97 | 5.04 | 6.80 | 5.84 | 6.24 | 0.36 | 6.05 |
Sulfur content (% DM) | 0.05 | 0.04 | 0.02 | 0.12 | 0.04 | 0.06 | 0.01 | 28.01 |
Nitrogen content (% DM) | 0.41 | 0.38 | 0.16 | 1.34 | 0.31 | 0.47 | 0.16 | 39.09 |
Item | MC | Ash | HHV | LHV | C | H | S | N |
---|---|---|---|---|---|---|---|---|
MC | 1.00 | |||||||
Ash | 0.27 * | 1.00 | ||||||
HHV | −0.34 * | −0.62 * | 1.00 | |||||
LHV | −0.98 * | −0.35 * | 0.52 * | 1.00 | ||||
Carbon | 0.06 | −0.30 * | 0.27 * | −0.02 | 1.00 | |||
Hydrogen | 0.16 * | −0.39 * | 0.07 | −0.19 * | 0.42 * | 1.00 | ||
Sulfur | 0.02 | 0.46 * | −0.19 * | −0.05 | −0.01 | −0.21 * | 1.00 | |
Nitrogen | 0.23 * | 0.76 * | −0.52 * | −0.30 * | −0.21 * | −0.34 * | 0.62 * | 1.00 |
Source of Variation | df | MC | Ash | HHV | LHV | C | H | S | N |
---|---|---|---|---|---|---|---|---|---|
Types of propagating material (A) | 2 | 0.1 | 0.6 | 0.5 | 0.2 | 0.0 | 0.1 | 7.1 | 2.3 |
Initial plant density (B) | 1 | 0.0 | 0.1 | 0.2 | 0.0 | 0.0 | 0.0 | 0.4 | 0.2 |
A × B | 2 | 0.4 | 1.0 | 1.7 | 0.4 | 0.5 | 0.0 | 0.4 | 0.3 |
Error 1 | 42 | 1.7 | 2.4 | 1.5 | 1.4 | 0.6 | 0.7 | 2.5 | 0.7 |
Years (Y) | 13 | 70.8 | 61.6 | 54.1 | 75.3 | 82.4 | 86.6 | 30.7 | 58.0 |
Y × A | 26 | 1.8 | 10.0 | 11.1 | 2.1 | 2.1 | 1.4 | 14.0 | 16.6 |
Y × B | 13 | 1.7 | 2.0 | 2.7 | 1.4 | 0.6 | 0.4 | 6.0 | 2.3 |
Y × A × B | 26 | 7.8 | 4.1 | 6.3 | 5.5 | 2.6 | 1.2 | 9.2 | 5.7 |
Error 2 | 546 | 15.7 | 18.2 | 21.9 | 13.5 | 11.1 | 9.5 | 29.7 | 13.9 |
Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Source of Variation | df | MC | Ash | HHV | LHV | C | H | S | N |
---|---|---|---|---|---|---|---|---|---|
Types of propagating material (A) | 2 | 0.261 | <0.001 * | 0.003 * | 0.082 | 0.539 | 0.021 * | <0.001 * | <0.001 * |
Initial plant density (B) | 1 | 0.666 | 0.259 | 0.028 * | 0.366 | 0.419 | 0.716 | 0.011 * | <0.001 * |
A × B | 2 | <0.001 * | <0.001 * | <0.001 * | 0.006 * | 0.001 * | 0.411 | 0.048 * | 0.002 * |
Years (Y) | 13 | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * |
Y × A | 26 | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * |
Y × B | 13 | <0.001 * | <0.001 * | <0.001 * | <0.001 * | 0.004 * | 0.058 | <0.001 * | <0.001 * |
Y × A × B | 26 | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwiatkowski, J.; Graban, Ł.; Stolarski, M.J. The Quality of Virginia Fanpetals Biomass as an Energy Source, Depending on the Type of Propagating Material and Plantation Age. Energies 2024, 17, 218. https://doi.org/10.3390/en17010218
Kwiatkowski J, Graban Ł, Stolarski MJ. The Quality of Virginia Fanpetals Biomass as an Energy Source, Depending on the Type of Propagating Material and Plantation Age. Energies. 2024; 17(1):218. https://doi.org/10.3390/en17010218
Chicago/Turabian StyleKwiatkowski, Jacek, Łukasz Graban, and Mariusz Jerzy Stolarski. 2024. "The Quality of Virginia Fanpetals Biomass as an Energy Source, Depending on the Type of Propagating Material and Plantation Age" Energies 17, no. 1: 218. https://doi.org/10.3390/en17010218
APA StyleKwiatkowski, J., Graban, Ł., & Stolarski, M. J. (2024). The Quality of Virginia Fanpetals Biomass as an Energy Source, Depending on the Type of Propagating Material and Plantation Age. Energies, 17(1), 218. https://doi.org/10.3390/en17010218