The Potential of Green Hydrogen and Power-to-X Utilization in Jordanian Industries: Opportunities and Future Prospects
Abstract
:1. Introduction
2. Opportunities and Challenges for Green Hydrogen and PtX in Jordan
3. Green Hydrogen and PtX Utilization in the Jordanian Industrial Sector
3.1. Heavy Industries
3.1.1. Steel Industry
3.1.2. Cement
3.1.3. Crude Oil Refining
3.2. Food Industries
3.2.1. Fertilizers
3.2.2. Pesticides
3.3. Medical and Pharmaceutical Industries
4. Analysis and Discussion
4.1. Green Ammonia for Fertilizer Production
4.2. Steel Industry
4.3. Cement Industry
4.4. Crude Oil Refining Industry
4.5. Potential Market Size
5. Recommendations and Directions for Future Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kazi, M.K.; Eljack, F.; El-Halwagi, M.M.; Haouari, M. Green hydrogen for industrial sector decarbonization: Costs and impacts on hydrogen economy in qatar. Comput. Chem. Eng. 2021, 145, 107144. [Google Scholar] [CrossRef]
- Bhaskar, A.; Assadi, M.; Nikpey Somehsaraei, H. Decarbonization of the iron and steel industry with direct reduction of iron ore with green hydrogen. Energies 2020, 13, 758. [Google Scholar] [CrossRef]
- Ostadi, M.; Paso, K.G.; Rodriguez-Fabia, S.; Øi, L.E.; Manenti, F.; Hillestad, M. Process integration of green hydrogen: Decarbonization of chemical industries. Energies 2020, 13, 4859. [Google Scholar] [CrossRef]
- Shi, J.; Zhu, Y.; Feng, Y.; Yang, J.; Xia, C. A prompt decarbonization pathway for shipping: Green hydrogen, ammonia, and methanol production and utilization in marine engines. Atmosphere 2023, 14, 584. [Google Scholar] [CrossRef]
- Hanley, E.S.; Deane, J.P.; Gallachóir, B.Ó. The role of hydrogen in low carbon energy futures–A review of existing perspectives. Renew. Sustain. Energy Rev. 2018, 82, 3027–3045. [Google Scholar] [CrossRef]
- Ajanovic, A.; Haas, R. Prospects and impediments for hydrogen and fuel cell vehicles in the transport sector. Int. J. Hydrogen Energy 2021, 46, 10049–10058. [Google Scholar] [CrossRef]
- Sarkarzadeh, M.; Farsi, M.; Rahimpour, M.R. Modeling and optimization of an industrial hydrogen unit in a crude oil refinery. Int. J. Hydrogen Energy 2019, 44, 10415–10426. [Google Scholar] [CrossRef]
- Ghavam, S.; Vahdati, M.; Wilson, I.A.; Styring, P. Sustainable ammonia production processes. Front. Energy Res. 2021, 9, 34. [Google Scholar] [CrossRef]
- Hänggi, S.; Elbert, P.; Bütler, T.; Cabalzar, U.; Teske, S.; Bach, C.; Onder, C. A review of synthetic fuels for passenger vehicles. Energy Rep. 2019, 5, 555–569. [Google Scholar] [CrossRef]
- International Energy Agency|IEA. Net Zero by 2050: A Roadmap for the Global Energy Sector. 2021. Available online: https://iea.blob.core.windows.net/assets/deebef5d-0c34-4539-9d0c-10b13d840027/NetZeroby2050-ARoadmapfortheGlobalEnergySector_CORR.pdf (accessed on 4 December 2023).
- International Renewable Energy Agency|IRENA. Making the Breakthrough—Green Hydrogen Policies and Technology Costs. 2021. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Nov/IRENA_Green_Hydrogen_breakthrough_2021.pdf?la=en&hash=40FA5B8AD7AB1666EECBDE30EF458C45EE5A0AA6#:~:text=Green%20hydrogen%20now%20costs%20USD,the%20only%20factor%20to%20consider (accessed on 22 December 2023).
