# Performance Enhancement of the Basic Solar Chimney Power Plant Integrated with an Adsorption Cooling System with Heat Recovery from the Condenser

## Abstract

**:**

## 1. Introduction

## 2. The Modified System Configuration and Operation

#### 2.1. The Physical Model of the Modified System

#### 2.2. The Operation of the Modified System

## 3. The Mathematical Model

#### 3.1. Mathematical Modeling of the Adsorption Reactor

#### 3.1.1. The Refrigerant Equation of Conservation of Mass

#### 3.1.2. The Refrigerant Equation of Conservation of Energy

#### 3.2. Mathematical Modeling of the Solar Collector

## 4. The Climatic Data and the Values of the Simulation Parameters

## 5. The Numerical Model and the Solution Assumptions

- Once the refrigerant vapor desorbs from the bed, it condenses inside the condenser tubes.
- All the heat of condensation is transferred to the air stream that crosses the condenser tubes and moves towards the entrance of the solar collector without any thermal loss.
- The thermodynamic properties of water are extracted from the tabulated data.
- One-dimensional heat transfer in the radial direction is considered.
- The sorption bed has perfect thermal insulation from the bottom as well as from side edges to prevent loss of heat to the ground.
- The sorption reactor is modeled as a lumped system that has uniform pressure and temperature distributions.
- Heat capacity effects of the roof and the absorber plate are ignored.

