Environmental Degradation by Energy–Economic Growth Interlinkages in EU Agriculture
Abstract
:1. Introduction
1.1. Environmental Degradation in EU Agriculture
1.2. The Role of Energy in EU Agriculture
2. Literature Review
3. Data–Methodology
3.1. Data
3.2. ARDL Methodology
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pendrill, F.U.; Persson, M.; Godar, J.; Kastner, T.; Moran, D.; Schmidt, S.; Wood, R. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Change 2019, 56, 1–10. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y.; Wu, W. Assessing the impact of population, income and technology on energy consumption and industrial pollutant emissions in China. Appl. Energy 2015, 155, 904–917. [Google Scholar] [CrossRef]
- Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20220929-2 (accessed on 31 January 2023).
- Kanemoto, K.; Moran, D.; Lenzen, M.; Geschke, A. International trade undermines national emission reduction targets: New evidence from air pollution. Glob. Environ. Change 2014, 24, 52–59. [Google Scholar] [CrossRef]
- Paris, B.; Vandorou, F.; Balafoutis, A.T.; Vaiopoulos, K.; Kyriakarakos, G.; Manolakos, D.; Papadakis, G. Energy use in open-field agriculture in the EU: A critical review recommending energy efficiency measures and re-newable energy sources adoption. Renew. Sustain. Energy Rev. 2022, 158, 112098. [Google Scholar] [CrossRef]
- Davis, S.J.; Caldeira, K. Consumption-Based Accounting of CO2 Emissions. Proc. Natl. Acad. Sci. USA 2010, 107, 5687–5692. [Google Scholar] [CrossRef]
- Stern, D.I. The environmental Kuznets curve after 25 years. J. Bioecon. 2017, 19, 7–28. [Google Scholar] [CrossRef]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Green-House Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Hayama, Japan, 2006; Available online: http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html (accessed on 25 November 2022).
- Stout, B. Handbook of Energy for World Agriculture; Elsevier Applied Science: New York, NY, USA, 1990; Available online: https://www.sciencedirect.com/book/9781851663491/handbook-of-energy-for-worldagriculture (accessed on 24 November 2022).
- Coderoni, S.; Esposti, R. Long-Term Agricultural GHG Emissions and Economic Growth: The Agricultural Environmental Kuznets Curve across Italian Regions. In Proceedings of the 2011 International Congress, Zurich, Switzerland, 30 August–2 September 2011. [Google Scholar] [CrossRef]
- Burakov, D. Does agriculture matter for environmental Kuznets Curve in Russia: Evidence from the ARDL bounds tests approach. Agris-Line Pap. Econ. Inform. 2019, 11, 23–34. [Google Scholar] [CrossRef]
- Zafeiriou, E.; Azam, M. CO2 emissions and economic performance in EU agriculture: Some evidence from Mediterranean countries. Ecol. Indic. 2017, 81, 104–114. [Google Scholar] [CrossRef]
- Zafeiriou, E.; Sofios, S.; Partalidou, X. Environmental Kuznets curve for EU agriculture: Empirical evidence from new entrant EU countries. Environ. Sci. Pollut. Res. 2017, 24, 15510–15520. [Google Scholar] [CrossRef]
- Zafeiriou, E.; Mallidis, I.; Galanopoulos, K.; Arabatzis, G. Greenhouse gas emissions and economic performance in EU agriculture: An empirical study in a non-linear framework. Sustainability 2018, 10, 3837. [Google Scholar] [CrossRef]
- Zafeiriou, E.; Azam, M.; Garefalakis, A. Exploring environmental–economic performance linkages in EU agriculture: Evidence from a panel cointegration framework. Manag. Environ. Qual. Int. J. 2023, 34, 469–491. [Google Scholar] [CrossRef]