- Shirizadeh, B.; Ailleret, A.; Guillon, A.; Bovari, E.; El Khatib, N.; Douguet, S.; Issa, C.B.; Brauer, J.; Trüby, J. Towards a resilient and cost-competitive clean hydrogen economy: The future is green. Energy Environ. Sci. 2023, 16, 6094–6109. [Google Scholar] [CrossRef]
- International Energy Agency|IEA. The Future of Hydrogen—Seizing Today’s Opportunities. 2019. Available online: https://iea.blob.core.windows.net/assets/9e3a3493-b9a6-4b7d-b499-7ca48e357561/The_Future_of_Hydrogen.pdf (accessed on 22 December 2023).
- Holechek, J.L.; Geli, H.M.; Sawalhah, M.N.; Valdez, R. A global assessment: Can renewable energy replace fossil fuels by 2050? Sustainability 2022, 14, 4792. [Google Scholar] [CrossRef]
- Cheah, W.Y.; Ling, T.C.; Juan, J.C.; Lee, D.J.; Chang, J.S.; Show, P.L. Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production. Bioresour. Technol. 2016, 215, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Diana, M.P.; Roekmijati, W.S.; Suyud, W.U. Why it is often underestimated: Historical study of ammonia gas exposure impacts towards human health. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 73, p. 06003. [Google Scholar]
- Lee, B.; Winter, L.R.; Lee, H.; Lim, D.; Lim, H.; Elimelech, M. Pathways to a Green Ammonia Future. ACS Energy Lett. 2022, 7, 3032–3038. [Google Scholar] [CrossRef]
- Del Pozo, C.A.; Cloete, S. Techno-economic assessment of blue and Green ammonia as energy carriers in a low-carbon future. Energy Convers. Manag. 2022, 255, 115312. [Google Scholar] [CrossRef]
- Burre, J.; Bongartz, D.; Brée, L.; Roh, K.; Mitsos, A. Power-to-X: Between electricity storage, e-production, and demand side management. Chem. Ing. Tech. 2020, 92, 74–84. [Google Scholar] [CrossRef]
- Chehade, Z.; Mansilla, C.; Lucchese, P.; Hilliard, S.; Proost, J. Review and analysis of demonstration projects on power-to-X pathways in the world. Int. J. Hydrogen Energy 2019, 44, 27637–27655. [Google Scholar] [CrossRef]
- Rasul, M.G.; Hazrat, M.A.; Sattar, M.A.; Jahirul, M.I.; Shearer, M.J. The future of hydrogen: Challenges on production, storage and applications. Energy Convers. Manag. 2022, 272, 116326. [Google Scholar] [CrossRef]
- Oliveira, A.M.; Beswick, R.R.; Yan, Y. A green hydrogen economy for a renewable energy society. Curr. Opin. Chem. Eng. 2021, 33, 100701. [Google Scholar] [CrossRef]
- Widera, B. Renewable hydrogen implementations for combined energy storage, transportation and stationary applications. Therm. Sci. Eng. Prog. 2020, 16, 100460. [Google Scholar] [CrossRef]
- Sankhe, S.; Krishna, S.M.; Juturu, R.M.; Subrahmanyam, C. Power-to-X (PtX) Technologies and Their Potential Role in the Transition towards a Fossil-Free Energy Future: A Review of eFuels Synthesis and Direct Air Capture (DAC) Technology. 2023. Available online: https://www.sae.org/publications/technical-papers/content/2023-28-1333/ (accessed on 25 May 2023).
