Environmentally Safe Method for Conditioning and Dewatering Sewage Sludge Using Iron Coagulant, Cellulose and Perlite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Substrate
2.2. Reagents
2.3. Mixing Sludge with Reagents
2.4. Analytical Methods
2.5. Rheological Measurements
2.6. Research Combinations
2.7. Statistical Analysis
3. Research Results
3.1. Research Results—Combination 1
3.2. Research Results—Combination 2
3.3. Research Results—Combination 3
3.4. Research Results—Combination 4 and 5
4. Conclusions
- Dosing the commercial iron coagulant PIX 113 iron coagulant was the most beneficial method of sludge conditioning. Therefore, the greatest influence on the dewatering effect was the conditioner dosage, which caused destabilisation and flocculation of the sludge particles.
- Cellulose and perlite cannot be described as structure-forming agents supporting dewatering. Sludge single conditioned with cellulose or perlite excessively bound water in the structure of the sludge and ultimately limited filtration.
- The combination of reagents (PIX 113, cellulose, perlite) in dual conditioning resulted in the deterioration of sludge dewatering. Dual conditioning can only be effective if a combination of factors whose single action (single conditioning) is beneficial for the technological properties of the sludge.
- Dewatering of single/dual conditioned sludge, regardless of the doses and combinations used, generated a highly contaminated filtrate. The pH, conductivity and turbidity of the filtrate indicated that the resulting filtrate may be a problematic substrate for further purification.
- The use of rheological tests as a tool useful in determining the properties of sludge, and especially the effectiveness of conditioning methods, was limited. A high variability of the rheological parameters and no dependence on the technological parameters of the sludge were observed. The conditioned sludge were structurally unstable substrates, and their properties significantly depended on changes in shear rate. A conclusion can be drawn regarding increasing the mixing gradient or homogenising the mixture of sludge, especially with cellulose or perlite. However, it is necessary to check whether such processes affect the efficiency of dewatering and the quality of rheological analyses.
- The zeta potential was consistent with sediment dewatering effects. It seems justified to use zeta potential measurements for the initial selection of conditioners and their mixtures with sludge prior to dewatering. Minimising the zeta potential could justify the use of types and doses of conditioners of a coagulant and sorbent nature. However, it is recognised that a practical assessment of the susceptibility of sludge to dewatering can only be made on the basis of key technological parameters such as specific resistance of filtration resistance and sludge cake hydration.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meng, X.; Huang, Q.; Xu, J.; Gao, H.; Yan, J. A review of phosphorus recovery from different thermal treatment products of sewage sludge. Waste Dispos. Sustain. Energy 2019, 1, 99–115. [Google Scholar] [CrossRef]
- Marin, E.; Rusanescu, C.O. Agricultural Use of Urban Sewage Sludge from the Wastewater Station in the Municipality of Alexandria in Romania. Water 2023, 15, 458. [Google Scholar] [CrossRef]
- Lamastra, L.; Suciu, N.A.; Trevisan, M. Sewage sludge for sustainable agriculture: contaminants’ contents and potential use as fertilizer. Chem. Biol. Technol. Agric. 2018, 5, 10. [Google Scholar] [CrossRef]
- Gupta, A.; Kumar, M.; Srivastava, S. Recent Advances in Wastewater Sludge Valorization. In Bio-Valorization of Waste: Trends and Perspectives; Shah, S., Venkatramanan, V., Prasad, R., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2021; Chapter 10; pp. 225–247. [Google Scholar]