## 6. Results and Discussion

## 7. Conclusions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Ali, M.H.; Kurjak, Z.; Beke, J. Modelling and Simulation of Solar Chimney Power Plants in Hot and Arid Regions Using Experimental Weather Conditions. Int. J. Thermofluids
**2023**, 20, 100434. [Google Scholar] [CrossRef] - Kumar Mandal, D.; Biswas, N.; Manna, N.K.; Benim, A.C. Impact of Chimney Divergence and Sloped Absorber on Energy Efficacy of a Solar Chimney Power Plant (SCPP). Ain Shams Eng. J.
**2023**, 15, 102390. [Google Scholar] [CrossRef] - Hassan, H.Z. Transient Analysis of a Solar Chimney Power Plant Integrated with a Solid-Sorption Cooling System for Combined Power and Chilled Water Production. Energies
**2022**, 15, 6793. [Google Scholar] [CrossRef] - Ghafoor, A.; Munir, A. Worldwide Overview of Solar Thermal Cooling Technologies. Renew. Sustain. Energy Rev.
**2015**, 43, 763–774. [Google Scholar] [CrossRef] - Hassan, H.Z.; Mohamad, A.A.; Al-Ansary, H.A.; Alyousef, Y.M. Dynamic Analysis of the CTAR (Constant Temperature Adsorption Refrigeration) Cycle. Energy
**2014**, 77, 852–858. [Google Scholar] [CrossRef] - Hassan, H.Z.; Atteia, G.E. Controlled Strategy for the Cooling Effect of the Solar-Driven Constant-Temperature Solid Sorption System. Int. Rev. Mech. Eng. (IREME)
**2021**, 15, 464–474. [Google Scholar] [CrossRef] - Aristov, Y.I. Adsorptive Conversion of Ultralow-Temperature Heat: Thermodynamic Issues. Energy
**2021**, 236, 121892. [Google Scholar] [CrossRef] - Chauhan, P.R.; Kaushik, S.C.; Tyagi, S.K. A Review on Thermal Performance Enhancement of Green Cooling System Using Different Adsorbent/Refrigerant Pairs. Energy Convers. Manag. X
**2022**, 14, 100225. [Google Scholar] [CrossRef] - Hassan, H.Z. Sensitivity Analysis of the CO-SAR Machine. Int. Rev. Mech. Eng. (IREME)
**2015**, 9, 21–30. [Google Scholar] [CrossRef] - Hassan, H.Z. Assessment of the Adsorber Surface Density Influence on the Performance and Operation of the Intermittent SAR System. Energy Convers. Manag.
**2015**, 94, 19–27. [Google Scholar] [CrossRef] - Dias, J.M.S.; Costa, V.A.F. Adsorption Cooler Design, Dynamic Modeling, and Performance Analyses. Clean Technol.
**2022**, 4, 1152–1161. [Google Scholar] [CrossRef] - Chauhan, P.R.; Kaushik, S.C.; Tyagi, S.K. Current Status and Technological Advancements in Adsorption Refrigeration Systems: A Review. Renew. Sustain. Energy Rev.
**2022**, 154, 111808. [Google Scholar] [CrossRef] - Sah, R.P.; Choudhury, B.; Das, R.K. A Review on Low Grade Heat Powered Adsorption Cooling Systems for Ice Production. Renew. Sustain. Energy Rev.
**2016**, 62, 109–120. [Google Scholar] [CrossRef] - Makahleh, F.M.; Badran, A.A.; Attar, H.; Amer, A.; Al-Maaitah, A.A. Modeling and Simulation of a Two-Stage Air Cooled Adsorption Chiller with Heat Recovery Part I: Physical and Mathematical Performance Model. Appl. Sci.
**2022**, 12, 6542. [Google Scholar] [CrossRef] - Makahleh, F.M.; Badran, A.A.; Attar, H.; Amer, A.; Al-Maaitah, A.A. Modeling and Simulation of a Two-Stage Air-Cooled Adsorption Chiller with Heat Recovery Part II: Parametric Study. Appl. Sci.