- Schnuelle, C.; Thoeming, J.; Wassermann, T.; Thier, P.; von Gleich, A.; Goessling-Reisemann, S. Socio-technical-economic assessment of power-to-X: Potentials and limitations for an integration into the German energy system. Energy Res. Soc. Sci. 2019, 51, 187–197. [Google Scholar] [CrossRef]
- Skov, I.R.; Schneider, N.; Schweiger, G.; Schöggl, J.P.; Posch, A. Power-to-X in Denmark: An analysis of strengths, weaknesses, opportunities and threats. Energies 2021, 14, 913. [Google Scholar] [CrossRef]
- Ersoy, S.R.; Terrapon-Pfaff, J.; Pregger, T.; Braun, J.; Jamea, E.M.; Al-Salaymeh, A.; Braunschweig, P.; Bereschi, Z.; Ciobotaru, O.T.; Viebahn, P. Industrial and infrastructural conditions for production and export of Green Hydrogen and synthetic fuels in the MENA region: Insights from Jordan, Morocco, and Oman. Sustain. Sci. 2023, 1–16. [Google Scholar] [CrossRef]
- Alquraan, A.; Al-Mahmodi, M.; Radaideh, A.; Al-Masri, H. Comparative study between measured and estimated wind energy yield. Turk. J. Electr. Eng. Comput. Sci. 2020, 28, 2926–2939. [Google Scholar] [CrossRef]
- Chodakowska, E.; Nazarko, J.; Nazarko, Ł.; Rabayah, H.S.; Abendeh, R.M.; Alawneh, R. Arima models in solar radiation forecasting in different geographic locations. Energies 2023, 16, 5029. [Google Scholar] [CrossRef]
- Al-Quraan, A.; Al-Mahmodi, M.; Al-Asemi, T.; Bafleh, A.; Bdour, M.; Muhsen, H.; Malkawi, A. A New Configuration of Roof Photovoltaic System for Limited Area Applications—A Case Study in KSA. Buildings 2022, 12, 92. [Google Scholar] [CrossRef]
- Alamin, Y.I.; Anaty, M.K.; Álvarez Hervás, J.D.; Bouziane, K.; Pérez García, M.; Yaagoubi, R.; Castilla, M.D.M.; Belkasmi, M.; Aggour, M. Very short-term power forecasting of high concentrator photovoltaic power facility by implementing artificial neural network. Energies 2020, 13, 3493. [Google Scholar] [CrossRef]
- Menesy, A.S.; Sultan, H.M.; Habiballah, I.O.; Masrur, H.; Khan, K.R.; Khalid, M. Optimal Configuration of a Hybrid Photovoltaic/Wind Turbine/Biomass/Hydro-Pumped Storage-Based Energy System Using a Heap-Based Optimization Algorithm. Energies 2023, 16, 3648. [Google Scholar] [CrossRef]
- Albaker, A.; Abbasi, K.R.; Haddad, A.M.; Radulescu, M.; Manescu, C.; Bondac, G.T. Analyzing the Impact of Renewable Energy and Green Innovation on Carbon Emissions in the MENA Region. Energies 2023, 16, 6053. [Google Scholar] [CrossRef]
- Albatayneh, A.; Tarawneh, R.; Dawas, A.; Alnajjar, M.; Juaidi, A.; Abdallah, R.; Zapata-Sierra, A.; Manzano-Agugliaro, F. The installation of residential photovoltaic systems: Impact of energy consumption behaviour. Sustainable Energy Technol. Assess. 2022, 54, 102870. [Google Scholar] [CrossRef]
- Alrwashdeh, S.S.; Alsaraireh, F.M.; Saraireh, M.A. Solar radiation map of Jordan governorates. Int. J. Eng. Technol. 2018, 7, 1664–1667. [Google Scholar] [CrossRef]
- Alrwashdeh, S.S. Map of Jordan governorates wind distribution and mean power density. Int. J. Eng. Technol. 2018, 7, 1495–1500. [Google Scholar] [CrossRef]
- European Commission. Photovoltaic Geographical Information System|PVGIS. 2022. Available online: https://re.jrc.ec.europa.eu/pvg_tools/en/ (accessed on 12 December 2023).
- Renewables Now. Jordan Raises Renewables’ Share in Power Generation to 29%. 2022. Available online: https://renewablesnow.com/news/jordan-raises-renewables-share-in-power-generation-to-29-794972/ (accessed on 12 December 2023).
- National Electric Power Company. (n.d.). Annual Reports. Available online: https://www.nepco.com.jo/en/AnnualReports.aspx (accessed on 12 December 2023).