- Shaddel, S.; Bakhtiary-Davijany, H.; Kabbe, C.; Dadgar, F.; Østerhus, S.W. Sustainable Sewage Sludge Management: From Current Practices to Emerging Nutrient Recovery Technologies. Sustainability 2019, 11, 3435. [Google Scholar] [CrossRef]
- Christodoulou, A.; Stamatelatou, K. Overview of legislation on sewage sludge management in developed countries worldwide. Water Sci. Technol. 2016, 73, 453–462. [Google Scholar] [CrossRef]
- Domini, M.; Bertanza, G.; Vahidzadeh, R.; Pedrazzani, R. Sewage Sludge Quality and Management for Circular Economy Opportunities in Lombardy. Appl. Sci. 2022, 12, 10391. [Google Scholar] [CrossRef]
- Hušek, M.; Moško, J.; Pohořelý, M. Sewage sludge treatment methods and P-recovery possibilities: Current state-of-the-art. J. Environ. Manag. 2022, 315, 115090. [Google Scholar] [CrossRef]
- Schnell, M.; Horst, T.; Quicker, P. Thermal treatment of sewage sludge in Germany: A review. J. Environ. Manag. 2020, 263, 110367. [Google Scholar] [CrossRef]
- Kwapinski, W.; Kolinovic, I.; Leahy, J.J. Sewage Sludge Thermal Treatment Technologies with a Focus on Phosphorus Recovery: A Review. Waste Biomass Valor. 2021, 12, 5837–5852. [Google Scholar] [CrossRef]
- Mowla, D.; Tran, H.N.; Allen, D.G. A review of the properties of biosludge and its relevance to enhanced dewatering processes. Biomass Bioenergy 2013, 58, 365–378. [Google Scholar] [CrossRef]
- Tian, G.; Shen, Y.; Hu, X.; Zhang, T.; Zhang, L.; Bian, B. The change of water content and role of microbe in the sludge drying process. J. Environ. Manag. 2021, 286, 112254. [Google Scholar] [CrossRef]
- Wu, B.; Dai, X.; Chai, X. Critical review on dewatering of sewage sludge: Influential mechanism, conditioning technologies and implications to sludge re-utilizations. Water Res. 2020, 180, 115912. [Google Scholar] [CrossRef]
- Wu, Y.J.; Xu, Y.; Zhang, X.D.; Lu, Y.T.; He, X.Y.; Song, B.J.; Zhang, Y.D.; Ji, J.W. Experimental study on treating landfill sludge by preconditioning combined with vacuum preloading: Effects of freeze-thaw and FeCl3 preconditioning. Sci. Total Environ. 2020, 747, 141092. [Google Scholar] [CrossRef]
- Mikkelsen, L.H.; Keiding, K. Physico-chemical characteristics of full scale sewage sludges with implications to dewatering. Water Res. 2002, 36, 2451–2462. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, H.H.P. Influences of extracellular polymeric substances (EPS) on flocculation, settling, and dewatering of activated sludge. Crit. Rev. Environ. Sci. Technol. 2003, 33, 237–273. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, B.; Wang, D.; Ma, T.; Yu, D. Variations in distribution and composition of extracellular polymeric substances (EPS) of biological sludge under potassium ferrate conditioning: Effects of pH and ferrate dosage. Biochem. Eng. J. 2016, 106, 37–47. [Google Scholar] [CrossRef]
- Wei, H.; Gao, B.; Ren, J.; Li, A.; Yang, H. Coagulation/flocculation in dewatering of sludge: A review. Water Res. 2018, 143, 608–631. [Google Scholar] [CrossRef]
- Burton, F.L.; Tchobanoglous, G.; Tsuchihashi, R.; Stensel, H.D.; Metcalf & Eddy, Inc. Wastewater Engineering: Treatment and Resource Recovery; McGraw-Hill Education: New York, NY, USA, 2013. [Google Scholar]
- Khazaie, A.; Mazarji, M.; Samali, B.; Osborne, D.; Minkina, T.; Sushkova, S.; Mandzhieva, S.; Soldatov, A. A Review on Coagulation/Flocculation in Dewatering of Coal Slurry. Water 2022, 14, 918. [Google Scholar] [CrossRef]
- Saveyn, H.; Pauwels, G.; Timmerman, R.; Van der Meeren, P. Effect of polyelectrolyte conditioning on the enhanced dewatering of activated sludge by application of an electric field during the expression phase. Water Res. 2005, 39, 3012–3020. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Zhang, T.; Zhang, W.; Wang, D. Enhanced technology based for sewage sludge deep dewatering: A critical review. Water Res. 2021, 189, 116650. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ru, S.; Yuan, C.; Wu, B.; Ji, Y.; Dai, Z.; Lei, Z.; Zhang, Z.; Yuan, T.; Li, F.; et al. An all-organic conditioning method to achieve deep dewatering of waste activated sludge and the underlying mechanism. J. Environ. Manag. 2023, 327, 116923. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhang, P.; Zeng, G.; Deng, J.; Zhou, Y.; Lu, H. Sewage sludge conditioning with coal fly ash modified by sulfuric acid. Chem. Eng. J. 2010, 158, 616–622. [Google Scholar] [CrossRef]