- Bennetzen, E.H.; Smith, P.; Porter, J.R. Decoupling of greenhouse gas emissions from global agricultural production: 1970–2050. Glob. Change Biol. 2016, 22, 763–781. [Google Scholar] [CrossRef]
- Kraft, J.; Kraft, A. On the relationship between energy and GNP. J. Energy Dev. 1978, 3, 401–403. [Google Scholar]
- Eggoh, J.C.; Bangake, C.; Rault, C. Energy consumption and economic growth revisited in African countries. Energy Policy 2011, 39, 7408–7421. [Google Scholar] [CrossRef]
- Gozgor, G.; Lau, C.K.M.; Lu, Z. Energy consumption and economic growth: New evidence from the OECD countries. Energy 2018, 153, 27–34. [Google Scholar] [CrossRef]
- Odhiambo, N.M. Energy consumption and economic growth nexus in Tanzania: An ARDL bounds testing approach. Energy Policy 2009, 37, 617–622. [Google Scholar] [CrossRef]
- Tang, C.F.; Tan, B.W.; Ozturk, I. Energy consumption and economic growth in Vietnam. Renew. Sustain. Energy Rev. 2016, 54, 1506–1514. [Google Scholar] [CrossRef]
- Zhixin, Z.; Xin, R. Causal relationships between energy consumption and economic growth. Energy Procedia 2011, 5, 2065–2071. [Google Scholar] [CrossRef]
- Arora, N.K. Impact of climate change on agriculture production and its sustainable solutions. Environ. Sustain. 2019, 2, 95–96. [Google Scholar] [CrossRef]
- Burney, J.A.; Davis, S.J.; Lobell, D.B. Greenhouse gas mitigation by agricultural intensification. Proc. Natl. Acad. Sci. USA 2010, 107, 12052–12057. [Google Scholar] [CrossRef]
- Clark, M.; Tilman, D. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 2017, 12, 064016. [Google Scholar] [CrossRef]
- Koengkan, M.; Fuinhas, J.A.; Santiago, R. The relationship between CO2 emissions, renewable and non-renewable energy consumption, economic growth, and urbanization in the Southern Common Market. J. Environ. Econ. Policy 2020, 9, 383–401. [Google Scholar] [CrossRef]
- Cyrek, M.; Cyrek, P. Rural Specificity as a Factor Influencing Energy Poverty in European Union Countries. Energies 2022, 15, 5463. [Google Scholar] [CrossRef]
- Chien, F.; Sadiq, M.; Nawaz, M.A.; Hussain, M.S.; Tran, T.D.; Le Thanh, T. A step toward reducing air pollution in top Asian economies: The role of green energy, eco-innovation, and environmental taxes. J. Environ. Manag. 2021, 297, 113420. [Google Scholar] [CrossRef] [PubMed]
- Dyer, J.A.; Desjardins, R.L. A review and evaluation of fossil energy and carbon dioxide emissions in Canadian agriculture. J. Sustain. Agric. 2009, 33, 210–228. [Google Scholar] [CrossRef]
- Nasir, M.A.; Huynh, T.L.D.; Tram, H.T.X. Role of financial development, economic growth & foreign direct investment in driving climate change: A case of emerging ASEAN. J. Environ. Manag. 2019, 242, 131–141. [Google Scholar]
- Li, T.; Baležentis, T.; Makutėnienė, D.; Streimikiene, D.; Kriščiukaitienė, I. Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction. Appl. Energy 2016, 180, 682–694. [Google Scholar] [CrossRef]
- Balsalobre-Lorente, D.; Leitão, N.C.; Bekun, F.V. Fresh validation of the low carbon development hypothesis under the EKC Scheme in Portugal, Italy, Greece and Spain. Energies 2021, 14, 250. [Google Scholar] [CrossRef]
- Leitão, N.C.; Balsalobre-Lorente, D.; Cantos-Cantos, J.M. The impact of renewable energy and economic complexity on carbon emissions in BRICS countries under the EKC scheme. Energies 2021, 14, 4908. [Google Scholar] [CrossRef]
