AI and Expert Insights for Sustainable Energy Future
Abstract
:1. Introduction
2. Modeling: From Parameter to Data
3. Competitive Energy Policy at the Era of AI
4. AI and ML: Transforming the Energy Sector
4.1. The Process Flow
- Technical feasibility (TF)
- Environmental Impact (EI)
- Economic Viability (EV)
- Social Acceptability (SA)
- Regulatory Compliance (RC)
4.2. Mathematical Representation of the Process
4.3. Simulation and Results
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Define criteria and sub-criteria related to energy policy scenarios.
- Construct a pairwise comparison matrix for criteria.
- Normalize the pairwise comparison matrix to obtain criteria weights.
- Define the weights for the criterion of sub-criteria.
- Calculate the overall weights of sub-criteria.
- Define alternatives for exploration.
- Create a performance matrix for each alternative, evaluating their performance against the sub-criteria.
- Multiply the performance matrix by the overall sub-criteria weights to obtain a weighted performance matrix.
- Normalize the weighted scores for each alternative.
- Print the results, including criteria weights, sub-criteria weights, overall sub-criteria weights, weighted performance matrix, and normalized scores.
References
- Thamik, H.; Wu, J. The Impact of Artificial Intelligence on Sustainable Development in Electronic Markets. Sustainability 2022, 14, 3568. [Google Scholar] [CrossRef]
- Venkatasubramanian, V. The Promise of Artificial Intelligence in Chemical Engineering: Is It Here, Finally? AIChE J. 2019, 65, 466–478. [Google Scholar] [CrossRef] [Green Version]
- Kathirgamanathan, A.; De Rosa, M.; Mangina, E.; Finn, D.P. Data-Driven Predictive Control for Unlocking Building Energy Flexibility: A Review. Renew. Sustain. Energy Rev. 2021, 135, 110120. [Google Scholar] [CrossRef]
- Dobbe, R.; Hidalgo-Gonzalez, P.; Karagiannopoulos, S.; Henriquez-Auba, R.; Hug, G.; Callaway, D.S.; Tomlin, C.J. Learning to Control in Power Systems: Design and Analysis Guidelines for Concrete Safety Problems. Electr. Power Syst. Res. 2020, 189, 106615. [Google Scholar] [CrossRef]
- Zienkiewicz, A.K.; Ladu, F.; Barton, D.A.W.; Porfiri, M.; Bernardo, M.D. Data-Driven Modelling of Social Forces and Collective Behaviour in Zebrafish. J. Theor. Biol. 2018, 443, 39–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geneva, N.; Zabaras, N. Quantifying Model Form Uncertainty in Reynolds-Averaged Turbulence Models with Bayesian Deep Neural Networks. J. Comput. Phys. 2019, 383, 125–147. [Google Scholar] [CrossRef] [Green Version]
- Arridge, S.; Maass, P.; Öktem, O.; Schönlieb, C.-B. Solving Inverse Problems Using Data-Driven Models. Acta Numer. 2019, 28, 1–174. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.K.; Yang, R.; Behjat, A.; Rai, R.; Chowdhury, S.; Matei, I. PI-LSTM: Physics-Infused Long Short-Term Memory Network. In Proceedings of the 2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA), Boca Raton, FL, USA, 16–19 December 2019; pp. 34–41. [Google Scholar]
- Kollmann, H.T.; Abueidda, D.W.; Koric, S.; Guleryuz, E.; Sobh, N.A. Deep Learning for Topology Optimization of 2D Metamaterials. Mater. Des. 2020, 196, 109098. [Google Scholar] [CrossRef]
- Runge, J.; Zmeureanu, R. Forecasting Energy Use in Buildings Using Artificial Neural Networks: A Review. Energies 2019, 12, 3254. [Google Scholar] [CrossRef] [Green Version]
- Baptista, M.; Henriques, E.M.P.; de Medeiros, I.P.; Malere, J.P.; Nascimento, C.L.; Prendinger, H. Remaining Useful Life Estimation in Aeronautics: Combining Data-Driven and Kalman Filtering. Reliab. Eng. Syst. Saf. 2019, 184, 228–239. [Google Scholar] [CrossRef]