- Koul, B.; Bhat, N.; Abubakar, M.; Mishra, M.; Arukha, A.P.; Yadav, D. Application of Natural Coagulants in Water Treatment: A Sustainable Alternative to Chemicals. Water 2022, 14, 3751. [Google Scholar] [CrossRef]
- Netzer, C.; Løvås, T. Chemical Model for Thermal Treatment of Sewage Sludge. ChemEngineering 2022, 6, 16. [Google Scholar] [CrossRef]
- Parmar, K.R.; Brown, A.E.; Hammerton, J.M.; Camargo-Valero, M.A.; Fletcher, L.A.; Ross, A.B. Co-Processing Lignocellulosic Biomass and Sewage Digestate by Hydrothermal Carbonisation: Influence of Blending on Product Quality. Energies 2022, 15, 1418. [Google Scholar] [CrossRef]
- Shi, Q.; Lu, Y.; Guo, W.; Wang, T.; Zhu, Q.; Zhang, Y.; Li, C. Application of a cellulose filter aid in municipal sewage sludge dewatering and drying: Jar, pilot, and factory scale. Water Environ. Res. 2020, 92, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, M.; Ramirez, J.A.; Outram, J.G.; Dunn, K.; Jensen, P.D.; O’Hara, I.M.; Zhang, Z. Effects of lignocellulosic biomass type on the economics of hydrothermal treatment of digested sludge for solid fuel and soil amendment applications. Waste Manag. 2023, 156, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, K. Filters and Filtration Handbook, 5th ed.; Butterworth-Heinemann: Oxford, UK, 2008. [Google Scholar]
- Wu, C.; Li, Z.; Su, X.; Jia, Y.; Lu, X. Novel ultrafiltration membrane fouling control method with in-situ filter aid of perlite particles. Desalination Water Treat. 2016, 57, 5365–5375. [Google Scholar] [CrossRef]
- Wang, Z.; Jackson, L.S.; Jablonski, J.E. Factors Affecting the Levels of Heavy Metals in Juices Processed with Filter Aids. J. Food Prot. 2017, 80, 892–902. [Google Scholar] [CrossRef]
- Zafisaha, N.S.; Ang, W.L.; Johnson, D.J.; Mohammad, A.W.; Hilal, N. Effect of different filter aids used in cake filtration process on the removal of suspended solids in anaerobically digested palm oil mill effluent (POME). Desalination Water Treat. 2018, 110, 362–370. [Google Scholar] [CrossRef]
- Duan, J.; Gregory, J. Coagulation by hydrolysing metal salts. Adv. Colloid Interface Sci. 2003, 100–102, 475–502. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Dave, P.N. Removal of iron for safe drinking water. Desalination 2012, 303, 1–11. [Google Scholar] [CrossRef]
- Elías, F.A.; Marcos, A.G.; Bobadilla, M.C.; de Santo Domingo, E.D. Valorization of bio-waste for the removal of aluminum from industrial wastewater. J. Clean. Prod. 2020, 264, 121608. [Google Scholar] [CrossRef]
- Koch, R.; Noworyta, A. Mechanical Processes in Chemical Engineering; Scientific and Technical Publishing House: Warsaw, Poland, 1998. (In Polish) [Google Scholar]
- PN-EN 12880:2004; Characterization of Sewage Sludge—Determination of Dry Solids Residue and Water Content. Polish Committee for Standardization: Warsaw, Poland, 2004. (In Polish)
- PN-EN 12879:2004; Characterization of Sewage Sludge—Determination of Losses on Ignition of Dry Sludge Mass. Polish Committee for Standardization: Warsaw, Poland, 2004. (In Polish)
- PN-EN 14701-1:2007; Characterization of Sewage Sludge—Filtration Properties—Part 1: Capillary Suction Time (CST). Polish Committee for Standardization: Warsaw, Poland, 2007. (In Polish)
- PN-EN 14701-2:2013-07; Characterization of Sewage Sludge—Filtration Properties—Part 2: Determination of Specific Filtration Resistance. Polish Committee for Standardization: Warsaw, Poland, 2013.