- Voumik, L.C.; Hossain, M.I.; Rahman, M.H.; Sultana, R.; Dey, R.; Esquivias, M.A. Impact of Renewable and Non-Renewable Energy on EKC in SAARC Countries: Augmented Mean Group Approach. Energies 2023, 16, 2789. [Google Scholar] [CrossRef]
- Bongers, A. The environmental Kuznets curve and the energy mix: A structural estimation. Energies 2020, 13, 2641. [Google Scholar] [CrossRef]
- Urban, F.; Nordensvärd, J. Low carbon energy transitions in the Nordic countries: Evidence from the environmental Kuznets curve. Energies 2018, 11, 2209. [Google Scholar] [CrossRef]
- Mahmood, H.; Maalel, N.; Hassan, M.S. Probing the energy-environmental Kuznets curve hypothesis in oil and natural gas consumption models considering urbanization and financial development in Middle East countries. Energies 2021, 14, 3178. [Google Scholar] [CrossRef]
- Mirza, F.M.; Kanwal, A. Energy consumption, carbon emissions and economic growth in Pakistan: Dynamic causality analysis. Renew. Sustain. Energy Rev. 2017, 72, 1233–1240. [Google Scholar] [CrossRef]
- Liu, Y.; Hao, Y. The dynamic links between CO2 emissions, energy consumption and economic development in the countries along “the Belt and Road”. Sci. Total Environ. 2018, 645, 674–683. [Google Scholar] [CrossRef]
- Alshehry, A.S.; Belloumi, M. Energy consumption, carbon dioxide emissions and economic growth: The case of Saudi Arabia. Renew. Sustain. Energy Rev. 2015, 41, 237–247. [Google Scholar] [CrossRef]
- Dong, K.; Sun, R.; Dong, X. CO2 emissions, natural gas and renewables, economic growth: Assessing the evidence from China. Sci. Total Environ. 2018, 640–641, 293–302. [Google Scholar] [CrossRef]
- Omri, A. CO2 emissions, energy consumption and economic growth nexus in MENA countries: Evidence from simultaneous equations models. Energy Econ. 2013, 40, 657–664. [Google Scholar] [CrossRef]
- Zhang, X.-P.; Cheng, X.-M. Energy consumption, carbon emissions, and economic growth in China. Ecol. Econ. 2009, 68, 2706–2712. [Google Scholar] [CrossRef]
- Altouma, A.; Krepl, V.; Bashir, B.; Bachir, H. Impact of Economic Growth, Agriculture, and Primary Energy Consumption on Carbon Dioxide Emissions in the Czech Republic. Energies 2022, 15, 7887. [Google Scholar] [CrossRef]
- Streimikis, J.; Baležentis, T. Agricultural sustainability assessment framework integrating sustainable development goals and interlinked priorities of environmental, climate and agriculture policies. Sustain. Dev. 2020, 28, 1702–1712. [Google Scholar] [CrossRef]
- Kesavan, P.C.; Swaminathan, M. Strategies and models for agricultural sustainability in developing Asian countries. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 877–891. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, N.; Sheng, H.; Ip, C.; Yang, L.; Chen, Y.; Sang, Z.; Tadesse, T.; Lim, T.P.Y.; Rajabifard, A.; et al. Urban drought challenge to 2030 sustainable development goals. Sci. Total Environ. 2019, 693, 133536. [Google Scholar] [CrossRef]
- Eurostat. Agri-Environmental Indices. 2022. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agri-environmental_indicator_-_energy_use&oldid=578460 (accessed on 22 October 2022).
- Khanal, A. The role of ICT and energy consumption on carbon emissions: An Australian evidence using cointegration test and ARDL long-run and short-run methodology. Int. J. Energy Econ. Policy 2021, 11, 441–449. [Google Scholar] [CrossRef]
- FAOSTAT. Several statistics Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/faostat/en/#data (accessed on 20 November 2022).
