Review of Policies for Indonesia’s Electricity Sector Transition and Qualitative Evaluation of Impacts and Influences Using a Conceptual Dynamic Model
Abstract
:1. Introduction
2. Literature Review
2.1. Energy Sustainability
2.2. Energy Transition Policy in Indonesia
2.3. Energy Transition Assessment Criteria
2.3.1. Economic Indicators
2.3.2. Environmental Indicators
2.3.3. Social Indicators
3. Methodology
4. Result
4.1. Qualitative Model Development
4.1.1. Investments in Power Plants: Selection of Two Alternatives
4.1.2. Fossil Fuel and Renewable Energy Substitution Dynamics
4.1.3. Environment Carrying Capacity
4.1.4. Macroeconomic Loop
4.2. Selection of Relevant Indicators
4.2.1. Economic Dimension Indicators
4.2.2. Environment Dimension Indicators
4.2.3. Social Dimension Indicators
4.3. Stakeholders Identification
4.4. System Boundary
4.5. System Diagram
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- IEA. Total CO2 Emissions, Indonesia 1990–2018. 2018. Available online: https://www.iea.org/data-and-statistics?country=INDONESIA&fuel=Energytransitionindicators&indicator=CO2BySource (accessed on 4 May 2021).
- IEA. IEA Atlas of Energy. 2020. Available online: http://energyatlas.iea.org/#!/tellmap/1378539487 (accessed on 4 May 2021).
- IEA. CO2 Emissions by Sector, Indonesia 1990–2018. 2018. Available online: https://www.iea.org/data-and-statistics?country=INDONESIA&fuel=CO2emissions&indicator=CO2BySector (accessed on 4 May 2021).
- National Energy Council. Indonesia Energy Outlook 2019; National Energy Council: Jakarta, India, 2019.
- Government of Indonesia. Enhanced Nationally Determined Contribution (NDC) Republic of Indonesia; Government of Indonesia: Jakarta, Indonesia, 2022.
- Landon, S.; Barrett, A.; Cowan, C.; Colton, K.; Johnson, D. The Footprint Of Energy: Land Use of U.S. Electricity Production. 2017. Available online: https://www.strata.org/pdf/2017/footprints-full.pdf (accessed on 2 February 2021).
- IRENA. Renewable Power Generation Costs in 2021; IRENA: Abu Dhabi, United Arab Emirates, 2022. [Google Scholar]
- Batalla-Bejerano, J.; Trujillo-Baute, E. Impacts of intermittent renewable generation on electricity system costs. Energy Policy 2016, 94, 411–420. [Google Scholar] [CrossRef] [Green Version]
- Ueckerdt, F.; Hirth, L.; Luderer, G.; Edenhofer, O. System LCOE: What are the costs of variable renewables? Energy 2013, 63, 61–75. [Google Scholar] [CrossRef]
- Putranto, L.M.; Widodo, T.; Indrawan, H.; Ali Imron, M.; Rosyadi, S.A. Grid parity analysis: The present state of PV rooftop in Indonesia. Renew. Energy Focus 2022, 40, 23–38. [Google Scholar] [CrossRef]
- Braithwaite, D.; Gerasimchuk, I. Beyond Fossil Fuels: Indonesia’s Fiscal Transition; International Institute for Sustainable Development: Winnipeg, MB, Canada, 2019. [Google Scholar]
- Bazilian, M.; Rogner, H.; Howells, M.; Hermann, S.; Arent, D.; Gielen, D.; Steduto, P.; Mueller, A.; Komor, P.; Tol, R.S.J.; et al. Considering the energy, water and food nexus: Towards an integrated modelling approach. Energy Policy 2011, 39, 7896–7906. [Google Scholar] [CrossRef]
- Government of Indonesia. Rencana Umum Energi Nasional; Government of Indonesia: Jakarta, Indonesia, 2017.
- Ministry of Energy and Mineral Resources. Handbook Of Energy & Economic Statistics of Indonesia 2021; Ministry of Energy and Mineral Resources: Jakarta, Indonesia, 2021.