- Ratkovich, N.; Horn, W.; Helmus, F.P.; Rosenberger, S.; Naessens, W.; Nopens, I.; Bentzen, T.R. Activated sludge rheology: A critical review on data collection and modeling. Water Res. 2013, 47, 463–482. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Wang, Q.; Zhang, W.; Yang, P.; Du, Y.; Wang, D. Highly effective enhancement of waste activated sludge dewaterability by altering proteins properties using methanol solution coupled with inorganic coagulants. Water Res. 2018, 138, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.D.; Lu, Y.T.; Yao, J.; Wu, Y.J.; Tran, Q.C.; Vu, Q.V. Insight into conditioning landfill sludge with ferric chloride and a Fenton reagent: Effects on the consolidation properties and advanced dewatering. Chemosphere 2020, 252, 126528. [Google Scholar] [CrossRef]
- Lotito, V.; Lotito, A.M. Rheological measurements on different types of sewage sludge for pumping design. J. Environ. Manag. 2014, 137, 189–196. [Google Scholar] [CrossRef]
- Wei, P.; Uijttewaal, W.; Lier, J.B.; Kreuk, M. Impacts of shearing and temperature on sewage sludge: Rheological characterisation and integration to flow assessment. Sci. Total Environ. 2021, 774, 145005. [Google Scholar] [CrossRef]
- Papa, M.; Pedrazzani, R.; Nembrini, S.; Bertanza, G. Should Rheological Properties of Activated Sludge be Measured? Appl. Rheol. 2015, 25, 24590. [Google Scholar] [CrossRef]
- Santos, A.F.; Ferreira, A.G.M.; Quina, M.J. Efficient Management of Sewage Sludge from Urban Wastewaters with the Addition of Inorganic Waste: Focus on Rheological Properties. Clean Technol. 2022, 4, 841–853. [Google Scholar] [CrossRef]
- Nilsson, M.; Mihranyan, A.; Valizadeh, S.; Strømme, M. Mesopore Structure of Microcrystalline Cellulose Tablets Characterized by Nitrogen Adsorption and SEM: The Influence on Water-Induced Ionic Conduction. J. Phys. Chem. B 2006, 110, 15776–15781. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, A.; Morita, S.; Ozaki, Y. A Study on Water Adsorption onto Microcrystalline Cellulose by Near-Infrared Spectroscopy with Two-Dimensional Correlation Spectroscopy and Principal Component Analysis. Appl. Spectrosc. 2006, 60, 054–1061. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.F.; Jing, S.R.; Lee, D.Y. Recycling of wood chips and wheat dregs for sludge processing. Bioresour. Technol. 2001, 76, 161–163. [Google Scholar] [CrossRef] [PubMed]
- Jing, S.R.; Lin, Y.F.; Lin, Y.M.; Hsu, C.S.; Huang, C.S.; Lee, D.Y. Evaluation of effective conditioners for enhancing sludge dewatering and subsequent detachment from filter cloth. J. Environ. Sci. Health A 1999, 34, 1517–1531. [Google Scholar] [CrossRef]
- Zhang, X.; Ye, P.; Wu, Y. Enhanced technology for sewage sludge advanced dewatering from an engineering practice perspective: A review. J. Environ. Manag. 2022, 321, 115938. [Google Scholar] [CrossRef]
- Suopajärvi, T.; Sirviö, J.A.; Liimatainen, H. Cationic nanocelluloses in dewatering of municipal activated sludge. J. Environ. Chem. Eng. 2017, 5, 86–92. [Google Scholar] [CrossRef]