- Terzić, E.; Lazzari, P.; Organelli, E.; Solidoro, C.; Salon, S.; D’Ortenzio, F.; Conan, P. Merging Bio-Optical Data from Biogeochemical-Argo Floats and Models in Marine Biogeochemistry. Biogeosciences 2019, 16, 2527–2542. [Google Scholar] [CrossRef] [Green Version]
- Nokhandan, A.K.; Snieder, E.; Khan, U.T.; ElDyasti, A.; Ghaemi, Z.; Bagheri, M. A Comparison of Two Data-Driven Models to Predict Hypolimnetic Dissolved Oxygen Concentration: A Case Study of the Seymareh Reservoir in Iran. J. Environ. Inform. Lett. 2019, 2, 70–81. [Google Scholar] [CrossRef] [Green Version]
- Bättig, P.; Schiffmann, J. Data-Driven Model for the Dynamic Characteristics of O-Rings for Gas Bearing Supported Rotors. J. Appl. Mech. 2019, 86, 081003. [Google Scholar] [CrossRef]
- Bellizio, F.; Karagiannopoulos, S.; Aristidou, P.; Hug, G. Optimized Local Control for Active Distribution Grids Using Machine Learning Techniques. In Proceedings of the 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA, 5–9 August 2018; pp. 1–5. [Google Scholar]
- Dobbe, R.; Sondermeijer, O.; Fridovich-Keil, D.; Arnold, D.; Callaway, D.; Tomlin, C. Toward Distributed Energy Services: Decentralizing Optimal Power Flow with Machine Learning. IEEE Trans. Smart Grid 2020, 11, 1296–1306. [Google Scholar] [CrossRef] [Green Version]
- Brahma, S.; Kavasseri, R.; Cao, H.; Chaudhuri, N.R.; Alexopoulos, T.; Cui, Y. Real-Time Identification of Dynamic Events in Power Systems Using PMU Data, and Potential Applications—Models, Promises, and Challenges. IEEE Trans. Power Deliv. 2017, 32, 294–301. [Google Scholar] [CrossRef]
- Ardakanian, O.; Wong, V.W.S.; Dobbe, R.; Low, S.H.; von Meier, A.; Tomlin, C.J.; Yuan, Y. On Identification of Distribution Grids. IEEE Trans. Control Netw. Syst. 2019, 6, 950–960. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Cremer, J.; Strbac, G. A Novel Data-Driven Scenario Generation Framework for Transmission Expansion Planning with High Renewable Energy Penetration. Appl. Energy 2018, 228, 546–555. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Guan, Y. Data-Driven Stochastic Unit Commitment for Integrating Wind Generation. IEEE Trans. Power Syst. 2016, 31, 2587–2596. [Google Scholar] [CrossRef]
- Deka, D.; Backhaus, S.; Chertkov, M. Structure Learning in Power Distribution Networks. IEEE Trans. Control Netw. Syst. 2018, 5, 1061–1074. [Google Scholar] [CrossRef]
- Liao, Y.; Weng, Y.; Liu, G.; Rajagopal, R. Urban MV and LV Distribution Grid Topology Estimation via Group Lasso. IEEE Trans. Power Syst. 2019, 34, 12–27. [Google Scholar] [CrossRef] [Green Version]
- Glavic, M.; Fonteneau, R.; Ernst, D. Reinforcement Learning for Electric Power System Decision and Control: Past Considerations and Perspectives. IFAC-Pap. 2017, 50, 6918–6927. [Google Scholar] [CrossRef]
- Ernst, D.; Glavic, M.; Wehenkel, L. Power Systems Stability Control: Reinforcement Learning Framework. IEEE Trans. Power Syst. 2004, 19, 427–435. [Google Scholar] [CrossRef] [Green Version]
- Karagiannopoulos, S.; Dobbe, R.; Aristidou, P.; Callaway, D.; Hug, G. Data-Driven Control Design Schemes in Active Distribution Grids: Capabilities and Challenges. In Proceedings of the 2019 IEEE Milan PowerTech, Milano, Italy, 23–27 June 2019; pp. 1–6. [Google Scholar]
- Karagiannopoulos, S.; Aristidou, P.; Hug, G. Data-Driven Local Control Design for Active Distribution Grids Using Off-Line Optimal Power Flow and Machine Learning Techniques. IEEE Trans. Smart Grid 2019, 10, 6461–6471. [Google Scholar] [CrossRef] [Green Version]