- Klein, A.; Merkel, E.; Pfluger, B.; Held, A.; Ragwitz, M.; Resch, G. Evaluation of Different Feed-In Tariff Design Options—Best Practice Paper for the International Feed-In Cooperation; Fraunhofer IEE: Kassel, Germany, 2010. [Google Scholar]
- Lesser, J.A.; Su, X. Design of an economically efficient feed-in tariff structure for renewable energy development. Energy Policy 2008, 36, 981–990. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, X.; Li, B.; Hidalgo-Gonzalez, P.; Kammen, D.M.; Zou, J.; Wang, K. Immediate actions on coal phaseout enable a just low-carbon transition in China’s power sector. Appl. Energy 2022, 308, 118401. [Google Scholar] [CrossRef]
- Hidayatno, A.; Setiawan, A.D.; Wikananda Supartha, I.M.; Moeis, A.O.; Rahman, I.; Widiono, E. Investigating policies on improving household rooftop photovoltaics adoption in Indonesia. Renew. Energy 2020, 156, 731–742. [Google Scholar] [CrossRef]
- Setiawan, A.D.; Dewi, M.P.; Jafino, B.A.; Hidayatno, A. Evaluating feed-in tariff policies on enhancing geothermal development in Indonesia. Energy Policy 2022, 168, 113164. [Google Scholar] [CrossRef]
- Crespo del Granado, P.; van Nieuwkoop, R.H.; Kardakos, E.G.; Schaffner, C. Modelling the energy transition: A nexus of energy system and economic models. Energy Strateg. Rev. 2018, 20, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Sunitiyoso, Y.; Mahardi, J.P.; Anggoro, Y.; Wicaksono, A. New and renewable energy resources in the Indonesian electricity sector: A systems thinking approach. Int. J. Energy Sect. Manag. 2020, 14, 1381–1403. [Google Scholar] [CrossRef]
- Morçöl, G. A Complexity Theory for Public Policy, 1st ed.; Routledge: New York, NY, USA, 2012; ISBN 9781136283475. [Google Scholar]
- Dyner, I.; Larsen, E.R. From planning to strategy in the electricity industry. Energy Policy 2001, 29, 1145–1154. [Google Scholar] [CrossRef]
- Loulou, R.; Remne, U.; Kanudia, A.; Lehtila, A.; Goldstein, G. Documentation for the TIMES Model—PART I. IEA. 2016. Available online: https://iea-etsap.org/docs/Documentation_for_the_TIMES_Model-Part-I_July-2016.pdf (accessed on 8 August 2022).
- Gabriel, S.A.; Kydes, A.S.; Whitman, P. The National Energy Modeling System: A Large-Scale Energy-Economic Equilibrium Model. Oper. Res. 2001, 49, 14–25. [Google Scholar] [CrossRef] [Green Version]
- Stockholm Environment Institute. User Guide for LEAP, no. May; Stockholm Environment Institute: Stockholm, Sweden, 2005. [Google Scholar]
- Yamaguchi, Y. Developing an Asd Macroeconomic Model of the Stock Approach-with Emphasis on Bank Lending and Interest Rates; University of Bergen: Bergen, Norway, 2017. [Google Scholar]
- Sterman, J.D. Business Dynamics: Systems Thinking and Modeling for a Complex World; McGraw-Hill Higher Education: New York, NY, USA, 2000; ISBN 0-07-23113. [Google Scholar]
- Pruyt, E. Dealing with Uncertainties? Combining System Dynamics with Multiple Criteria Decision Analysis or with Exploratory Modelling. Policy Anal. 2007, 1–22. Available online: http://www.systemdynamics.org/conferences/2007/proceed/papers/PRUYT386.pdf (accessed on 8 August 2022).