- Hong, E.; Yeneneh, A.M.; Sen, T.K.; Ang, H.M.; Kayaalp, A. A comprehensive review on rheological studies of sludge from various sections ofmunicipal wastewater treatment plants for enhancement of process performance. Adv. Colloid Interface Sci. 2018, 257, 19–30. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Carnevale Miino, M.; Bellazzi, S.; Caccamo, F.M.; Durante, A.; Abbà, A. Review of rheological behaviour of sewage sludge and its importance in the management of wastewater treatment plants. Water Pract. Technol. 2022, 17, 483–491. [Google Scholar] [CrossRef]
- Xia, J.; Rao, T.; Ji, J.; He, B.; Liu, A.; Sun, Y. Enhanced Dewatering of Activated Sludge by Skeleton-Assisted Flocculation Process. Int. J. Environ. Res. Public Health 2022, 19, 6540. [Google Scholar] [CrossRef]
- Qi, Y.; Thapa, K.B.; Hoadley, A.F.A. Benefit of lignite as a filter aid for dewatering of digested sewage sludge demonstrated in pilot scale trials. Chem. Eng. J. 2011, 166, 504–510. [Google Scholar] [CrossRef]
- Angelopoulos, P.M.; Maliachova, C.; Papakonstantinou, K.; Taxiarchou, M.; Diplas, S. Structural and physical characteristics of fine perlite expanded with a novel method in a vertical electric furnace. Miner. Process. Extr. Metall. 2016, 125, 71–80. [Google Scholar] [CrossRef]
- Lee, K.-S.; Lee, D.-S.; Lim, C.-S.; Lee, S.-P.; Yang, J.-E.; Chung, D.-Y. Water Retention Characteristics of Various Sizes of Expanded Perlite Produced from Two Different Types of Rocks. Horticulturae 2022, 8, 805. [Google Scholar] [CrossRef]
- Wójcik, M.; Stachowicz, F. Influence of sewage sludge conditioning with use of biomass ash on its rheological characteristics. Arch. Environ. Prot. 2019, 45, 92–102. [Google Scholar] [CrossRef]
- Ruiz-Hernando, M.; Martín-Díaz, J.; Labanda, J.; Mata-Alvarezc, J.; Llorens, J.; Lucena, F.; Astals, S. Effect of ultrasound, low-temperature thermal and alkali pre-treatments on waste activated sludge rheology, hygienization and methane potential. Water Res. 2014, 61, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Jiang, Z.; Cui, W.; Wang, Y.; Yang, P. Rheological properties of municipal sewage sludge: Dependency on solid concentration and temperature. Procedia Environ. Sci. 2019, 31, 113–121. [Google Scholar] [CrossRef]
- Baroutian, S.; Eshtiaghi, N.; Gapes, D.J. Rheology of a primary and secondary sewage sludge mixture: Dependency on temperature and solid concentration. Bioresour. Technol. 2013, 140, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Hii, K.; Parthasarathy, R.; Baroutian, S.; Gapes, D.J.; Eshtiaghi, N. Rheological measurements as a tool for monitoring the performance of highpressure and high temperature treatment of sewage sludge. Water Res. 2017, 114, 254–263. [Google Scholar] [CrossRef]
- Eshtiaghi, N.; Markis, F.; Yap, S.D.; Baudez, J.-C.; Slatter, P. Rheological characterisation of municipal sludge: A review. Water Res. 2013, 47, 5493–5510. [Google Scholar] [CrossRef]
- Xiao, H.; Liu, Q.; Wang, Y.; Zhu, Y.; Fang, D.; Wu, G.; Zeng, Z.; Peng, H. Improved dewaterability of waste activated sludge by Fe(II)-activated potassium periodate oxidation. Int. J. Environ. Res. Public Health 2022, 19, 14726. [Google Scholar] [CrossRef]