- Xiong, R.; Cao, J.; Yu, Q. Reinforcement Learning-Based Real-Time Power Management for Hybrid Energy Storage System in the Plug-In Hybrid Electric Vehicle. Appl. Energy 2018, 211, 538–548. [Google Scholar] [CrossRef]
- Lu, R.; Hong, S.H. Incentive-Based Demand Response for Smart Grid with Reinforcement Learning and Deep Neural Network. Appl. Energy 2019, 236, 937–949. [Google Scholar] [CrossRef]
- Lesage-Landry, A.; Taylor, J.A. Setpoint Tracking With Partially Observed Loads. IEEE Trans. Power Syst. 2018, 33, 5615–5627. [Google Scholar] [CrossRef] [Green Version]
- Duan, C.; Jiang, L.; Fang, W.; Liu, J. Data-Driven Affinely Adjustable Distributionally Robust Unit Commitment. IEEE Trans. Power Syst. 2018, 33, 1385–1398. [Google Scholar] [CrossRef] [Green Version]
- Jokar, P.; Arianpoo, N.; Leung, V.C.M. Electricity Theft Detection in AMI Using Customers’ Consumption Patterns. IEEE Trans. Smart Grid 2016, 7, 216–226. [Google Scholar] [CrossRef]
- Sutton, C.; Ghiringhelli, L.M.; Yamamoto, T.; Lysogorskiy, Y.; Blumenthal, L.; Hammerschmidt, T.; Golebiowski, J.R.; Liu, X.; Ziletti, A.; Scheffler, M. Crowd-Sourcing Materials-Science Challenges with the NOMAD 2018 Kaggle Competition. Npj Comput. Mater. 2019, 5, 111. [Google Scholar] [CrossRef] [Green Version]
- Wilfling, S. Augmenting Data-Driven Models for Energy Systems through Feature Engineering: A Python Framework for Feature Engineering. arXiv 2023, arXiv:2301.01720. [Google Scholar]
- Huang, S.; Wang, B.; Li, X.; Zheng, P.; Mourtzis, D.; Wang, L. Industry 5.0 and Society 5.0—Comparison, Complementation and Co-Evolution. J. Manuf. Syst. 2022, 64, 424–428. [Google Scholar] [CrossRef]
- Rossato, C.; Pluchino, P.; Cellini, N.; Jacucci, G.; Spagnolli, A.; Gamberini, L. Facing with Collaborative Robots: The Subjective Experience in Senior and Younger Workers. Cyberpsychology Behav. Soc. Netw. 2021, 24, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Cui, N.; Chen, Y.; Gong, D.; Hu, X. Development of Data-Driven Models for Prediction of Daily Global Horizontal Irradiance in Northwest China. J. Clean. Prod. 2019, 223, 136–146. [Google Scholar] [CrossRef]
- Danish, M.S.S.; Senjyu, T. AI-Powered Policy for Energy Sustainability 2023. Available online: https://www.researchgate.net/publication/369850945_AI-Enabled_Energy_Policy_for_a_Sustainable_Future (accessed on 3 April 2023).
- Dewangan, F.; Abdelaziz, A.Y.; Biswal, M. Load Forecasting Models in Smart Grid Using Smart Meter Information: A Review. Energies 2023, 16, 1404. [Google Scholar] [CrossRef]
- Wilfling, S.; Falay, B.; Alfalouji, Q.; Schweiger, G. A Dymola-Python Framework for Data-Driven Model Creation and Co-Simulation. In Proceedings of the Asian Modelica Conference 2022, Tokyo, Japan, 24–25 November 2022; The Modelica Conference: Tokyo, Japan, 2022; pp. 165–170. [Google Scholar]
- Zhang, G.; Tian, C.; Li, C.; Zhang, J.J.; Zuo, W. Accurate Forecasting of Building Energy Consumption via a Novel Ensembled Deep Learning Method Considering the Cyclic Feature. Energy 2020, 201, 117531. [Google Scholar] [CrossRef]
- Kankam, P.K. The Use of Paradigms in Information Research. Libr. Inf. Sci. Res. 2019, 41, 85–92. [Google Scholar] [CrossRef]
- DeCarlo, M. 6.2 Paradigms, Theories, and How They Shape a Researcher’s Approach. In Scientific Inquiry in Social Work; Pressbooks: Montréal, QC, Canada, 2018; pp. 144–152. [Google Scholar]
- Proofed Research Paradigms: Explanation and Examples. Proofed. 2022. Available online: https://proofed.com/writing-tips/research-paradigms-explanation-and-examples/ (accessed on 12 January 2023).