- Jaradat, M.; Alsotary, O.; Juaidi, A.; Albatayneh, A.; Alzoubi, A.; Gorjian, S. Potential of producing green hydrogen in Jordan. Energies 2022, 15, 9039. [Google Scholar] [CrossRef]
- International Energy Agency|IEA. Global Average Levelised Cost of Hydrogen Production by Energy Source and Technology, 2019 and 2050. 2020. Available online: https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050 (accessed on 22 December 2023).
- Economic Modernisation Vision, Unleashing Potential to Build the Future. Available online: https://www.jordanvision.jo/en (accessed on 12 December 2023).
- Hamedi, Z.; Korban, R.; Gönül, G.; Nagpal, D.; Zawaydeh, S. Renewables Readiness Assessment: The Hashemite Kingdom of Jordan; International Renewable Energy Agency (IRENA): Masdar City, Abu Dhabi, 2021. [Google Scholar]
- Al-Kharabsheh, A. Challenges to Sustainable Water Management in Jordan. Jordan J. Earth Environ. Sci. 2020, 11, 38–48. [Google Scholar]
- The Ministry of Water Irrigation|MWI. National Water Strategy, 2023–2040. 2023. Available online: https://www.mwi.gov.jo/EBV4.0/Root_Storage/AR/EB_Ticker/National_Water_Strategy_2023-2040_Summary-English_-ver2.pdf (accessed on 22 December 2023).
- Market Screener. Jordan Steel Company P.L.C. 2023. Available online: https://www.marketscreener.com/quote/stock/JORDAN-STEEL-COMPANY-P-L--6499086/company/#:~:text=Jordan%20Steel%20PSC%20is%20a,products%20for%20the%20construction%20industry (accessed on 10 December 2023).
- Online: National Steel Industry Co., Ltd. 2023. Available online: https://www.national-steel.com/en/ (accessed on 12 December 2023).
- Jordan Steel Group. 2023. Available online: http://www.jordansteelplc.com/en-us/jordansteelgroup/aboutus.aspx (accessed on 12 December 2023).
- Moradikhou, A.B.; Ravanshadnia, M. Evaluation of CO2 emissions reduction strategies in the Iranian Cement Industry. J. Civ. Eng. Mater. Appl. 2021, 5, 107–114. [Google Scholar]
- Chen, C.; Xu, R.; Tong, D.; Qin, X.; Cheng, J.; Liu, J.; Zheng, B.; Yan, L.; Zhang, Q. A striking growth of CO2 emissions from the global cement industry driven by new facilities in emerging countries. Environ. Res. Lett. 2022, 17, 044007. [Google Scholar] [CrossRef]
- International Energy Agency. Tracking Clean Energy Progress 2023—Cement. 2023. Available online: https://www.iea.org/energy-system/industry/cement (accessed on 22 August 2023).
- Sousa, V.; Bogas, J.A.; Real, S.; Meireles, I.; Carriço, A. Recycled cement production energy consumption optimization. Sustain. Chem. Pharm. 2023, 32, 101010. [Google Scholar] [CrossRef]
- Oguntola, O.; Simske, S. Continuous Assessment of the Environmental Impact and Economic Viability of Decarbonization Improvements in Cement Production. Resources 2023, 12, 95. [Google Scholar] [CrossRef]
- Yang, Z.; Gong, B.; Yang, J.; Zhao, Y.; Zhang, J. Trace element partition in a coal-feed industry furnace. In Emission and Control of Trace Elements from Coal-Derived Gas Streams; Woodhead Publishing: Sawston, UK, 2019; pp. 173–226. [Google Scholar]
- Fennell, P.S.; Davis, S.J.; Mohammed, A. Decarbonizing cement production. Joule 2021, 5, 1305–1311. [Google Scholar] [CrossRef]
- Nhuchhen, D.R.; Sit, S.P.; Layzell, D.B. Decarbonization of cement production in a Hydrogen economy. Appl. Energy 2022, 317, 119180. [Google Scholar] [CrossRef]
- Carrasco-Maldonado, F.; Spörl, R.; Fleiger, K.; Hoenig, V.; Maier, J.; Scheffknecht, G. Oxy-fuel combustion technology for cement production–state of the art research and technology development. Int. J. Greenh. Gas Control 2016, 45, 189–199. [Google Scholar] [CrossRef]
- El-Emam, R.S.; Gabriel, K.S. Synergizing Hydrogen and cement industries for Canada’s climate plan–case study. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 43, 3151–3165. [Google Scholar] [CrossRef]
- Thomas, J.M.; Edwards, P.P.; Dobson, P.J.; Owen, G.P. Decarbonising energy: The developing international activity in Hydrogen technologies and fuel cells. J. Energy Chem. 2020, 51, 405–415. [Google Scholar] [CrossRef] [PubMed]
- International Cement Review. Cement Plants Located in Jordan. 2023. Available online: https://www.cemnet.com/global-cement-report/country/jordan (accessed on 22 November 2023).