- Shmelev, S.E. Ecological Economics: Sustainability in Practice; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 9789400719729. [Google Scholar]
- Zweifel, P.; Praktiknjo, A.; Erdmann, G. Energy Economics: Theory and Application; Business A; Springer Nature: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-662-53022-1. [Google Scholar]
- Jacobsen, H.K. Integrating the bottom-up and top-down approach to energy-economic modelling: The case of Denmark. Energy Econ. 1998, 20, 443–461. [Google Scholar] [CrossRef] [Green Version]
- Koopmans, C.C.; Te Velde, D.W. Bridging the energy efficiency gap: Using bottom-up information in a top-down energy demand model. Energy Econ. 2001, 23, 57–75. [Google Scholar] [CrossRef]
- Henckens, M.L.C.M.; van Ierland, E.C.; Driessen, P.P.J.; Worrell, E. Mineral resources: Geological scarcity, market price trends, and future generations. Resour. Policy 2016, 49, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Solow, R.M. On the Intergenerational Allocation of Natural Resources. Scand. J. Econ. 1986, 88, 141–149. Available online: https://www.jstor.org/stable/3440280?seq=1#metadata_info_tab_contents (accessed on 9 August 2022). [CrossRef]
- Solow, R. An almost practical step toward sustainability. Resour. Policy 1993, 19, 162–172. [Google Scholar] [CrossRef]
- Setyawan, D. Assessing the current ndonesia’s electricity market arrangements and the opportunities to reform. Int. J. Renew. Energy Dev. 2014, 3, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Burke, P.J.; Widnyana, J.; Anjum, Z.; Aisbett, E.; Resosudarmo, B.; Baldwin, K.G.H. Overcoming barriers to solar and wind energy adoption in two Asian giants: India and Indonesia. Energy Policy 2019, 132, 1216–1228. [Google Scholar] [CrossRef]
- Ministry of Energy and Mineral Resources. 2020 Electricity Statistics; Ministry of Energy and Mineral Resources: Jakarta, Indonesia, 2021.
- Parra, P.; Okubo, Y.; Roming, N.; Sferra, F.; Fuentes, U.; Schaeffer, M.; Hare, B. Science Based Coal Phase-Out Timeline for Japan Implications for Policymakers and Investors. 2018. Available online: https://climateanalytics.org/media/coalphaseout-2018-en-report_1.pdf (accessed on 17 May 2021).
- Burke, P.J.; Kurniawati, S. Electricity subsidy reform in Indonesia: Demand-side effects on electricity use. Energy Policy 2018, 116, 410–421. [Google Scholar] [CrossRef] [Green Version]
- Myers, N.; Kent, J. Perverse Subsidies: How Tax Dollars Can Undercut the Environment and the Economy; Island Press: Washington, DC, USA, 2001; ISBN 1559638354. [Google Scholar]
- Attwood, C.; Bridle, R.; Gass, P.; Halimanjaya, A.S.; Laan, T.; Lontoh, L.; Sanchez, L.; Toft, L. Financial Supports for Coal and Renewables in Indonesia; International Institute for Sustainable Development: Geneva, Switzerland, 2017. [Google Scholar]
- Komives, K.; Foster, V.; Halpern, J.; Wodon, Q. Water, Electricity, and the Poor; The International Bank for Reconstruction and Development: Washington, DC, USA, 2005; ISBN 978-0-8213-6342-3. [Google Scholar]
- DIW Berlin. Phasing Out Coal in The German Energy Sector; DIW: Berlin, Germany, 2019. [Google Scholar]
- Wagner, L.; Molyneaux, L.; Foster, J. The magnitude of the impact of a shift from coal to gas under a Carbon Price. Energy Policy 2014, 66, 280–291. [Google Scholar] [CrossRef]
- Davis, L.W. The Economic Cost of Global Fuel Subsidies. Am. Econ. Rev. 2014, 104, 581–585. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Energy and Mineral Resources. Ministry Regulation 255.K/30/MEM/20202 Coal Domestic Market Obligation; Ministry of Energy and Mineral Resources: Jakarta, Indonesia, 2020.
- Mendonça, M.; Jacobs, D.; Sovacool, B. Powering the Green Economy: The Feed-In Tariff Handbook; Taylor& Francis: Abingdon, UK, 2010; ISBN 978-1-84407-857-8. [Google Scholar]
- Chatterjee, S.K. The Renewable Energy Policy Dilemma in India: Should Renewable Energy Certificate Mechanism Compete or Merge with the Feed-In-Tariff Scheme? M-RCBG Associate Working Paper Series; Harvard Kennedy School, Mossavar-Rahmani Center for Business and Government: Cambridge, MA, USA, 2017; p. 61.
- United Nations. Resolution Adopted by the General Assembly on 25 September 2015; United Nations: New York, NY, USA, 2015.