**2022**, 12, 5156. [Google Scholar] [CrossRef] - Carotenuto, A.; Figaj, R.D.; Vanoli, L. A Novel Solar-Geothermal District Heating, Cooling and Domestic Hot Water System: Dynamic Simulation and Energy-Economic Analysis. Energy
**2017**, 141, 2652–2669. [Google Scholar] [CrossRef] - Hamdy, M.; Askalany, A.A.; Harby, K.; Kora, N. An Overview on Adsorption Cooling Systems Powered by Waste Heat from Internal Combustion Engine. Renew. Sustain. Energy Rev.
**2015**, 51, 1223–1234. [Google Scholar] [CrossRef] - Golparvar, B.; Niazmand, H. Adsorption Cooling Systems for Heavy Trucks A/C Applications Driven by Exhaust and Coolant Waste Heats. Appl. Therm. Eng.
**2018**, 135, 158–169. [Google Scholar] [CrossRef] - Lu, Z. Comprehensive Investigation of Cooling, Heating, and Power Generation Performance in Adsorption Systems Using Compound Adsorbents: Experimental and Computational Analysis. Sustainability
**2023**, 15, 15202. [Google Scholar] [CrossRef] - Li, T.X.; Wang, R.Z.; Wang, L.W.; Lu, Z.S.; Chen, C.J. Performance Study of a High Efficient Multifunction Heat Pipe Type Adsorption Ice Making System with Novel Mass and Heat Recovery Processes. Int. J. Therm. Sci.
**2007**, 46, 1267–1274. [Google Scholar] [CrossRef] - Mostafa, M.; Ezzeldien, M.; Attalla, M.; Ghazaly, N.M.; Alrowaili, Z.A.; Hasaneen, M.F.; Shmroukh, A.N. Comparison of Different Adsorption Pairs Based on Zeotropic and Azeotropic Mixture Refrigerants for Solar Adsorption Ice Maker. Environ. Sci. Pollut. Res.
**2021**, 28, 41479–41491. [Google Scholar] [CrossRef] [PubMed] - Wang, L.W.; Wu, J.Y.; Wang, R.Z.; Xu, Y.X.; Wang, S.G. Experimental Study of a Solidified Activated Carbon-Methanol Adsorption Ice Maker. Appl. Therm. Eng.
**2003**, 23, 1453–1462. [Google Scholar] [CrossRef] - Dawoud, B. A Hybrid Solar-Assisted Adsorption Cooling Unit for Vaccine Storage. Renew. Energy
**2007**, 32, 947–964. [Google Scholar] [CrossRef] - Kasi, P.; Cheralathan, M. Review of Cascade Refrigeration Systems for Vaccine Storage. J. Phys. Conf. Ser.
**2021**, 2054, 012041. [Google Scholar] [CrossRef] - Tamainot-Telto, Z.; Metcalf, S.J.; Yande, N.N. Adsorption Solar Air Conditioning System for Singapore Climate. Energies
**2022**, 15, 6537. [Google Scholar] [CrossRef] - Sumathy, K.; Yong, L.; Steinhagen, H.M.; Kerskes, H. Performance Analysis of a Modified Two-Bed Solar-Adsorption Air-Conditioning System. Int. J. Energy Res.
**2009**, 33, 675–686. [Google Scholar] [CrossRef] - Lu, Z.; Wang, R. Experimental and Simulation Analysis of Low Temperature Heat Sources Driven Adsorption Air Conditioning, Refrigeration, Integrating Ammonia, and Organic Expanding Power Generation. Int. J. Energy Res.
**2018**, 42, 4157–4169. [Google Scholar] [CrossRef] - Palomba, V.; Varvagiannis, E.; Karellas, S.; Frazzica, A. Hybrid Adsorption-Compression Systems for Air Conditioning in Efficient Buildings: Design through Validated Dynamic Models. Energies
**2019**, 12, 1161. [Google Scholar] [CrossRef] - Jiangzhou, S.; Wang, R.Z.; Lu, Y.Z.; Xu, Y.X.; Wu, J.Y. Experimental Investigations on Adsorption Air-Conditioner Used in Internal-Combustion Locomotive Driver-Cabin. Appl. Therm. Eng.
**2002**, 22, 1153–1162. [Google Scholar] [CrossRef] - Missaoui, K.; Gabsi, S.; Frikha, N.; Kheiri, A.; El Ganaoui, M. Indigenous Fruits and Vegetables Storage Using Continuous Adsorption Refrigeration: A System Modelling. AIP Conf. Proc.
