Reuse of Oil Wells in Geothermal District Heating Networks: A Sustainable Opportunity for Cities of the Future
Abstract
:1. Introduction
2. District Heating Systems
3. Data, Case-Studies, and Methods
- High underground temperature above 90 °C at a depth of 2 km;
- Average underground temperature above 50 °C at a depth of 1 km;
- Low-temperature surface resource (sedimentary soil or surface water table).
3.1. The Case Study of Romentino
3.2. The Case Study of Tuscania
3.3. Methodology to Evaluate the Building Energy Need
- Single-family buildings (MF);
- Terraced houses and small condominiums up to a maximum of 8 residential units (VS);
- Medium condominiums with several housing units between 9 and 16 (MC);
- Large condominiums with more than 16 residential units (GC).
- the thermal power Q, deriving from the dimensioning of the existing thermal loads and any predictions of future expansion;
- the temperature difference ΔT between the flow and return of the heat transfer fluid.
4. Results
4.1. The Case Study of Romentino
4.1.1. Production Area A
4.1.2. Production Area B
4.2. The Case Study of Tuscania
4.3. Economic Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- EUROSTAT-SHARES, SHort Assessment of Renewable Energy Sources. Available online: https://ec.europa.eu/eurostat/web/energy/database/additional-data#Short%20assessment%20of%20renewable%20energy%20sources%20(SHARES) (accessed on 21 September 2023).
- Riney, T.D. Pleasant Bayou Geopressurised Geothermal Reservoir Analysis; Centre for Energy Studies, Topical Report; University of Texas: Austin, TX, USA, 1991; pp. 1–51. [Google Scholar]
- Barbacki, A.P. The use of abandoned oil and gas wells in Poland for recovering geothermal heat. In Proceedings of the World Geothermal Congress, Kyushu-Tohoku, Japan, 28 May–10 June 2000; pp. 1–5. [Google Scholar]
- Zhang, L.; Yuan, J.; Liang, H.; Li, K. Energy from Abandoned Oil and Gas Reservoirs. In Proceedings of the Asia Pacific Oil and Gas Conference and Exhibition, Perth, Australia, 20–22 October 2008. [Google Scholar]
- Johnson, L.; Walker, E. Ormat: Low-Temperature Geothermal Power Generation; The United States Department of Energy: Washington, DC, USA, 2010.
- Nordquist, J.; Johnson, L. Production of Power from the Co-Produced Water of Oil Wells, 3.5 Years of Operation. GRC Trans. 2012, 36, 207–210. [Google Scholar]
- Limpasurat, A.; Falcone, G.; Teodoriu, C.; Barrufet, A. Unconventional heavy oil exploitation for waste energy recovery. In Proceedings of the SPE Latin American and Caribbean Petroleum Engineer Conference, Lima, Peru, 1–3 December 2010. [Google Scholar]
- Li, T.; Zhu, J.; Zhang, W. Cascade utilisation of low temperature geothermal water in oilfield combined power generation, gathering heat tracing and oil recovery. Appl. Therm. Eng. 2012, 40, 27–35. [Google Scholar] [CrossRef]
- Liu, X.; Falcone, G.; Alimonti, C. A systematic study of harnessing low-temperature geothermal energy from oil and gas reservoirs. Energy 2018, 142, 346–355. [Google Scholar] [CrossRef]
- Xin, S.; Liang, H.; Hu, B.; Li, K. Electrical power generation from low temperature co-produced geothermal resources at Huabei Oilfield. In Proceedings of the 37th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 30 January–1 February 2012. [Google Scholar]
- Wang, S.; Yan, J.; Li, F.; Hu, J.; Li, K. Exploitation and Utilization of Oilfield Geothermal Resources in China. Energies 2016, 9, 798. [Google Scholar] [CrossRef]
- Wang, K.; Yuan, B.; Jia, G.; Wu, X. A comprehensive review of geothermal energy extraction and utilisation in oilfields. J. Pet. Sci. Eng. 2018, 168, 465–477. [Google Scholar] [CrossRef]
- Hu, K.; Zhu, J.; Zhang, W.; Li, X. A case study of an ORC geothermal power demonstration system under partial load conditions in Huabei Oilfield, China. Energy Procedia 2017, 142, 1327–1332. [Google Scholar] [CrossRef]
- Yang, Y.; Huo, Y.; Xia, W.; Wang, X.; Zhao, P.; Dai, Y. Construction and preliminary test of a geothermal ORC system using geothermal resource from abandoned oil wells in the Huabei oilfield of China. Energy 2017, 140, 633–645. [Google Scholar] [CrossRef]
- Gosnold, W. Electric Power Generation from Low to Intermediate Temperature Resources Executive; Technical Report; University of North Dakota: Grand Forks, ND, USA, 2017. [Google Scholar] [CrossRef]