- Lamperti, F.; Dosi, G.; Napoletano, M.; Roventini, A.; Sapio, A. Faraway, So Close: Coupled Climate and Economic Dynamics in an Agent-based Integrated Assessment Model. Ecol. Econ. 2018, 150, 315–339. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Emissions: Enery, Road Transport. In Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 1998; pp. 55–70. [Google Scholar]
- IPCC. Assessing Transformation Pathways; IPCC: Geneva, Switzerland, 2015.
- Kim, H.; McJeon, H.; Jung, D.; Lee, H.; Bergero, C.; Eom, J. Integrated Assessment Modeling of Korea’s 2050 Carbon Neutrality Technology Pathways. Energy Clim. Chang. 2022, 3, 100075. [Google Scholar] [CrossRef]
- Cavallaro, F.; Ciraolo, L. A multicriteria approach to evaluate wind energy plants on an Italian island. Energy Policy 2005, 33, 235–244. [Google Scholar] [CrossRef]
- Rye, C.D.; Jackson, T. A review of EROEI-dynamics energy-transition models. Energy Policy 2018, 122, 260–272. [Google Scholar] [CrossRef]
- Madlener, R.; Stagl, S. Sustainability-guided promotion of renewable electricity generation. Ecol. Econ. 2005, 53, 147–167. [Google Scholar] [CrossRef]
- Government Budget. Public Finance. 2008. Available online: https://tradingeconomics.com/country-list/government-budget?continent=asia (accessed on 14 November 2019).
- Diakoulaki, D.; Karangelis, F. Multi-criteria decision analysis and cost-benefit analysis of alternative scenarios for the power generation sector in Greece. Renew. Sustain. Energy Rev. 2007, 11, 716–727. [Google Scholar] [CrossRef]
- Serven, L. Uncertainty, Instability, and Irreversible Investment: Theory, Evidence, and Lessons for Africa; Policy Research Working Paper; The World Bank Group: Washington, DC, USA, 1997. [Google Scholar]
- EPA. Emission Factors for Greenhouse Gas Inventories. 2014. Available online: https://www.epa.gov/sites/default/files/2015-07/documents/emission-factors_2014.pdf (accessed on 22 May 2022).
- Dorini, G.; Kapelan, Z.; Azapagic, A. Managing uncertainty in multiple-criteria decision making related to sustainability assessment. Clean Technol. Environ. Policy 2011, 13, 133–139. [Google Scholar] [CrossRef]
- Chatzimouratidis, A.I.; Pilavachi, P.A. Sensitivity analysis of the evaluation of power plants impact on the living standard using the analytic hierarchy process. Energy Convers. Manag. 2008, 49, 3599–3611. [Google Scholar] [CrossRef]
- Helbig, C.; Bradshaw, A.M.; Wietschel, L.; Thorenz, A.; Tuma, A. Supply risks associated with lithium-ion battery materials. J. Clean. Prod. 2018, 172, 274–286. [Google Scholar] [CrossRef]
- Gunnarsdottir, I.; Davidsdottir, B.; Worrell, E.; Sigurgeirsdottir, S. Indicators for sustainable energy development: An Icelandic case study. Energy Policy 2022, 164, 112926. [Google Scholar] [CrossRef]
- Gamboa, G.; Munda, G. The problem of windfarm location: A social multi-criteria evaluation framework. Energy Policy 2007, 35, 1564–1583. [Google Scholar] [CrossRef]
- Afgan, N.H.; Carvalho, M.G. Multi-criteria assessment of new and renewable energy power plants. Energy 2002, 27, 739–755. [Google Scholar] [CrossRef]
- Noble, B.F. A multi-criteria analysis of Canadian electricity supply futures. Can. Geogr. 2004, 48, 11–28. [Google Scholar] [CrossRef]
- Del Pero, F.; Delogu, M.; Pierini, M. Life Cycle Assessment in the automotive sector: A comparative case study of Internal Combustion Engine (ICE) and electric car. Procedia Struct. Integr. 2018, 12, 521–537. [Google Scholar] [CrossRef]
- Linh Nguyen, T.N.; Pimonsree, S.; Prueksakorn, K.; Bich Thao, P.T.; Vongruang, P. Public health and economic impact assessment of PM2.5 from open biomass burning over countries in mainland Southeast Asia during the smog episode. Atmos. Pollut. Res. 2022, 13, 101418. [Google Scholar] [CrossRef]
- Walker, W.E. Policy Analysis: A Systematic Approach to Supporting Policymaking in the Public Sector. J. Multi-Criteria Decis. Anal. 2000, 9, 11–27. [Google Scholar] [CrossRef]