**2021**, 2345, 020011. [Google Scholar] [CrossRef] - Aneke, M.; Agnew, B.; Underwood, C.; Menkiti, M. Thermodynamic Analysis of Alternative Refrigeration Cycles Driven from Waste Heat in a Food Processing Application. Int. J. Refrig.
**2012**, 35, 1349–1358. [Google Scholar] [CrossRef] - Sur, A.; Sah, R.P.; Pandya, S. Milk Storage System for Remote Areas Using Solar Thermal Energy and Adsorption Cooling. Mater. Today Proc.
**2020**, 28, 1764–1770. [Google Scholar] [CrossRef] - Biswas, N.; Mandal, D.K.; Bose, S.; Manna, N.K.; Benim, A.C. Experimental Treatment of Solar Chimney Power Plant—A Comprehensive Review. Energies
**2023**, 16, 6134. [Google Scholar] [CrossRef] - Patel, S.K.; Prasad, D.; Ahmed, M.R. Computational Studies on the Effect of Geometric Parameters on the Performance of a Solar Chimney Power Plant. Energy Convers. Manag.
**2014**, 77, 424–431. [Google Scholar] [CrossRef] - Haaf, W. Solar Chimneys Part II: Preliminary Test Results from the Manzanares Pilot Plant. Int. J. Sustain. Energy
**2007**, 2, 141–161. [Google Scholar] [CrossRef] - Saad, M.; Ahmed, N.; Mahmood, M.; Sajid, M.B. Performance Enhancement of Solar Updraft Tower Plant Using Parabolic Chimney Profile Configurations: A Numerical Analysis. Energy Rep.
**2022**, 8, 4661–4671. [Google Scholar] [CrossRef] - Cuce, E.; Cuce, P.M.; Carlucci, S.; Sen, H.; Kumarasamy, S.; Hasanuzzaman, M.; Daneshazarian, R. Solar Chimney Power Plants: A Review of the Concepts, Designs and Performances. Sustainability
**2022**, 14, 1450. [Google Scholar] [CrossRef] - Gholamalizadeh, E.; Chung, J.D. A Comparative Study of CFD Models of a Real Wind Turbine in Solar Chimney Power Plants. Energies
**2017**, 10, 1674. [Google Scholar] [CrossRef] - Danook, S.H.; Al-Bonsrulah, H.A.Z.; Hashim, I.; Veeman, D. Cfd Simulation of a 3d Solar Chimney Integrated with an Axial Turbine for Power Generation. Energies
**2021**, 14, 5771. [Google Scholar] [CrossRef] - Caicedo, P.; Wood, D.; Johansen, C. Radial Turbine Design for Solar Chimney Power Plants. Energies
**2021**, 14, 674. [Google Scholar] [CrossRef] - Wang, H.; Chen, J.; Dai, P.; Zhang, F.; Li, Q. Simulation and Experimental Study of the Influence of the Baffles on Solar Chimney Power Plant System. Processes
**2021**, 9, 902. [Google Scholar] [CrossRef] - Ganguli, A.A.; Deshpande, S.S.; Pandit, A.B. Cfd Simulations for Performance Enhancement of a Solar Chimney Power Plant (Scpp) and Techno-economic Feasibility for a 5 Mw Scpp in an Indian Context. Energies
**2021**, 14, 3342. [Google Scholar] [CrossRef] - Ahmed, M.R.; Patel, S.K. Computational and Experimental Studies on Solar Chimney Power Plants for Power Generation in Pacific Island Countries. Energy Convers. Manag.
**2017**, 149, 61–78. [Google Scholar] [CrossRef] - Torabi, M.R.; Hosseini, M.; Akbari, O.A.; Afrouzi, H.H.; Toghraie, D.; Kashani, A.; Alizadeh, A. Investigation the Performance of Solar Chimney Power Plant for Improving the Efficiency and Increasing the Outlet Power of Turbines Using Computational Fluid Dynamics. Energy Rep.