- Eagle-Bluestone, J.; Alamooti, M.; Namie, S.; Porlles, J.; Ngobidi, N.; Onwumelu, C.; Obinwa, O.; Gosnold, W., Jr.; Fry, N.; Villante, M. Mandaree, North Dakota: A case study on oil and gas well conversion to geothermal district heating systems for rural communities. Trans. Geotherm. Resour. Counc. 2021, 45, 330–353. [Google Scholar]
- Zhang, X. Numerical study of geothermal district heating from a ground heat exchanger coupled with a heat pump system. Appl. Therm. Eng. 2021, 185, 116335. [Google Scholar] [CrossRef]
- Axelsson, G.; Gunnlaugsson, E.; Jónasson, T.; Ólafsson, M. Low-temperature geothermal utilisation in Iceland—Decades of experience. Geothermics 2010, 39, 329–338. [Google Scholar] [CrossRef]
- Weinand, J.M.; McKenna, R.; Kleinebrahm, M.; Mainzer, K. Assessing the contribution of simultaneous heat and power generation from geothermal plants in off-grid municipalities. Appl. Energy 2019, 255, 113824. [Google Scholar] [CrossRef]
- Romanov, D.; Leiss, B. Analysis of Enhanced Geothermal System Development Scenarios for District Heating and Cooling of the Göttingen University Campus. Geosciences 2021, 11, 349. [Google Scholar] [CrossRef]
- Galantino, C.R.; Beyers, S.; Anderson, C.L.; Tester, J.W. Optimising Cornell’s future geothermal district heating performance through systems engineering and simulation. Energy Build. 2021, 230, 110529. [Google Scholar] [CrossRef]
- Lund, H.; Werner, S.; Wiltshire, R.; Svendsen, S.; Thorsen, J.E.; Hvelplund, F.; Mathiesen, B.V. 4th Generation District Heating (4GDH): Integrating smart thermal grids into future sustainable energy systems. Energy 2014, 68, 1–11. [Google Scholar] [CrossRef]
- Buffa, S.; Cozzini, M.; D’Antoni, M.; Baratieri, M.; Fedrizzi, R. 5th generation district heating and cooling systems: A review of existing cases in Europe. Renew. Sustain. Energy Rev. 2019, 104, 504–522. [Google Scholar] [CrossRef]
- Fattori, F.; Dénarié, A.; Cirillo, V.F.; Spirito, G.; Macchi, S.; Pozzi, M.; Motta, M. Valutazione del potenziale di diffusione del teleriscaldamento efficiente sul territorio nazionale; AIRU-UTILITALIA: Roma, Italy, 2020. [Google Scholar]
- Persson, U.; Möller, B.; Sánchez-García, L.; Wiechers, E. District Heating Investment Costs and Allocation of Local Resources for EU28 in 2030 and 2050. sEEnergies Project. Available online: https://seenergies.eu/ (accessed on 30 March 2021).
- dal Verme, M.; Lipari, D.; Liberatore, P. Teleriscaldamento e Teleraffrescamento 2020. Diffusione delle reti ed Energia Fornita in Italia. Nota di Approfondimento; GSE: Roma, Italy, 2022. [Google Scholar]
- Soldo, E.; Alimonti, C.; Scrocca, D. Geothermal Repurposing of Depleted Oil and Gas Wells in Italy. Proceedings 2020, 58, 9. [Google Scholar] [CrossRef]
- Alimonti, C.; Soldo, E.; Scrocca, D. Looking forward to a decarbonised era: Geothermal potential assessment for oil & gas fields in Italy. Geothermics 2021, 93, 102070. [Google Scholar] [CrossRef]
- Bello, M.; and Fantoni, R. Deep oil plays in Po Valley: Deformation and hydrocarbon generation in a deformed foreland. In Proceedings of the AAPG Hedberg Conference, Milano, Italy, 14–18 May 2002. [Google Scholar]
- Bertello, F.; Fantoni, R.; Franciosi, R.; Gatti, V.; Ghielmi, M.; Pugliese, A. From thrust-and-fold belt to foreland: Hydrocarbon occurrences in Italy. In Petroleum Geology: From Mature Basins to New Frontiers, Proceedings of the 7th Petroleum Geology Conference; Geological Society of London: London, UK, 2010; pp. 113–126. [Google Scholar] [CrossRef]
- Franciosi, R.; Bello, M.; Ronchi, P.; Scotti, P. Po Valley Oil Play-from the Villafortuna-Trecate Field to South-Alpine and Northern Apennine Exploration. In Proceedings of the 64th EAGE Conference & Exhibition, Florence, Italy, 27–30 May 2002. [Google Scholar]
- Alimonti, C.; Gnoni, A.A. Harnessing the fluids heat to improve mature oil field: The Villafortuna-Trecate case study. J. Pet. Sci. Eng. 2015, 125, 256–262. [Google Scholar] [CrossRef]
- ENEL, ENI-AGIP, CNR ENEA: Inventario Delle Risorse Geotermiche Nazionali. Indagine d’insieme sul territorio nazionale; Ministero dell’Industria: Rome, Italy, 1988.