- Hamadneh, J.; Duleba, S. Stakeholder viewpoints analysis of the autonomous vehicle industry by using multi-actors multi-criteria analysis. Transp. Policy 2022, 126, 65–84. [Google Scholar] [CrossRef]
- Madlener, R.; Stoverink, S. Power plant investments in the Turkish electricity sector: A real options approach taking into account market liberalization. Appl. Energy 2012, 97, 124–134. [Google Scholar] [CrossRef]
- Yuan, J.; Li, X.; Xu, C.; Zhao, C.; Liu, Y. Investment risk assessment of coal-fired power plants in countries along the Belt and Road initiative based on ANP-Entropy-TODIM method. Energy 2019, 176, 623–640. [Google Scholar] [CrossRef]
- Kim, D.H. System Archetypes I: Diagnosing Systemic Issues and Designing High-Leverage Interventions; Pegasus Communications: Cambridge, MA, USA, 1992; ISBN 1-883823-00-5. [Google Scholar]
- Lambin, E.F. Global land availability: Malthus versus Ricardo. Glob. Food Sec. 2012, 1, 83–87. [Google Scholar] [CrossRef]
- Naderi, M.M.; Mirchi, A.; Bavani, A.R.M.; Goharian, E.; Madani, K. System dynamics simulation of regional water supply and demand using a food-energy-water nexus approach: Application to Qazvin Plain, Iran. J. Environ. Manage. 2021, 280, 111843. [Google Scholar] [CrossRef]
- Kraft, J.; Kraft, A. On the relationship between energy and GNP. In J. Energy Dev.; 1974; 3, pp. 401–403. Available online: http://www.osti.gov/scitech/biblio/6713220 (accessed on 2 August 2022).
- Lean, H.H.; Smyth, R. Multivariate Granger causality between electricity generation, exports, prices and GDP in Malaysia. Energy 2010, 35, 3640–3648. [Google Scholar] [CrossRef]
- Acheampong, A.O.; Boateng, E.; Amponsah, M. Econometric Analysis of the Economic Growth-Energy Consumption Nexus in Emerging Economies: The Role of Globalization; Elsevier: Amsterdam, The Netherlands, 2021; ISBN 9780128244418. [Google Scholar]
- EL-Karimi, M.; El-houjjaji, H. Economic growth and renewable energy consumption nexus in G7 countries: Symmetric and asymmetric causality analysis in frequency domain. J. Clean. Prod. 2022, 342, 130618. [Google Scholar] [CrossRef]
- Gyimah, J.; Yao, X.; Tachega, M.A.; Sam Hayford, I.; Opoku-Mensah, E. Renewable energy consumption and economic growth: New evidence from Ghana. Energy 2022, 248, 123559. [Google Scholar] [CrossRef]
- Shahbaz, M.; Khan, S.; Tahir, M.I. The dynamic links between energy consumption, economic growth, financial development and trade in China: Fresh evidence from multivariate framework analysis. Energy Econ. 2013, 40, 8–21. [Google Scholar] [CrossRef]
- Lee, C.C.; Chang, C.P. Energy consumption and economic growth in Asian economies: A more comprehensive analysis using panel data. Resour. Energy Econ. 2008, 30, 50–65. [Google Scholar] [CrossRef]
- Narayan, P.K.; Smyth, R. Energy consumption and real GDP in G7 countries: New evidence from panel cointegration with structural breaks. Energy Econ. 2008, 30, 2331–2341. [Google Scholar] [CrossRef]
- Sadorsky, P. Energy consumption, output and trade in South America. Energy Econ. 2012, 34, 476–488. [Google Scholar] [CrossRef]
- Shahbaz, M.; Tang, C.F.; Shahbaz Shabbir, M. Electricity consumption and economic growth nexus in Portugal using cointegration and causality approaches. Energy Policy 2011, 39, 3529–3536. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M. The dynamic nexus of energy consumption, international trade and economic growth in BRICS and ASEAN countries: A panel causality test. Energy 2021, 229, 120679. [Google Scholar] [CrossRef]
- Menegaki, A.N. Growth and renewable energy in Europe: A random effect model with evidence for neutrality hypothesis. Energy Econ. 2011, 33, 257–263. [Google Scholar] [CrossRef]
- Tran, B.L.; Chen, C.C.; Tseng, W.C. Causality between energy consumption and economic growth in the presence of GDP threshold effect: Evidence from OECD countries. Energy 2022, 251, 123902. [Google Scholar] [CrossRef]
- Yildirim, E.; Sukruoglu, D.; Aslan, A. Energy consumption and economic growth in the next 11 countries: The bootstrapped autoregressive metric causality approach. Energy Econ. 2014, 44, 14–21. [Google Scholar] [CrossRef]