**2021**, 7, 4555–4565. [Google Scholar] [CrossRef] - Abdelsalam, E.; Kafiah, F.; Almomani, F.; Tawalbeh, M.; Kiswani, S.; Khasawneh, A.; Ibrahim, D.; Alkasrawi, M. An Innovative Design of a Solar Double-Chimney Power Plant for Electricity Generation. Energies
**2021**, 14, 6235. [Google Scholar] [CrossRef] - Gholamalizadeh, E.; Kim, M.H. Multi-Objective Optimization of a Solar Chimney Power Plant with Inclined Collector Roof Using Genetic Algorithm. Energies
**2016**, 9, 971. [Google Scholar] [CrossRef] - Keshari, S.R.; Chandramohan, V.P.; Das, P. A 3D Numerical Study to Evaluate Optimum Collector Inclination Angle of Manzanares Solar Updraft Tower Power Plant. Sol. Energy
**2021**, 226, 455–467. [Google Scholar] [CrossRef] - Kebabsa, H.; Said Lounici, M.; Daimallah, A. Numerical Investigation of a Novel Tower Solar Chimney Concept. Energy
**2021**, 214, 119048. [Google Scholar] [CrossRef] - Ming, T.; Liu, W.; Xu, G. Analytical and Numerical Investigation of the Solar Chimney Power Plant Systems. Int. J. Energy Res.
**2006**, 30, 861–873. [Google Scholar] [CrossRef] - Kasaeian, A.; Mahmoudi, A.R.; Astaraei, F.R.; Hejab, A. 3D Simulation of Solar Chimney Power Plant Considering Turbine Blades. Energy Convers. Manag.
**2017**, 147, 55–65. [Google Scholar] [CrossRef] - Yapıcı, E.Ö.; Ayli, E.; Nsaif, O. Numerical Investigation on the Performance of a Small Scale Solar Chimney Power Plant for Different Geometrical Parameters. J. Clean Prod.
**2020**, 276, 122908. [Google Scholar] [CrossRef] - Hu, S.; Leung, D.Y.C.; Chan, J.C.Y. Impact of the Geometry of Divergent Chimneys on the Power Output of a Solar Chimney Power Plant. Energy
**2017**, 120, 1–11. [Google Scholar] [CrossRef] - Milani Shirvan, K.; Mirzakhanlari, S.; Mamourian, M.; Kalogirou, S.A. Optimization of Effective Parameters on Solar Updraft Tower to Achieve Potential Maximum Power Output: A Sensitivity Analysis and Numerical Simulation. Appl. Energy
**2017**, 195, 725–737. [Google Scholar] [CrossRef] - Ghalamchi, M.; Kasaeian, A.; Ghalamchi, M.; Mirzahosseini, A.H. An Experimental Study on the Thermal Performance of a Solar Chimney with Different Dimensional Parameters. Renew. Energy
**2016**, 91, 477–483. [Google Scholar] [CrossRef] - Xu, Y.; Zhou, X. Performance of Divergent-Chimney Solar Power Plants. Sol. Energy
**2018**, 170, 379–387. [Google Scholar] [CrossRef] - Hu, S.; Leung, D.Y.C.; Chen, M.Z.Q.; Chan, J.C.Y. Effect of Guide Wall on the Potential of a Solar Chimney Power Plant. Renew. Energy
**2016**, 96, 209–219. [Google Scholar] [CrossRef] - Hassan, A.; Ali, M.; Waqas, A. Numerical Investigation on Performance of Solar Chimney Power Plant by Varying Collector Slope and Chimney Diverging Angle. Energy
**2018**, 142, 411–425. [Google Scholar] [CrossRef] - Sundararaj, M.; Rajamurugu, N.; Anbarasi, J.; Yaknesh, S.; Sathyamurthy, R. Parametric Optimization of Novel Solar Chimney Power Plant Using Response Surface Methodology. Results Eng.
**2022**, 16, 100633. [Google Scholar] [CrossRef] - Ayadi, A.; Driss, Z.; Bouabidi, A.; Abid, M.S. Experimental and Numerical Study of the Impact of the Collector Roof Inclination on the Performance of a Solar Chimney Power Plant. Energy Build
**2017**, 139, 263–276. [Google Scholar] [CrossRef] - Mandal, D.K.; Biswas, N.; Barman, A.; Chakraborty, R.; Manna, N.K. A Novel Design of Absorber Surface of Solar Chimney Power Plant (SCPP): Thermal Assessment, Exergy and Regression Analysis. Sustain. Energy Technol. Assess.
**2023**, 56, 103039. [Google Scholar] [CrossRef] - Al-Kayiem, H.H.; Aja, O.C. Historic and Recent Progress in Solar Chimney Power Plant Enhancing Technologies. Renew. Sustain. Energy Rev.