- UNEP GOAL 7: Affordable and Clean Energy. Available online: http://www.unep.org/explore-topics/sustainable-development-goals/why-do-sustainable-development-goals-matter/goal-7 (accessed on 24 November 2022).
- Wilfling, S.; Ebrahimi, M.; Alfalouji, Q.; Schweiger, G.; Basirat, M. Learning Non-Linear White-Box Predictors: A Use Case in Energy Systems. In Proceedings of the 2022 21st International Conference on Machine Learning and Applications (ICMLA), Nassau, Bahamas, 12–14 December 2022; pp. 507–512. [Google Scholar] [CrossRef]
- Kalton, G.; Flores-Cervantes, I. Weighting Methods. J. Off. Stat. 2003, 19, 81–97. [Google Scholar]
- Kok, M.; Lootsma, F.A. Pairwise-Comparison Methods in Multiple Objective Programming, with Applications in a Long-Term Energy-Planning Model. Eur. J. Oper. Res. 1985, 22, 44–55. [Google Scholar] [CrossRef]
- Redfoot, E.K.; Verner, K.M.; Borrelli, R.A. Applying Analytic Hierarchy Process to Industrial Process Design in a Nuclear Renewable Hybrid Energy System. Prog. Nucl. Energy 2022, 145, 104083. [Google Scholar] [CrossRef]
- Van Schoubroeck, S.; Springael, J.; Van Dael, M.; Malina, R.; Van Passel, S. Sustainability Indicators for Biobased Chemicals: A Delphi Study Using Multicriteria Decision Analysis. Resour. Conserv. Recycl. 2019, 144, 198–208. [Google Scholar] [CrossRef]
- Project Management Institute. A Guide to the Project Management Body of Knowledge (PMBOK Guide), 6th ed.; Project Management Institute: Newtown Square, PA, USA, 2017; ISBN 978-1-62825-184-5. [Google Scholar]
- Chen, P. On the Diversity-Based Weighting Method for Risk Assessment and Decision-Making about Natural Hazards. Entropy 2019, 21, 269. [Google Scholar] [CrossRef] [Green Version]
- Lowhorn, G.L. Qualitative and Quantitative Research: How to Choose the Best Design. In Proceedings of the Academic Business World International Conference, Nashville, TN, USA, 28 May 2007; pp. 1–5. [Google Scholar]
- Ramanathan, R. Multicriteria Analysis of Energy. In Encyclopedia of Energy; Cleveland, C.J., Ed.; Elsevier: New York, NY, USA, 2004; pp. 77–88. ISBN 978-0-12-176480-7. [Google Scholar]
- Abu Taha, R.; Daim, T. Multicriteria Applications in Renewable Energy Analysis, a Literature Review. In Research and Technology Management in the Electricity Industry; Daim, T., Oliver, T., Kim, J., Eds.; Green Energy and Technology; Springer: London, UK, 2013; pp. 17–30. ISBN 978-1-4471-5096-1. [Google Scholar]
- Miciuła, I.; Nowakowska-Grunt, J. Using the AHP Method to Select an Energy Supplier for Household in Poland. Procedia Comput. Sci. 2019, 159, 2324–2334. [Google Scholar] [CrossRef]
- Krarti, M. Evaluation of Energy Efficiency Potential for the Building Sector in the Arab Region. Energies 2019, 12, 4279. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Lu, C.; Zhang, Y.-W. Prospective Exploration of Future Renewable Portfolio Standard Schemes in China via a Multi-Sector CGE Model. Energy Policy 2019, 128, 45–56. [Google Scholar] [CrossRef]
- Gabr, A.Z.; Helal, A.A.; Abbasy, N.H. Economic Evaluation of Rooftop Grid-Connected Photovoltaic Systems for Residential Building in Egypt. Int. Trans. Electr. Energy Syst. 2020, 30, e12379. [Google Scholar] [CrossRef]
- Huang, H.; Nie, S.; Lin, J.; Wang, Y.; Dong, J. Optimization of Peer-To-Peer Power Trading in a Microgrid with Distributed PV and Battery Energy Storage Systems. Sustainability 2020, 12, 923. [Google Scholar] [CrossRef] [Green Version]
- Mormann, F. Who Is Going to Pay for and Benefit from the Expansion of Solar Power? Natl. Interest. 2021. Available online: https://nationalinterest.org/blog/reboot/who-going-pay-and-benefit-expansion-solar-power-194923 (accessed on 12 January 2023).