- Shi, C.; Sun, W.; Sun, Y.; Chen, L.; Xu, Y.; Tang, M. Synthesis, Characterization, and Sludge Dewaterability Evaluation of the Chitosan-Based Flocculant CCPAD. Polymers 2019, 11, 95. [Google Scholar] [CrossRef]
- Wana, S.; Hanb, Y.; Zhoua, M.; Zhouc, X.; Chena, Y.; Donga, Y.; Huanga, F.; Luoa, T.; Zhengc, Y.; Hou, H. Improvement of sewage sludge dewaterability and immobilization of the heavy metals by using pretreated steel slag. Desalination Water Treat. 2020, 182, 135–143. [Google Scholar] [CrossRef]
Parameter | Unit | Value |
---|---|---|
Total solids | g/L | 22.6 ± 0.6 |
Volatile solids | % | 17.3 ± 0.7 |
pH | - | 6.40 ± 0.21 |
Capillary suction time (CST) | s | 634.0 ± 32.0 |
Specific resistance of filtration (SRT) | ×1014 m/kg | 2.34 ± 1.2 |
Filtration velocity (FV) | L of filtrate/h | 0.8 ± 0.13 |
Final hydration of sludge cake (FH) | % | 94.8 ± 1.6 |
Filtrate pH | - | 6.40 ± 0.21 |
Filtrate Conductance | μS/cm | 149.4 ± 47 |
Filtrate Turbidity | NTU | 380.7 ± 43.9 |
Bingham (rheological model) | - | |
Hershel Bulkley (rheological model) | - | |
Ostwald (rheological model) | - | |
Thixotropy (T) | Pa s−1 | 382.3 ± 74.9 |
Model | Equation |
---|---|
Bingham | |
Herschel and Bulkley, (0 < n < N) | τ = τ0 + k(γ)n |
Power-law (Ostwald de Vaele) Shear-thinning (pseudoplastic) n < 1. Shear-thickening (dilatant) n > 1 |
PIX 113 Dose, mL/L of Sludge | 2.0 | 4.0 | 6.0 | 10.0 | 20.0 | 30.0 |
---|---|---|---|---|---|---|
pH | 5.39 ± 0.06 | 4.87 ± 0.11 | 4.47 ± 0.11 | 3.03 ± 0.14 | 2.44 ± 0.06 | 2.27 ± 0.09 |
Conductance, μS/cm | 169.1 ± 10.5 | 150.2 ± 7.3 | 140.0 ± 9.8 | 103.9 ± 7.6 | 76.9 ± 11.1 | 57.3 ± 8.6 |
Turbidity, NTU | 216 ± 11 | 199 ± 10 | 186 ± 13 | 151 ± 15 | 144 ± 9 | 137 ± 3 |
Model | Dose of PIX 113, mL/L | ||||||
---|---|---|---|---|---|---|---|
2.0 | 4.0 | 6.0 | 10.0 | 20.0 | 30.0 | ||
Bingham | 0.007 | 0.0054 | - | 0.0049 | 0.0033 | 0.0068 | |
1.5741 | 3.1821 | - | 3.321 | 3.321 | 1.6192 | ||
R2 | 0.93 | 0.53 | <0.5 | 0.85 | 0.59 | 0.86 | |
Hershel Bulkley | 0.4635 | 0.2564 | - | 0.0001 | - | 0.0001 | |
0.1613 | 0.3131 | - | 0.765 | - | 0.3048 | ||
0.538 | 0.501 | - | 0.2976 | - | 0.4489 | ||
R2 | 0.99 | 0.84 | <0.50 | 0.94 | <0.50 | 0.94 | |
Ostwald | 1.0 | 1.0 | 1.0 | 1.0 | 2.699 | 1.0 | |
0.2437 | 0.2512 | 0.2807 | 0.2511 | 0.0858 | 0.242 | ||
R2 | 0.98 | 0.96 | 0.93 | 0.99 | 0.97 | 0.98 | |
Thixotropy | 382.3 | 498.5 | 674.9 | 704.5 | 767.1 | 439.4 |
Celulose Dose, g/L | 0.5 | 1.0 | 2.0 | 4.0 | 8.0 | 16.0 | 32.0 |
---|---|---|---|---|---|---|---|
pH, | 5.5 ± 0.6 | 5.5 ± 0.3 | 5.4 ± 0.7 | 5.4 ± 0.2 | 5.5 ± 0.9 | 5.6 ± 0.9 | 5.7 ± 0.6 |
Conductance, μS/cm | 85.3 ± 6.3 | 71.9 ± 9.1 | 91.9 ± 4.2 | 170.5 ± 16.8 | 108.8 ± 5.8 | 119.0 ± 7.7 | 93.1 ± 7.6 |
Turbidity, NTU | 522 ± 29.7 | 508 ± 36.5 | 542 ± 29.7 | 471 ± 29.7 | 510 ± 34.5 | 503 ± 21.3 | 462 ± 9.7 |
Model | Dose of Celulose, g/L | |||||||
---|---|---|---|---|---|---|---|---|
0.5 | 1.0 | 2.0 | 4.0 | 8.0 | 16.0 | 32.0 | ||
Bingham | - | 0.0071 | - | 0.0066 | - | - | - | |
- | 1.3833 | - | 2.3606 | - | - | - | ||
R2 | <0.50 | 0.94 | <0.50 | 0.74 | <0.50 | <0.50 | <0.50 | |