- Giannone, D.; Lenza, M.; Primiceri, G.E. Prior Selection for Vector Autoregressions. Rev. Econ. Stat. 2015, 97, 436–451. [Google Scholar] [CrossRef]
- Narayan, P.K.; Popp, S. Size and power properties of structural break unit root tests. Appl. Econ. 2013, 45, 721–728. [Google Scholar] [CrossRef]
- Das, P. Econometrics in Theory and Practice; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Shrestha, M.B.; Chowdhury, K. ARDL Modelling Approach to Testing the Financial Liberalisation Hypothesis; Working Paper 05-15; Department of Economics, University of Wollongong: Wollongong, Australia, 2005; 33p. [Google Scholar]
- Hlouskova, J.; Wagner, M. The Performance of Panel Unit Root and Stationarity Tests: Results from a Large Scale Simulation Study. Econ. Rev. 2006, 25, 85–116. [Google Scholar] [CrossRef]
- Kapetanios, G.; Pesaran, M.H.; Yamagata, T. Panels with non-stationary multifactor error structures. J. Econ. 2011, 160, 326–348. [Google Scholar] [CrossRef]
- Kapetanios, G.; Mumtaz, H.; Stevens, I.; Theodoridis, K. Assessing the Economy-wide Effects of Quantitative Easing. Econ. J. 2012, 122, F316–F347. [Google Scholar] [CrossRef]
- Lenza, M.; Pill, H.; Reichlin, L. Monetary policy in exceptional times. Econ. Policy 2010, 25, 295–339. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y. An autoregressive distributed lag modeling approach to cointegration analysis. In Econometrics and Economic Theory in the 20th Century: The Ragnar Frisch Centennial Symposium; Strom, S., Ed.; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- EC. European Parliament, the Council and the Commission. 2012. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:315:0001:0056:en:PDF (accessed on 25 November 2022).
- Herrerias, M.J.; Cuadros, A.; Orts, V. Energy intensity and investment ownership across Chinese provinces. Energy Econ. 2013, 36, 286–298. [Google Scholar] [CrossRef]
Condition | Result |
---|---|
F > Upper Critical Bound (UCB) | Long-Term Relationship (Cointegration) |
F ≤ Lower Critical Bound (LCB) | No Long-Term Relationship (No cointegration) |
LCB ≤ F-statistic ≤ UCB | Uncertain Result (Dependancy on the lagged ECT for cointegraton) |
t-Statistic | p-Value | Structural Break | |
---|---|---|---|
lnECTcoal | −3.35 | 0.4733 | 1986 |
lnGDPshare | −2.00 | 0.7855 | 1990 |
lnECTdiegas | −4.15 | 0.1101 | 1988 |
lnECTnatgas | −28.56 *** | <0.01 | 1990 |
D(lnCitcoal) | −7.26 *** | <0.01 | 1991 |
D(lnECTdiegas) | −7.55 *** | <0.01 | 2006 |
D(GDPshare) | −6.675 *** | <0.01 | 1982 |
F-Bounds Test | Null Hypothesis: No Level Relationships | |||
---|---|---|---|---|
Test Statistic | Value | Signif. | I(0) | I(1) |
F-statistic | 8.6248 | 10% | 2.97 | 3.74 |
k | 3 | 5% | 3.38 | 4.23 |
2.5% | 3.8 | 4.68 | ||
1% | 4.3 | 5.23 |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
---|---|---|---|---|
NATGASEMSEU | −7.27 × 10−6 | 1.12 × 10−5 | −0.648673 | 0.5288 |
GASDESEMEU | −2.55 × 10−5 ** | 8.83 × 10−6 | −2.886229 | 0.0137 |