**2016**, 58, 1269–1292. [Google Scholar] [CrossRef] - Cao, F.; Li, H.; Ma, Q.; Zhao, L. Design and Simulation of a Geothermal-Solar Combined Chimney Power Plant. Energy Convers. Manag.
**2014**, 84, 186–195. [Google Scholar] [CrossRef] - Mokrani, O.B.E.K.; Ouahrani, M.R.; Sellami, M.H.; Segni, L. Experimental Investigations of Hybrid: Geothermal Water/Solar Chimney Power Plant. Energy Sources Part A Recovery Util. Environ. Eff.
**2020**, 1–18. [Google Scholar] [CrossRef] - Abdelsalam, E.; Kafiah, F.; Alkasrawi, M.; Al-Hinti, I.; Azzam, A. Economic Study of Solar Chimney Power-Water Distillation Plant (SCPWDP). Energies
**2020**, 13, 2789. [Google Scholar] [CrossRef] - Abdelsalam, E.; Almomani, F.; Kafiah, F.; Almaitta, E.; Tawalbeh, M.; Khasawneh, A.; Habash, D.; Omar, A.; Alkasrawi, M. A New Sustainable and Novel Hybrid Solar Chimney Power Plant Design for Power Generation and Seawater Desalination. Sustainability
**2021**, 13, 12100. [Google Scholar] [CrossRef] - Alkasrawi, M.; Abdelsalam, E.; Alnawafah, H.; Almomani, F.; Tawalbeh, M.; Mousa, A. Integration of Solar Chimney Power Plant with Photovoltaic for Co-Cooling, Power Production, and Water Desalination. Processes
**2021**, 9, 2155. [Google Scholar] [CrossRef] - Maia, C.B.; Silva, F.V.M.; Oliveira, V.L.C.; Kazmerski, L.L. An Overview of the Use of Solar Chimneys for Desalination. Sol. Energy
**2019**, 183, 83–95. [Google Scholar] [CrossRef] - Lizcano, J.C.O.; Haghighi, Z.; Wapperom, S.; Ferreira, C.I.; Isabella, O.; Dobbelsteen, v.d.A.; Zeman, M. Photovoltaic Chimney: Thermal Modeling and Concept Demonstration for Integration in Buildings. Prog. Photovolt. Res. Appl.
**2020**, 28, 465–482. [Google Scholar] [CrossRef] - Abdelsalam, E.; Almomani, F.; Ibrahim, S.; Kafiah, F.; Jamjoum, M.; Alkasrawi, M. A Novel Design of a Hybrid Solar Double-Chimney Power Plant for Generating Electricity and Distilled Water. Sustainability
**2023**, 15, 2729. [Google Scholar] [CrossRef] - Habibollahzade, A.; Houshfar, E.; Ashjaee, M.; Behzadi, A.; Gholamian, E.; Mehdizadeh, H. Enhanced Power Generation through Integrated Renewable Energy Plants: Solar Chimney and Waste-to-Energy. Energy Convers. Manag.
**2018**, 166, 48–63. [Google Scholar] [CrossRef] - Akbarzadeh, A.; Johnson, P.; Singh, R. Examining Potential Benefits of Combining a Chimney with a Salinity Gradient Solar Pond for Production of Power in Salt Affected Areas. Sol. Energy
**2009**, 83, 1345–1359. [Google Scholar] [CrossRef] - Aliaga, D.M.; Feick, R.; Brooks, W.K.; Mery, M.; Gers, R.; Levi, J.F.; Romero, C.P. Modified Solar Chimney Configuration with a Heat Exchanger: Experiment and CFD Simulation. Therm. Sci. Eng. Prog.
**2021**, 22, 100850. [Google Scholar] [CrossRef] - Zou, Z.; He, S. Modeling and Characteristics Analysis of Hybrid Cooling-Tower-Solar-Chimney System. Energy Convers. Manag.
**2015**, 95, 59–68. [Google Scholar] [CrossRef] - Zandian, A.; Ashjaee, M. The Thermal Efficiency Improvement of a Steam Rankine Cycle by Innovative Design of a Hybrid Cooling Tower and a Solar Chimney Concept. Renew. Energy
**2013**, 51, 465–473. [Google Scholar] [CrossRef] - Habibollahzade, A.; Houshfar, E.; Ashjaee, M.; Ekradi, K. Continuous Power Generation through a Novel Solar/Geothermal Chimney System: Technical/Cost Analyses and Multi-Objective Particle Swarm Optimization. J. Clean Prod.