Hershel Bulkley | - | 0.838 | - | - | - | - | ||
- | 0.0598 | - | 0.6481 | - | - | - | ||
- | 0.6776 | - | 0.3468 | - | - | - | ||
R2 | <0.50 | 0.99 | <0.50 | 0.88 | <0.50 | <0.50 | <0.50 | |
Ostwald | 2.2661 | 1.0 | 1.0 | 1.0 | - | - | - | |
0.1268 | 0.235 | 0.2936 | 0.2707 | - | - | - | ||
R2 | 0.91 | 0.97 | 0.92 | 0.99 | <0.50 | <0.50 | <0.50 | |
Thixotropy | 733.7 | 345.9 | 1239.6 | 434.9 | 1131.2 | 2343.2 | 11,234.4 |
Perlite Dose, g/L | 0.5 | 1.0 | 2.0 | 4.0 | 8.0 | 16.0 | 32.0 |
---|---|---|---|---|---|---|---|
pH, | 5.6 ± 0.04 | 5.6 ± 0.07 | 5.6 ± 0.06 | 5.6 ± 0.04 | 5.6 ± 0.03 | 5.6 ± 0.01 | 5.6 ± 0.06 |
Conductance, μS/cm | 142.1 ± 3.1 | 56.7 ± 3.6 | 46.1 ± 2.8 | 35.1 ± 2.0 | 30.8 ± 2.1 | 26.3 ± 1.9 | 24.0 ± 2.0 |
Turbidity, NTU | 608 ± 33.9 | 586 ± 42.5 | 571 ± 20.6 | 601 ± 49.0 | 598 ± 20.7 | 556 ± 23.4 | 640 ± 36.2 |
Model | Dose of Perlite, g/L | |||||||
---|---|---|---|---|---|---|---|---|
0.5 | 1.0 | 2.0 | 4.0 | 8.0 | 16.0 | 32.0 | ||
Bingham | 0.0093 | - | - | - | 0.0087 | 0.0094 | 0.0153 | |
1.6415 | - | - | - | 1.2473 | 2.6099 | 4.3343 | ||
R2 | 0.94 | <0.50 | <0.50 | <0.50 | 0.96 | 0.89 | 0.92 | |
Hershel Bulkley | 0.2069 | - | - | - | 0.0815 | - | - | |
0.1886 | - | - | - | 0.1348 | - | - | ||
0.558 | - | - | - | 0.5959 | - | - | ||
R2 | 0.99 | <0.50 | <0.50 | <0.50 | 0.99 | <0.5 | <0.50 | |
Ostwald | 1.0 | 6.5365 | 1.0 | 3.9677 | 1.0 | 1.0 | 1.0 | |
0.2765 | 0.0085 | 0.2654 | 0.0259 | 0.2516 | 0.3099 | 0.3965 | ||
R2 | 0.98 | 0.91 | 0.95 | 0.94 | 0.96 | 0.99 | 0.99 | |
Thixotropy | 309.7 | 833.5 | 906.8 | 709.9 | 603.7 | 618.4 | 1012.3 |
Parameter | FH | FV | CST | pH | C | T |
---|---|---|---|---|---|---|
Combination 1—PIX 113 | ||||||
SRF | 0.98 | −0.96 | 1.00 | 0.78 | 0.74 | 0.83 |
FH | −0.98 | 0.97 | 0.88 | 0.86 | 0.92 | |
FV | −0.95 | −0.91 | −0.88 | −0.94 | ||
CST | 0.76 | 0.72 | 0.81 | |||
pH | 0.99 | 1.00 | ||||
C | 0.98 | |||||
Combination 2—Cellulose | ||||||
SRF | 0.75 | 0.65 | 0.94 | −0.28 | −0.94 | 0.67 |
FH | 0.85 | 0.92 | −0.79 | −0.74 | 0.90 | |
FV | 0.78 | −0.63 | −0.70 | 0.65 | ||
CST | −0.51 | −0.92 | 0.79 | |||
pH | 0.26 | −0.82 | ||||
C | −0.65 | |||||
Combination 3—Perlite | ||||||
SRF | 0.77 | −0.88 | 0.93 | 0.36 | 0.72 | −0.20 |
FH | −0.93 | 0.90 | −0.12 | 0.45 | −0.45 | |
FV | −0.95 | −0.21 | −0.67 | 0.47 | ||
CST | 0.23 | 0.74 | −0.19 | |||
pH | 0.61 | −0.02 | ||||
C | 0.12 |
Combination | pH | Conductivity, | Turbidity, NTU |
---|---|---|---|
PIX 113 (6.0 mL/L), (comparison level) | 4.47 ± 0.11 (a) | 140.1 ± 9.8 (a) | 186 ±13 (a) |
PIX 113 + Cellulose (6.0 mL/L + 8.0 g/L) | 4.63 ± 0.33 (a) | 232.1 ± 21.4 (b) | 167 ± 14 (b) |
PIX 113 + Cellulose (6.0 mL/L + 16.0 g/L) | 4.59 ± 0.40 (a) | 240.6 ± 13.8 (b) | 165 ± 21 (b) |
Cellulose + PIX 113 (8.0 g/L + 6.0 mL/L) | 4.62 ± 0.32 (a) | 205.7 ± 10.8 (b) | 143 ± 11 (b) |
Cellulose + PIX 113 (16.0 g/L + 6.0 mL/L) | 4.60 ± 0.13 (a) | 240.5 ± 16.1 (b) | 148 ± 15 (b) |
PIX 113 + Perlite (6.0 mL/L + 8.0 g/L) | 4.66 ± 0.11 (a) | 332.7 ± 32.4 (c) | 144 ± 17 (b) |
PIX 113 + Perlite (6.0 mL/L + 16.0 g/L) | 4.38 ± 0.90 (a) | 297.0 ± 21.5 (b) | 143 ± 13 (b) |