- Buonasorte, G.; Cameli, G.M.; Fiordelisi, A.; Parotto, M.; Perticone, I. Results of geothermal exploration in Central Italy (Latium-Campania). In Proceedings of the World Geothermal Congress, Florence, Italy, 18–31 May 1995; International Geothermal Association, Inc.: Auckland, New Zealand, 1995; pp. 1293–1298. [Google Scholar]
- Cataldi, R.; Mongelli, F.; Squarci, P.; Taffi, L.; Zito, G.; Calore, C. Geothermal ranking of Italian territory. Geothermics 1995, 24, 115–129. [Google Scholar] [CrossRef]
- Chiocchini, U.; Castaldi, F.; Barbieri, M.; Eulilli, V. A stratigraphic and geophysical approach to studying the deep-circulating groundwater and thermal springs, and their recharge areas, in Cimini Mountains-Viterbo area, central Italy. Hydrogeol. J. 2010, 18, 1319. [Google Scholar] [CrossRef]
- Barberi, F.; Buonasorte, G.; Cioni, R.; Fiordelisi, A.; Foresi, L.; Iaccarino, S.; Laurenzi, M.A.; Sbrana, A.; Vernia, L.; Villa, I.M. Plio-Pleistocene geological evolution of the geothermal area of Tuscany and Latium. Mem. Descr. Carta Geol. D’Italia XLIX 1994, 49, 77–134. [Google Scholar]
- Cosentino, D.; Cipollari, P.; Marsili, P.; Scrocca, D. Geology of the central Apennines: A regional review. J. Virtual Explor. 2010, 36, 12. [Google Scholar] [CrossRef]
- Petracchini, L.; Scrocca, D.; Spagnesi, S.; Minelli, F. 3D geological modeling to support the assessment of conventional and unconventional geothermal resources in the Latium region (Central Italy). In Proceedings of the World Geothermal Congress, Melbourne, Australia, 19–25 April 2015; pp. 19–25. [Google Scholar]
- Acocella, V.; Funiciello, R. Transverse systems along the extensional Tyrrhenian margin of central Italy and their influence on volcanism. Tectonics 2006, 25, TC2003. [Google Scholar] [CrossRef]
- Cinti, D.; Procesi, M.; Poncia, P.P. Evaluation of the Theoretical Geothermal Potential of Inferred Geothermal Reservoirs within the Vicano–Cimino and the Sabatini Volcanic Districts (Central Italy) by the Application of the Volume Method. Energies 2018, 11, 142. [Google Scholar] [CrossRef]
- Trumpy, E.; Manzella, A. Geothopica and the interactive analysis and visualisation of the updated Italian National Geothermal Database. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 28–37. [Google Scholar]
- ISTAT, 15° Censimento della Popolazione e delle Abitazioni. 2011. Available online: https://www.istat.it/it/censimenti-permanenti/censimenti-precedenti/popolazione-e-abitazioni/popolazione-2011 (accessed on 22 September 2023).
- Capozza, A.; Carrara, F.; Gobbi, M.E.; Madonna, F.; Ravasio, F.; Panzeri, A. Analisi Tecnico-Economica di Interventi di Riqualificazione Energetica del parco edilizio Residenziale Italiano; RSE: Milano, Italy, 2014. [Google Scholar]
- UNI EN ISO 13790:2008; Prestazione Energetica Degli Edifici—Calcolo del Fabbisogno di Energia per il Riscaldamento e il Raffrescamento. UNI: Roma, Italy, 2008.
- ARERA. Prezzi Finali Dell’energia Elettrica per i Consumatori Industriali—Ue a Area euro. Available online: https://www.arera.it/dati-e-statistiche (accessed on 6 December 2023).
- IEA. Projected Costs of Generating Electricity 2015; IAE: Paris, France, 2015.
- ECB PRESS RELEASE—Monetary Policy Decisions, 27 July 2023. Available online: https://www.ecb.europa.eu/press/pr/date/2023/html/ecb.mp230727~da80cfcf24.it.html (accessed on 22 September 2023).
- Euro Indicators 31 August 2023—Euro Area Annual Inflation Stable at 5.3%. Available online: https://ec.europa.eu/eurostat/web/products-euro-indicators/w/2-31082023-ap (accessed on 22 September 2023).