- Lafarge Jordan Cement. (n.d.). Lafarge in Jordan. Available online: https://www.lafarge.com.jo/en/1_1-Lafarge_in_Jordan#:~:text=Lafarge%20Jordan%20Cement%20currently%20produces%204%20million%20tons%20annually (accessed on 22 November 2023).
- Cementra. (n.d.). Who Are We. Available online: http://cementra.com/en/about/who-we-are (accessed on 22 November 2023).
- Qatrana Cement Company. (n.d.). About Us. Available online: https://www.qcc.jo/home#about-us-sec (accessed on 22 November 2023).
- Northern Region Cement Company. (n.d.). Board of Directors’ Report to Shareholders of Northern Region Cement Company. Available online: https://www.saudiexchange.sa/Resources/fsPdf/7586_422_2022-05-16_15-12-31_en.pdf (accessed on 22 November 2023).
- Manaseer Cement. (n.d.). Concrete Products. Available online: https://manaseer-ic.com/?language=2 (accessed on 22 November 2023).
- The Jordan Times. Jordan Cement Consumption Dropped by 25% in 2019—Traders. 2020. Available online: https://jordantimes.com/news/local/jordan-cement-consumption-dropped-25-2019-%E2%80%94-traders (accessed on 24 November 2023).
- Jing, L.; El-Houjeiri, H.M.; Monfort, J.C.; Brandt, A.R.; Masnadi, M.S.; Gordon, D.; Bergerson, J.A. Carbon intensity of global crude oil refining and mitigation potential. Nat. Clim. Chang. 2020, 10, 526–532. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Global Hydrogen Review 2021. 2021. Available online: https://iea.blob.core.windows.net/assets/5bd46d7b-906a-4429-abda-e9c507a62341/GlobalHydrogenReview2021.pdf (accessed on 22 November 2023).
- Da Silva, G.N.; Rochedo, P.R.; Szklo, A. Renewable Hydrogen production to deal with wind power surpluses and mitigate carbon dioxide emissions from oil refineries. Appl. Energy 2022, 311, 118631. [Google Scholar] [CrossRef]
- The Observatory of Economic Complexity. (n.d.). Crude Petroleum in Jordan. Available online: https://oec.world/en/profile/bilateral-product/crude-petroleum/reporter/jor (accessed on 22 August 2023).
- Jordan Petroleum Oil Refinery. (n.d.). Our Products. Available online: https://www.jopetrol.com.jo/EN/List/Fuel (accessed on 24 November 2023).
- The Jordan Times. JoPetrol Expansion Project to Nearly Double Refining Capacity—CEO. 2021. Available online: https://jordantimes.com/news/local/jopetrol-expansion-project-nearly-double-refining-capacity-%E2%80%94-ceo (accessed on 24 November 2023).