- Destek, M.A.; Aslan, A. Renewable and non-renewable energy consumption and economic growth in emerging economies: Evidence from bootstrap panel causality. Renew. Energy 2017, 111, 757–763. [Google Scholar] [CrossRef]
- Abdelradi, F.; Serra, T. Food-energy nexus in Europe: Price volatility approach. Energy Econ. 2015, 48, 157–167. [Google Scholar] [CrossRef]
- Reuters. Indonesia will Subsidise 1.2 bln Litres of Cooking Oil to Cool Prices. 2022. Available online: https://www.reuters.com/markets/commodities/indonesia-will-subsidise-12-bln-litres-cooking-oil-cool-prices-2022-01-05/ (accessed on 28 June 2022).
- BPS. Inflasi Indonesia Menurut Kelompok Pengeluaran, Jakarta. 2022. Available online: https://www.bps.go.id/statictable/2020/02/04/2083/inflasi-indonesia-menurut-kelompok-pengeluaran-2020-2022.html (accessed on 29 June 2022).
- Cariolle, J. Measuring Macroeconomic Volatility: Applications to Export Revenue Data, 1970–2005; Innovative Indicators Series; Fondation pour les Etudes et Recherches sur le Developpement International: Clermont-Ferrand, France, 2012. [Google Scholar]
- Acemoglu, D.; Johnson, S.; Robinson, J.; Thaicharoen, Y. Institutional causes, macroeconomic symptoms: Volatility, crises and growth. J. Monet. Econ. 2003, 50, 49–123. [Google Scholar] [CrossRef] [Green Version]
- Raddatz, C. Are external shocks responsible for the instability of output in low-income countries? J. Dev. Econ. 2007, 84, 155–187. [Google Scholar] [CrossRef] [Green Version]
- Van der Ploeg, F.; Poelhekke, S. Volatility and the natural resource curse. Oxf. Econ. Pap. 2009, 61, 727–760. Available online: http://www.jstor.org/stable/27784157 (accessed on 22 June 2022). [CrossRef]
- Di Giovanni, J.; Levchenko, A.A. The Risk Content of Exports: A Portfolio View of International Trade. In NBER International Seminar on Macroeconomics; The University of Chicago Press: Chicago, IL, USA, 2012; Volume 8, p. 16005. [Google Scholar]
- Oliveira, L.; Messagie, M.; Rangaraju, S.; Sanfelix, J.; Hernandez Rivas, M.; Van Mierlo, J. Key issues of lithium-ion batteries—From resource depletion to environmental performance indicators. J. Clean. Prod. 2015, 108, 354–362. [Google Scholar] [CrossRef]
- Koyamparambath, A.; Santillán-Saldivar, J.; McLellan, B.; Sonnemann, G. Supply risk evolution of raw materials for batteries and fossil fuels for selected OECD countries (2000–2018). Resour. Policy 2022, 75, 102465. [Google Scholar] [CrossRef]
- Greim, P.; Solomon, A.A.; Breyer, C. Assessment of lithium criticality in the global energy transition and addressing policy gaps in transportation. Nat. Commun. 2020, 11, 4570. [Google Scholar] [CrossRef]
- Ram, M.; Aghahosseini, A.; Breyer, C. Job creation during the global energy transition towards 100% renewable power system by 2050. Technol. Forecast. Soc. Chang. 2020, 151, 119682. [Google Scholar] [CrossRef]
- Garrett-Peltier, H. Green versus brown: Comparing the employment impacts of energy efficiency, renewable energy, and fossil fuels using an input-output model. Econ. Model. 2017, 61, 439–447. [Google Scholar] [CrossRef]
- Ju, Y.; Sugiyama, M.; Kato, E.; Oshiro, K.; Wang, J. Job creation in response to Japan’s energy transition towards deep mitigation: An extension of partial equilibrium integrated assessment models. Appl. Energy 2022, 318, 119178. [Google Scholar] [CrossRef]
- Dicce, R.P.; Ewers, M.C. Solar labor market transitions in the United Arab Emirates. Geoforum 2021, 124, 54–64. [Google Scholar] [CrossRef]
- Pai, S.; Zerriffi, H.; Jewell, J.; Pathak, J. Solar has greater techno-economic resource suitability than wind for replacing coal mining jobs. Environ. Res. Lett. 2020, 15, 034065. [Google Scholar] [CrossRef]
- Blankenship, B.; Aklin, M.; Urpelainen, J.; Nandan, V. Jobs for a just transition: Evidence on coal job preferences from India. Energy Policy 2022, 165, 112910. [Google Scholar] [CrossRef]
- Azmi, R. Analysis of Indonesian Residential Electricity Consumption and Burden: Using Indonesia Family Survey; Ministry of Finance: Jakarta, Indonesia, 2014.