- Ministero Dell’ambiente e della Sicurezza Energetica—Direzione Generale Infrastrutture e Sicurezza (IS). Available online: https://unmig.mase.gov.it/ricerca-e-coltivazione-di-idrocarburi/elenco-dei-titoli-minerari/ (accessed on 26 September 2023).
- Tesconi, M.; Malossi, A.; Bussi, G. Guida al Giacimento-di Villafortuna-Trecate—GIAC-122, AGIP Crema. 1991. Available online: http://www.pionierieni.it/wp/?p=9484 (accessed on 12 September 2023).
- Mijnlieff, H.F.; Obdam, A.N.M.; van Wees, J.D.A.M.; Pluymaekers, M.P.D.; Veldkamp, J.G. DoubletCalc 1.4 Manual English Version for DoubletCalc 1.4.3; TNO: The Hague, The Netherlands, 2014. [Google Scholar]
- ARERA. Esiti Dell’indagine Conoscitiva Sull’evoluzione dei Prezzi e dei costi del Servizio di Teleriscaldamento, Novembre 2022. Available online: https://www.arera.it/allegati/docs/22/547-22alla.pdf (accessed on 21 September 2023).
Class | Period of Construction |
---|---|
V1 | Before 1919 |
V2 | 1919–1945 |
V3 | 1945–1961 |
V4 | 1961–1971 |
V5 | 1971–1981 |
V6 | 1981–1991 |
V7 | After 1991 |
SBHP (bar) | FBHP (bar) | FWHP (bar) | Flow Rate with 3″ ½ (kg/s) | Flow Rate with 8″ 5/8 (kg/s) |
---|---|---|---|---|
1020 | 991 | 538 | 6.05 | 28.8 |
Production Area | Thermal Power (MW) | Pumping Energy (kWh) | Produced Heat (MWh) |
---|---|---|---|
A | 7.7 | 2314 | 19.6 |
B | 5.1 | 2297 | 12.9 |
Total | 12.8 | 4611 | 32.5 |
Depth (m) | Casing | Thermal Transmittance (W/m2K) | Reservoir Temperature (°C) | Reservoir Pressure (bar) |
---|---|---|---|---|
2000 | 9″ 5/8 | 4.42 | 100–120 | 200 |
Bottomhole Temperature (°C) | Wellhead Temperature (°C) | Thermal Power (MW) |
---|---|---|
105 | 102.7 | 7.0 |
110 | 107.5 | 7.7 |
Scenario | Thermal Power (MW) | Pumping Energy (kWh) | Produced Heat (MWh) | Electrical Energy (MWh) |
---|---|---|---|---|
A | 11.5 | 12,459 | 22.8 | 0 |
B | 11.5 | 92,140 | 22.8 | 787.5 |
Romentino | Tuscania A | Tuscania B | |
---|---|---|---|
6000 | 2000 | 2000 | |
Thermal power (MW) | 12.8 | 11.5 | 11.5 |
Pumping energy (kWh) | 4611 | 12,459 | 92,140 |
CAPEX (M€) | |||
Cd | 3.53 | 13.5 | 13.5 |
Cp | 0.48 | 1.00 | 1.00 |
Ceng | 0.66 | 2.86 | 2.86 |
Ce | 3.00 | 2.69 | 3.19 |
OPEX(M€) | |||
Cel_p | 1.22 | 1.99 | 0.0 |
Clab | 0.46 | 0.24 | 0.24 |
Cm | 0.14 | 0.10 | 0.10 |
LCOH (€/MWh) | 80.96 | 193.83 | 109.76 |
NPV (M€) | 6.10 | −20.50 | −0.82 |
PBT (years) | 2.35 | 8.74 | 8.5 |
IRR (%) | 43 | 9 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alimonti, C.; Vitali, F.; Scrocca, D. Reuse of Oil Wells in Geothermal District Heating Networks: A Sustainable Opportunity for Cities of the Future. Energies 2024, 17, 169. https://doi.org/10.3390/en17010169
Alimonti C, Vitali F, Scrocca D. Reuse of Oil Wells in Geothermal District Heating Networks: A Sustainable Opportunity for Cities of the Future. Energies. 2024; 17(1):169. https://doi.org/10.3390/en17010169
Chicago/Turabian StyleAlimonti, Claudio, Fabio Vitali, and Davide Scrocca. 2024. "Reuse of Oil Wells in Geothermal District Heating Networks: A Sustainable Opportunity for Cities of the Future" Energies 17, no. 1: 169. https://doi.org/10.3390/en17010169
APA StyleAlimonti, C., Vitali, F., & Scrocca, D. (2024). Reuse of Oil Wells in Geothermal District Heating Networks: A Sustainable Opportunity for Cities of the Future. Energies, 17(1), 169. https://doi.org/10.3390/en17010169