**2021**, 283, 465–473. [Google Scholar] [CrossRef] - Schlaich, J.; Bergermann, R.; Schiel, W.; Weinrebe, G. Design of Commercial Solar Updraft Tower Systems-Utilization of Solar Induced Convective Flows for Power Generation. J. Sol. Energy Eng. Trans. ASME
**2005**, 127, 117–124. [Google Scholar] [CrossRef] - Fadaei, N.; Kasaeian, A.; Akbarzadeh, A.; Hashemabadi, S.H. Experimental Investigation of Solar Chimney with Phase Change Material (PCM). Renew. Energy
**2018**, 123, 26–35. [Google Scholar] [CrossRef] - Omara, A.A.M.; Mohammed, H.A.; Al Rikabi, I.J.; Abuelnour, M.A.; Abuelnuor, A.A.A. Performance Improvement of Solar Chimneys Using Phase Change Materials: A Review. Sol. Energy
**2021**, 228, 68–88. [Google Scholar] [CrossRef] - Guo, P.; Wang, Y.; Meng, Q.; Li, J. Experimental Study on an Indoor Scale Solar Chimney Setup in an Artificial Environment Simulation Laboratory. Appl. Therm. Eng.
**2016**, 107, 818–826. [Google Scholar] [CrossRef] - Kasaeian, A.; Sharifi, S.; Yan, W.M. Novel Achievements in the Development of Solar Ponds: A Review. Sol. Energy
**2018**, 174, 189–206. [Google Scholar] [CrossRef] - Fathi, N.; McDaniel, P.; Aleyasin, S.S.; Robinson, M.; Vorobieff, P.; Rodriguez, S.; Oliveira, C. de Efficiency Enhancement of Solar Chimney Power Plant by Use of Waste Heat from Nuclear Power Plant. J. Clean Prod.
**2018**, 180, 407–416. [Google Scholar] [CrossRef] - Djimli, S.; Chaker, A.; Ajib, S.; Habka, M. Studying the Possibility of a Combined Hybrid Solar Chimney Power Plant with a Gas Turbine. Environ. Prog. Sustain. Energy
**2018**, 37, 1160–1168. [Google Scholar] [CrossRef] - Shahdost, B.M.; Astaraei, F.R.; Ebrahimi-Moghadam, A.; Ahmadi, M.H. Experimental and Numerical Investigations of a Novel Chimney System for Power Generation Using the Combination of Fossil Fuel Power Plant Exhaust Gases and Ambient Air. Energy Sci. Eng.
**2019**, 7, 764–776. [Google Scholar] [CrossRef] - Hassan, H.Z. Performance Evaluation of a Continuous Operation Adsorption Chiller Powered by Solar Energy Using Silica Gel and Water as the Working Pair. Energies
**2014**, 7, 6382–6400. [Google Scholar] [CrossRef] - Hassan, H.Z. Effect of Parameters Variation on the Performance of Adsorption Based Cooling Systems. Int. Rev. Mech. Eng. (IREME)
**2013**, 7, 24–37. [Google Scholar] - Çengel, Y.A.; Ghajar, A.J. Heat and Mass Transfer: Fundamentals & Applications, 6th ed.; McGraw-Hill Education: New York, NY, USA, 2020; ISBN 0073398195. [Google Scholar]
- Swinbank, W.C. Long-Wave Radiation from Clear Skies. Q. J. R. Meteorol. Soc.
**1963**, 89, 339–348. [Google Scholar] [CrossRef] - Saraf, G.R.; Hamad, F.A.W. Optimum Tilt Angle for a Flat Plate Solar Collector. Energy Convers. Manag.
**1988**, 28, 185–191. [Google Scholar] [CrossRef] - Koonsrisuk, A.; Chitsomboon, T. Mathematical Modeling of Solar Chimney Power Plants. Energy
**2013**, 51, 314–322. [Google Scholar] [CrossRef] - Kiwan, S.; Al-Nimr, M.; Salim, I. A Hybrid Solar Chimney/Photovoltaic Thermal System for Direct Electric Power Production and Water Distillation. Sustain. Energy Technol. Assess.
**2020**, 38, 100680. [Google Scholar] [CrossRef] - POWER|Data Access Viewer. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 27 October 2023).