Perlite + PIX 113 (8.0 g/L + 6.0 mL/L) | 4.43 ± 0.12 (a) | 291.2 ± 24.7 (b) | 145 ± 19 (b) |
Perlite + PIX 113 (16.0 g/L + 6.0 mL/L) | 4.58 ± 0.14 (a) | 344.0 ± 23.8 (c) | 146 ± 10 (b) |
Model | Dose of Celulose, g/L | ||||
---|---|---|---|---|---|
6.0 mL/L + 4.0 g/L | 6.0 mL/L + 8.0 g/L | 4.0 g/L + 6.0 mL/L | 8.0 g/L + 6.0 mL/L | ||
Bingham | - | - | - | 0.0061 | |
- | - | - | 3.4362 | ||
R2 | <0.5 | <0.5 | <0.5 | 0.83 | |
Hershel Bulkley | - | - | - | 0.0011 | |
- | - | - | 1.1564 | ||
- | - | - | 0.2764 | ||
R2 | <0.5 | <0.5 | <0.5 | 0.95 | |
Ostwald | 11.5798 | 51.7884 | 3.2803 | 1.1198 | |
0.0038 | 0.102 | 0.0853 | 0.2823 | ||
R2 | 0.94 | 0.98 | 0.96 | 0.99 | |
Thixotropy | 2236.8 | 4598.2 | 673.9 | 847.9 |
Model | Dose of Perlite, g/L | ||||
---|---|---|---|---|---|
6.0 mL/L + 4.0 g/L | 6.0 mL/L + 8.0 g/L | 4.0 g/L + 6.0 mL/L | 8.0 g/L + 6.0 mL/L | ||
Bingham | 0.0068 | 0.0074 | 0.0109 | - | |
4.3328 | 2.9374 | 3.8754 | - | ||
R2 | 0.67 | 0.90 | 0.68 | <0.5 | |
Hershel Bulkley | 0.0024 | 0.0018 | 3.8209 | - | |
1.5505 | 0.7508 | 0.0127 | - | ||
0.2579 | 0.35 | 0.9768 | - | ||
R2 | 0.82 | 0.99 | 0.68 | <0.5 | |
Ostwald | 1.4733 | 1.0000 | 1.7875 | 1.4263 | |
0.2662 | 0.3006 | 0.2479 | 0.4019 | ||
R2 | 0.99 | 0.99 | 0.95 | 0.97 | |
Thixotropy | 963.6 | 1017.7 | 1637.3 | 5321.5 |
Conditioning | Dose | Zeta Potential, mV | |
---|---|---|---|
Raw sludge | - | −18.45 | ±1.26 |
PIX 113 | (2 mL/L) | −11.45 | ±3.54 |
PIX 113 | (4 mL/L) | −4.55 | ±1.09 |
PIX 113 | (6 mL/L) | −3.61 | ±1.15 |
PIX 113 | (10 mL/L) | −2.03 | ±0.92 |
Celulose | (8 g/L) | −23.4 | ±6.30 |
Celulose | (16 g/L) | −24.6 | ±4.34 |
Perlite | (8 g/L) | −15.4 | ±0.96 |
Perlite | (16 g/L) | −14.3 | ±0.71 |
PIX 113 + Cellulose | (6.0 mL/L + 8.0 g/L) | −3.4 | ±0.34 |
PIX 113 + Cellulose | (6.0 mL/L + 16.0 g/L) | −3.2 | ±0.51 |
Cellulose + PIX 113 | (8.0 g/L + 6.0 mL/L) | −4.1 | ±0.87 |
Cellulose + PIX 113 | (16.0 g/L + 6.0 mL/L) | −4.8 | ±1.29 |
PIX 113 + Perlite | (6.0 mL/L + 8.0 g/L) | −3.5 | ±0.64 |
PIX 113 + Perlite | (6.0 mL/L + 16.0 g/L) | −2.6 | ±0.13 |
Perlite + PIX 113 | (8.0 g/L + 6.0 mL/L) | −3.0 | ±0.63 |
Perlite + PIX 113 | (16.0 g/L + 6.0 mL/L) | −2.1 | ±0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamizela, T.; Worwąg, M.; Kowalczyk, M. Environmentally Safe Method for Conditioning and Dewatering Sewage Sludge Using Iron Coagulant, Cellulose and Perlite. Energies 2024, 17, 134. https://doi.org/10.3390/en17010134
Kamizela T, Worwąg M, Kowalczyk M. Environmentally Safe Method for Conditioning and Dewatering Sewage Sludge Using Iron Coagulant, Cellulose and Perlite. Energies. 2024; 17(1):134. https://doi.org/10.3390/en17010134
Chicago/Turabian StyleKamizela, Tomasz, Małgorzata Worwąg, and Mariusz Kowalczyk. 2024. "Environmentally Safe Method for Conditioning and Dewatering Sewage Sludge Using Iron Coagulant, Cellulose and Perlite" Energies 17, no. 1: 134. https://doi.org/10.3390/en17010134
APA StyleKamizela, T., Worwąg, M., & Kowalczyk, M. (2024). Environmentally Safe Method for Conditioning and Dewatering Sewage Sludge Using Iron Coagulant, Cellulose and Perlite. Energies, 17(1), 134. https://doi.org/10.3390/en17010134