- Oh, Y.; Shin, J.; Noh, H.; Kim, C.; Kim, Y.S.; Lee, Y.K.; Lee, J.K. Selective hydrotreating and hydrocracking of FCC light cycle oil into high-value light aromatic hydrocarbons. Appl. Catal. A Gen. 2019, 577, 86–98. [Google Scholar] [CrossRef]
- Chehadeh, D.; Ma, X.; Al Bazzaz, H. Recent progress in hydrotreating kinetics and modeling of heavy oil and residue: A review. Fuel 2023, 334, 126404. [Google Scholar] [CrossRef]
- Xiaojie, Z.; Mukherjee, K.; Manna, S.; Das, M.K.; Kim, J.K.; Sinha, T.K. Efficient management of oil waste: Chemical and physicochemical approaches. In Advances in Oil-Water Separation; Elsevier: Amsterdam, The Netherlands, 2022; pp. 439–467. [Google Scholar]
- Saab, R.; Polychronopoulou, K.; Zheng, L.; Kumar, S.; Schiffer, A. Synthesis and performance evaluation of hydrocracking catalysts: A review. J. Ind. Eng. Chem. 2020, 89, 83–103. [Google Scholar] [CrossRef]
- Song, W.; Mahalec, V.; Long, J.; Yang, M.; Qian, F. Modeling the hydrocracking process with deep neural networks. Ind. Eng. Chem. Res. 2020, 59, 3077–3090. [Google Scholar] [CrossRef]
- Jordan Petroleum Oil Refinery—Sector of Research and Development. Available online: https://www.jopetrol.jo/EN/Pages/Technology_and_Development (accessed on 20 September 2023).
- Jordan Petroleum Oil Refinery (Arabic). Sustainabilityy Report 2022. 2023. Available online: https://www.jopetrol.com.jo/ebv4.0/root_storage/ar/eb_list_page/reportssustainability2022.pdf (accessed on 24 November 2023).
- Attri, P.; Koga, K.; Okumura, T.; Takeuchi, N.; Shiratani, M. Green route for ammonium nitrate synthesis: Fertilizer for plant growth enhancement. RSC Adv. 2021, 11, 28521–28529. [Google Scholar] [CrossRef]
- Solar Quarter. Jordan’s Aqaba Special Economic Zone Embarks on Green Ammonia and Solar Energy Endeavor. 2023. Available online: https://solarquarter.com/2023/07/04/jordans-aqaba-special-economic-zone-embarks-on-Green-ammonia-and-solar-energy-endeavor/#:~:text=The%20project%20will%20build%20a,from%20100%2C000%20to%20200%2C000%20tons (accessed on 10 December 2023).
- TrendEconomy. 2023. Available online: https://trendeconomy.com/ (accessed on 12 December 2023).
- Hydrogen Peroxide (Hydrogen Dioxide) (000595) Fact Sheet, Website: Biopesticides Fact Sheet for Hydrogen Peroxide—EPA. Available online: https://archive.epa.gov/pesticides/biopesticides/web/html/frnotices_000595.html (accessed on 12 December 2023).
- Chung, M.H.; Ro, J.Y. The Medical Uses of Hydrogen. Food Suppl. Biomater. Health 2021, 1, e5. [Google Scholar] [CrossRef]
- Hirano, S.I.; Ichikawa, Y.; Sato, B.; Satoh, F.; Takefuji, Y. Hydrogen is promising for medical applications. Clean Technol. 2020, 2, 529–541. [Google Scholar] [CrossRef]
- Okolie, J.A.; Patra, B.R.; Mukherjee, A.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Futuristic applications of hydrogen in energy, biorefining, aerospace, pharmaceuticals and metallurgy. Int. J. Hydrogen Energy 2021, 46, 8885–8905. [Google Scholar] [CrossRef]
- Di Paolo, E.; Rinaldi, M. Yield response of corn to irrigation and nitrogen fertilization in a Mediterranean environment. Field Crop. Res. 2008, 105, 202–210. [Google Scholar] [CrossRef]
- Saygin, D.; Blanco, H.; Boshell, F.; Cordonnier, J.; Rouwenhorst, K.; Lathwal, P.; Gielen, D. Ammonia Production from Clean Hydrogen and the Implications for Global Natural Gas Demand. Sustainability 2023, 15, 1623. [Google Scholar] [CrossRef]
- Onwe, C.A.; Rodley, D.; Reynolds, S. Modelling and simulation tool for off-grid PV-hydrogen energy system. Int. J. Sustain. Energy 2020, 39, 1–20. [Google Scholar] [CrossRef]
- Vogl, V.; Åhman, M.; Nilsson, L.J. Assessment of Hydrogen direct reduction for fossil-free steelmaking. J. Clean. Prod. 2018, 203, 736–745. [Google Scholar] [CrossRef]
- Clean Technica. Cement’s CO2 Emissions Are Solved Technically, But Not Economically. 2019. Available online: https://cleantechnica.com/2019/11/26/cements-co2-emissions-are-solved-technically-but-not-economically/ (accessed on 24 November 2023).