**Figure 2.**An illustration of the energy flow paths and the energy exchanges for the present modified hybrid system.

**Figure 5.**A differential control volume of the solar collector and the adsorption bed at radial distance $r$ showing heat transfer components of the combined system.

**Figure 7.**The timeline chart, showing time allocation and operational schedule of the modified and basic system processes.

**Figure 11.**Temporal variations in the water mass within the adsorption bed during the desorption and condensation processes.

**Figure 13.**Temporal variations in the refrigerant mass within the adsorption bed during the adsorption process.

**Figure 19.**Variations in airflow temperatures at the solar collector exit and chimney inlet with the time of day.

$\mathit{j}$ | ${\mathit{\alpha}}_{\mathit{j}}$ | ${\mathit{\gamma}}_{\mathit{j}}$ |
---|---|---|

0 | $-6.5314$ | $-15.587$ |

1 | $0.072452$ | $0.15915$ |

2 | $-0.23951\times {10}^{-3}$ | $-0.50612\times {10}^{-3}$ |

3 | $0.25493\times {10}^{-6}$ | $0.5329\times {10}^{-6}$ |

Time | Solar Radiation (W/m^{2}) | Ambient Temperature (°C) | Wind Velocity (m/s) |
---|---|---|---|

05:00 | 9.5 | 28.98 | 3.38 |

06:00 | 129.34 | 31.58 | 3.44 |

07:00 | 346.77 | 34.69 | 4.71 |

08:00 | 579.27 | 38.63 | 4.84 |

09:00 | 714.28 | 42.03 | 6.22 |

10:00 | 914.2 | 43.59 | 6.59 |

11:00 | 969.55 | 44.57 | 6.92 |

12:00 | 967.54 | 45.08 | 7.07 |

13:00 | 898.96 | 45.23 | 7.16 |

14:00 | 753.34 | 44.96 | 7.25 |

15:00 | 553.74 | 44.33 | 7.27 |

16:00 | 320.73 | 43.26 | 7.06 |

17:00 | 115.34 | 40.76 | 4.83 |

18:00 | 6.92 | 36.81 | 3.94 |

19:00 | 0 | 35.37 | 4.02 |

20:00 | 0 | 34.16 | 3.92 |

21:00 | 0 | 33 | 3.73 |

22:00 | 0 | 31.96 | 3.5 |

23:00 | 0 | 31.14 | 3.2 |

24:00 | 0 | 30.94 | 3.63 |

01:00 | 0 | 30.44 | 3.58 |

02:00 | 0 | 29.98 | 3.52 |

03:00 | 0 | 29.59 | 3.47 |

04:00 | 0 | 29.22 | 3.43 |

05:00 | 9.5 | 28.98 | 3.38 |

06:00 | 129.34 | 31.58 | 3.44 |

Symbol | Parameter | Value |
---|---|---|

Solar collector | ||

${R}_{sc}$ | Collector radius at entrance | 1000 m |

$\mathcal{a}$ | Exponent for the solar collector roof profile | 0.65 |

${\mathcal{l}}_{1}$ | Entrance height solar collector | 1.5 m |

${H}_{t}$ | Height of the chimney | 500 m |

${D}_{t}$ | Diameter of the chimney | 60 m |

${\u03f5}_{R}$ | Emissivity of the solar collector transparent cover | 0.85 |

${\eta}_{t}$ | Turbine efficiency | 0.85 |

${\u03f5}_{p}$ | Plate emissivity | 0.05 |

Adsorption bed | ||

${C}_{s}$ | Silica gel specific heat | 921 J·kg^{−1}·K^{−1} |

${k}_{s}$ | Silica gel thermal conductivity | 0.198 W·m^{−1}·K^{−1} |

${\rho}_{s}$ | Particle density of silica gel | 700 kg·m^{−3} |

$\u03f5$ | Porosity of the adsorption bed | 0.4 |

${t}_{b}$ | Adsorption bed thickness | 2.0 cm |

${T}_{ev}$ | Evaporator temperature | 10 °C |

${T}_{con}$ | Refrigerant condensation temperature | 40 °C |

**Table 4.**Components of the thermal energy interactions as calculated for the adsorption cooling module.

Component | Modified System | Basic System |
---|---|---|

Thermal energy absorbed by the reactor | ||

${q}_{a\to b}$ | $2.03\times {10}^{12}\mathrm{J}$ | $2.05\times {10}^{12}$ J |

${q}_{b\to c}$ | $6.62\times {10}^{12}\mathrm{J}$ | $5.78\times {10}^{12}\mathrm{J}$ |

Sum | $8.65\times {10}^{12}\mathrm{J}$ | $7.83\times {10}^{12}\mathrm{J}$ |

Thermal energy ejected by the reactor | ||

${q}_{c\to d}$ | $1.78\times {10}^{12}\mathrm{J}$ | $1.83\times {10}^{12}\mathrm{J}$ |

${q}_{d\to a}$ | $6.56\times {10}^{12}\mathrm{J}$ | $5.70\times {10}^{12}\mathrm{J}$ |

Sum | $8.34\times {10}^{12}\mathrm{J}$ | $7.53\times {10}^{12}\mathrm{J}$ |

Enthalpy of condensation | ||

${q}_{con}$ | $6.10\times {10}^{12}\mathrm{J}$ | $5.34\times {10}^{12}\mathrm{J}$ |

Cooling effect at the evaporator | ||

${q}_{ev}$ | $5.78\times {10}^{12}\mathrm{J}$ | $5.06\times {10}^{12}\mathrm{J}$ |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Hassan, H.Z.
Performance Enhancement of the Basic Solar Chimney Power Plant Integrated with an Adsorption Cooling System with Heat Recovery from the Condenser. *Energies* **2024**, *17*, 136.
https://doi.org/10.3390/en17010136

**AMA Style**

Hassan HZ.
Performance Enhancement of the Basic Solar Chimney Power Plant Integrated with an Adsorption Cooling System with Heat Recovery from the Condenser. *Energies*. 2024; 17(1):136.
https://doi.org/10.3390/en17010136

**Chicago/Turabian Style**

Hassan, Hassan Zohair.
2024. "Performance Enhancement of the Basic Solar Chimney Power Plant Integrated with an Adsorption Cooling System with Heat Recovery from the Condenser" *Energies* 17, no. 1: 136.
https://doi.org/10.3390/en17010136