COALEMISLCD | 0.0018 *** | 0.000215 | 8.481849 | 0.0000 |
@TREND | −0.128 *** | 0.009012 | −14.21530 | 0.0000 |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
---|---|---|---|---|
C | 8.241179 | 1.095397 | 7.523462 | 0.0000 |
D(GDPSHARE(−1)) | 0.366255 | 0.114097 | 3.210036 | 0.0075 |
D(GDPSHAR(−2)) | 0.404211 | 0.117414 | 3.442606 | 0.0049 |
D(GDPSHAR(−3)) | 0.596291 | 0.101039 | 5.901568 | 0.0001 |
D(GDPSHAR(−4)) | 0.477527 | 0.136888 | 3.488440 | 0.0045 |
D(GDPSHAR) | −8.00 × 10−6 | 7.41 × 10−6 | −1.080117 | 0.3013 |
D(GASDESEMEU(−1)) | 1.69 × 10−5 | 8.27 × 10−6 | 2.041752 | 0.0638 |
D(GASDESEMEU(−2)) | −2.45 × 10−5 | 7.94 × 10−6 | −3.082171 | 0.0095 |
D(GASDESEMEU(−3)) | −4.09 × 10−6 | 1.18 × 10−5 | −0.346623 | 0.7349 |
D(GASDESEMEU(−4)) | 6.68 × 10−5 | 1.07 × 10−5 | 6.249464 | 0.0000 |
D(GASDESEMEU(−5)) | 4.76 × 10−5 | 1.31 × 10−5 | 3.635013 | 0.0034 |
D(GASDESEMEU(−6)) | 3.01 × 10−5 | 1.10 × 10−5 | 2.745058 | 0.0178 |
D(ECTNATGAS(−1)) | −6.20 × 10−5 | 1.03 × 10−5 | −6.038494 | 0.0001 |
D(NATGASEMSEU(−2)) | −2.84 × 10−5 | 1.29 × 10−5 | −2.195736 | 0.0485 |
D(NATGASEMSEU(−4)) | −2.30 × 10−5 | 8.61 × 10−6 | −2.668061 | 0.0205 |
D(NATGASEMSEU(−5)) | −2.78 × 10−5 | 9.45 × 10−6 | −2.942226 | 0.0123 |
D(NATGASEMSEU(−6)) | −4.03 × 10−6 | 1.25 × 10−6 | −3.214874 | 0.0074 |
D(COALEMISLCD(−1)) | −0.001671 | 0.000358 | −4.663924 | 0.0005 |
D(COALEMISLCD(−2)) | −0.000695 | 0.000266 | −2.613063 | 0.0227 |
D(COALEMISLCD(−3)) | −0.001359 | 0.000247 | −5.491612 | 0.0001 |
D(COALEMISLCD(−4)) | −0.001998 | 0.000301 | −6.645472 | 0.0000 |
D(COALEMISLCD(−5)) | −0.001303 | 0.000321 | −4.059302 | 0.0016 |
D(COALEMISLCD(−6)) | −0.001017 | 0.000307 | −3.312484 | 0.0062 |
CointEq(−1) *** | −1.235758 | 0.162968 | −7.582812 | 0.0000 |
R-squared | 0.914 |
F-Statistic | p-Value | |
---|---|---|
Breusch–Godfrey autocorrelation test | 2.606182 | 0.106 |
ARCH Heteroscedasticity test | 2.06 | 0.357 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zafeiriou, E.; Galatsidas, S.; Arabatzis, G.; Tsiantikoudis, S.; Batzios, A. Environmental Degradation by Energy–Economic Growth Interlinkages in EU Agriculture. Energies 2023, 16, 3900. https://doi.org/10.3390/en16093900
Zafeiriou E, Galatsidas S, Arabatzis G, Tsiantikoudis S, Batzios A. Environmental Degradation by Energy–Economic Growth Interlinkages in EU Agriculture. Energies. 2023; 16(9):3900. https://doi.org/10.3390/en16093900
Chicago/Turabian StyleZafeiriou, Eleni, Spyridon Galatsidas, Garyfallos Arabatzis, Stavros Tsiantikoudis, and Athanasios Batzios. 2023. "Environmental Degradation by Energy–Economic Growth Interlinkages in EU Agriculture" Energies 16, no. 9: 3900. https://doi.org/10.3390/en16093900
APA StyleZafeiriou, E., Galatsidas, S., Arabatzis, G., Tsiantikoudis, S., & Batzios, A. (2023). Environmental Degradation by Energy–Economic Growth Interlinkages in EU Agriculture. Energies, 16(9), 3900. https://doi.org/10.3390/en16093900