- BPS. Persentase Pengeluaran Rata-Rata per Kapita Sebulan Menurut Kelompok Barang. Jakarta. 2022. Available online: https://www.bps.go.id/statictable/2009/06/15/937/persentase-pengeluaran-rata-rata-per-kapita-sebulan-menurut-kelompok-barang-indonesia-1999-2002-2021.html (accessed on 1 July 2022).
- BPS. Indonesia GDP 2010–2022. Jakarta. 2022. Available online: https://www.bps.go.id/indicator/11/65/2/-seri-2010-pdb-seri-2010.html (accessed on 12 July 2022).
- Gultom, Y.M.L. When extractive political institutions affect public-private partnerships: Empirical evidence from Indonesia’s independent power producers under two political regimes. Energy Policy 2021, 149, 112042. [Google Scholar] [CrossRef]
- Ministry of Energy and Mineral Resources Hindari Pemadaman 10 Juta Pelanggan PLN, Pemerintah Larang Sementara Ekspor Batubara. Ministry of Energy and Mineral Resources. 2022. Available online: https://www.esdm.go.id/id/media-center/arsip-berita/hindari-pemadaman-10-juta-pelanggan-pln-pemerintah-larang-sementara-ekspor-batubara (accessed on 5 August 2022).
- PLN. Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) PT PLN (Persero) 2021–2030; PLN: Jakarta, Indonesia, 2021. [Google Scholar]
- Nykvist, B.; Nilsson, M. Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Chang. 2015, 5, 329–332. [Google Scholar] [CrossRef]
- Dong, Y.; Shimada, K. Evolution from the renewable portfolio standards to feed-in tariff for the deployment of renewable energy in Japan. Renew. Energy 2017, 107, 590–596. [Google Scholar] [CrossRef]
- Pyrgou, A.; Kylili, A.; Fokaides, P.A. The future of the Feed-in Tariff (FiT) scheme in Europe: The case of photovoltaics. Energy Policy 2016, 95, 94–102. [Google Scholar] [CrossRef]
- Zhang, M.M.; Zhou, D.Q.; Zhou, P.; Liu, G.Q. Optimal feed-in tariff for solar photovoltaic power generation in China: A real options analysis. Energy Policy 2016, 97, 181–192. [Google Scholar] [CrossRef]
- Tantisattayakul, T.; Kanchanapiya, P. Financial measures for promoting residential rooftop photovoltaics under a feed-in tariff framework in Thailand. Energy Policy 2017, 109, 260–269. [Google Scholar] [CrossRef]
- Alesina, A.; Favero, C.A.; Giavazi, F. Climbing Out of Debt. Financ. Dev. 2018, 55, 6–11. [Google Scholar]
- Hines, J.R.; Keen, M.J. Certain effects of random taxes. J. Public Econ. 2021, 203, 104412. [Google Scholar] [CrossRef]
- Scheinkman, J.A. Nonlinearities in Economic Dynamics. Econ. J. 1990, 100, 33–48. Available online: https://www.jstor.org/stable/2234182 (accessed on 8 August 2022). [CrossRef] [Green Version]
- Samper, M.; Coria, G.; Facchini, M. Grid parity analysis of distributed PV generation considering tariff policies in Argentina. Energy Policy 2021, 157, 112519. [Google Scholar] [CrossRef]
- Monasterolo, I.; Raberto, M. The impact of phasing out fossil fuel subsidies on the low-carbon transition. Energy Policy 2019, 124, 355–370. [Google Scholar] [CrossRef]
- Asian Development Bank. ETM Introduction; Asian Development Bank: Mandaluyong, Philippines, 2022. [Google Scholar]
- Du, G. Nexus between green finance, renewable energy, and carbon intensity in selected Asian countries. J. Clean. Prod. 2023, 405, 136822. [Google Scholar] [CrossRef]
- Wang, S.; Sun, L.; Iqbal, S. Green financing role on renewable energy dependence and energy transition in E7 economies. Renew. Energy 2022, 200, 1561–1572. [Google Scholar] [CrossRef]