- Kim, H.S.; Cho, C.H. Comparative analysis of liquefied natural gas cold energy scenarios for hydrogen liquefaction: 3E (Energy, economic, and environmental) analysis. Int. J. Hydrogen Energy 2023, 48, 31267–31279. [Google Scholar] [CrossRef]
- Cardarelli, P. Techno-Economic Analysis of Green H2 Production and Power-to-X Pathways: Future Energy Solutions for the HSY Ämmässuo Eco-Industrial Centre. 2022. Available online: https://odr.chalmers.se/items/46c63464-be43-402f-9764-9750dc4ddb0d (accessed on 12 December 2023).
Scenario | Current Capacity | Expected Capacity | |
---|---|---|---|
Parameter | |||
Area in m2 | 4000 (km2) | 9000 (km2) | |
Amount of fertilizer needed | 80,000 (tons/year) | 180,000 (tons/year) | |
Amount of ammonia needed | 16,993 (tons/year) | 38,160 (tons/year) | |
Hydrogen capacity needed | 3024.75 (tons/year) | 6792.48 (tons/year) | |
Energy needed to produce Hydrogen | 119.17 (GWh/year) | 267.6 (GWh/year) | |
Facts and Assumptions: |
Parameter | Values |
---|---|
Steel Quantity | 250,000 (tons/year) |
Hydrogen capacity needed | 12,750 (ton/year) |
Energy needed to produce Hydrogen | 502.235 (GWh/year) |
Facts and assumptions:
|
Scenario | Current Capacity | Expected Capacity | |
---|---|---|---|
Parameter | |||
Current quantity of cement | 11,200,000 (ton/year) | 11,200,000 (ton/year) | |
Energy needed for heating | 25,760 (GWh/year) | 25,760 (GWh/year) | |
Energy needed from fuel | 29,881.6 (GWh/year) | 29,881.6 (GWh/year) | |
Volume of consumed natural gas | 3080.6 (million m3/year) | 2772.5 (million m3/year) | |
Volume of consumed Hydrogen | 0 (million m3/year) | 308.05 (million m3/year) | |
Hydrogen demand | 0 (ton/year) | 25,799.4 (ton/year) | |
Facts and assumptions: |
Scenario | Current Capacity | Expected Capacity | |
---|---|---|---|
Parameter | |||
Current quantity of refined crude oil | 21,000,000 (barrel/year) | 42,000,000 (barrel/year) | |
Hydrogen demand | 5880 (ton/year) | 11,760 (ton/year) | |
Energy needed to produce Green Hydrogen | 231.67 (GWh/year) | 463.34 (GWh/year) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhsen, H.; Al-Mahmodi, M.; Tarawneh, R.; Alkhraibat, A.; Al-Halhouli, A. The Potential of Green Hydrogen and Power-to-X Utilization in Jordanian Industries: Opportunities and Future Prospects. Energies 2024, 17, 213. https://doi.org/10.3390/en17010213
Muhsen H, Al-Mahmodi M, Tarawneh R, Alkhraibat A, Al-Halhouli A. The Potential of Green Hydrogen and Power-to-X Utilization in Jordanian Industries: Opportunities and Future Prospects. Energies. 2024; 17(1):213. https://doi.org/10.3390/en17010213
Chicago/Turabian StyleMuhsen, Hani, Mohammed Al-Mahmodi, Rashed Tarawneh, Asma Alkhraibat, and Ala’aldeen Al-Halhouli. 2024. "The Potential of Green Hydrogen and Power-to-X Utilization in Jordanian Industries: Opportunities and Future Prospects" Energies 17, no. 1: 213. https://doi.org/10.3390/en17010213