- Galli, C. Self-fulfilling debt crises, fiscal policy and investment. J. Int. Econ. 2021, 131, 103475. [Google Scholar] [CrossRef]
Policy Group | No. | Policy | Mechanism |
---|---|---|---|
Market-Based | 1. | Carbon Tax | A tax is imposed on individuals or institutions when purchasing or using carbon emitting energy-using products. |
2. | Energy Price Subsidy | The government provides subsidies for energy sources for consumers or producers. | |
3. | Feed-In Tariff | The government mandates PLN to purchase electricity generated from renewable sources at a set price, and provides subsidies for this to PLN. | |
4. | Fossil Fuel Disincentives | Implement excise or other disincentives on fossil fuels for a more favourable price comparison with renewable sources. | |
Regulatory Based | 1. | Bureaucracy/Institutional Reform | The government improves bureaucratic processes to increase renewable energy investment attractiveness including by easing investment procedures and reducing the time for renewable energy auction processes. |
2. | Energy-Using Products Electrification | Increases the use of electricity in energy-using products especially for the residential and transportation sectors. | |
3. | Construction/Installation Obligation | Obligates institutions to construct or install a minimum quantity of renewable energy. | |
4. | Depletion Premium | Imposes a premium on the extraction of fossil fuel to be allocated for renewable energy. | |
5. | Domestic Market Obligation (DMO) | The government requires energy producers to supply a minimum quantity of their production for the domestic market. | |
6. | Energy Price Regulation | The government regulates energy prices by setting a base price, price ceilings, progressive pricing, price localization, or other pricing schemes. | |
7. | Fiscal Budget Re-allocation | Readjusting fiscal budgets for energy price subsidy, renewable energy financing, energy accessibility, and research and development. | |
8. | Fiscal Incentives | Incentives are provided by the government to consumers, industries, and institutions who participates in energy transition efforts, including the construction/installation of renewable energy or the use of energy efficient energy-using capital stock. | |
9. | Purchase Obligation | Obligates a minimum purchase quantity of renewable energy to institutions. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahari, T.N.; McLellan, B.C. Review of Policies for Indonesia’s Electricity Sector Transition and Qualitative Evaluation of Impacts and Influences Using a Conceptual Dynamic Model. Energies 2023, 16, 3406. https://doi.org/10.3390/en16083406
Zahari TN, McLellan BC. Review of Policies for Indonesia’s Electricity Sector Transition and Qualitative Evaluation of Impacts and Influences Using a Conceptual Dynamic Model. Energies. 2023; 16(8):3406. https://doi.org/10.3390/en16083406
Chicago/Turabian StyleZahari, Teuku Naraski, and Benjamin C. McLellan. 2023. "Review of Policies for Indonesia’s Electricity Sector Transition and Qualitative Evaluation of Impacts and Influences Using a Conceptual Dynamic Model" Energies 16, no. 8: 3406. https://doi.org/10.3390/en16083406
APA StyleZahari, T. N., & McLellan, B. C. (2023). Review of Policies for Indonesia’s Electricity Sector Transition and Qualitative Evaluation of Impacts and Influences Using a Conceptual Dynamic Model. Energies, 16(8), 3406. https://doi.org/10.3390/en16083406