- Cao, K.; Xu, X.; Wu, Q.; Zhang, Q. Optimal Production and Carbon Emission Reduction Level under Cap-And-Trade and Low Carbon Subsidy Policies. J. Clean. Prod. 2017, 167, 505–513. [Google Scholar] [CrossRef]
- Li, H.; Li, R.; Shang, M.; Liu, Y.; Su, D. Cooperative Decisions of Competitive Supply Chains Considering Carbon Trading Mechanism. Int. J. Low-Carbon Technol. 2022, 17, 102–117. [Google Scholar] [CrossRef]
- Tong, W.; Mu, D.; Zhao, F.; Mendis, G.P.; Sutherland, J.W. The Impact of Cap-and-Trade Mechanism and Consumers’ Environmental Preferences on a Retailer-Led Supply Chain. Resour. Conserv. Recycl. 2019, 142, 88–100. [Google Scholar] [CrossRef]
- Inoue, N.; Matsumoto, S. An Examination of Losses in Energy Savings after the Japanese Top Runner Program? Energy Policy 2019, 124, 312–319. [Google Scholar] [CrossRef]
- Sabory, N.R.; Senjyu, T.; Momand, A.H.; Waqfi, H.; Saboor, N.; Mobarez, R.; Razeqi, F. LEED Scores of Residential Buildings in Poor Cities: Kabul City Case. Sustainability 2021, 13, 6959. [Google Scholar] [CrossRef]
- Castrillón-Mendoza, R.; Rey-Hernández, J.M.; Rey-Martínez, F.J. Industrial Decarbonization by a New Energy-Baseline Methodology. Case Study. Sustainability 2020, 12, 1960. [Google Scholar] [CrossRef] [Green Version]
- Arcelay, I.; Goti, A.; Oyarbide-Zubillaga, A.; Akyazi, T.; Alberdi, E.; Garcia-Bringas, P. Definition of the Future Skills Needs of Job Profiles in the Renewable Energy Sector. Energies 2021, 14, 2609. [Google Scholar] [CrossRef]
- Majeed, A.; Ahmad, M.; Rasheed, M.F.; Khan, M.K.; Popp, J.; Oláh, J. The Dynamic Impact of Financial Globalization, Environmental Innovations and Energy Productivity on Renewable Energy Consumption: Evidence From Advanced Panel Techniques. Front. Environ. Sci. 2022, 10, 447. [Google Scholar] [CrossRef]
- Omitaomu, O.A.; Niu, H. Artificial Intelligence Techniques in Smart Grid: A Survey. Smart Cities 2021, 4, 548–568. [Google Scholar] [CrossRef]
- Gładysz, P.; Strojny, M.; Bartela, Ł.; Hacaga, M.; Froehlich, T. Merging Climate Action with Energy Security through CCS—A Multi-Disciplinary Framework for Assessment. Energies 2022, 16, 35. [Google Scholar] [CrossRef]
- Guo, F.; Chen, Z.; Xiao, F.; Li, A.; Shi, J. Real-Time Energy Performance Benchmarking of Electric Vehicle Air Conditioning Systems Using Adaptive Neural Network and Gaussian Process Regression. Appl. Therm. Eng. 2023, 222, 119931. [Google Scholar] [CrossRef]
- Hu, M. Response to Another Look at “2019 Energy Benchmarking Data for LEED-Certified Buildings in Washington, DC: Simulation and Reality”. J. Build. Eng. 2022, 46, 103694. [Google Scholar] [CrossRef]
- Middleton, P. Sustainable Living Education: Techniques to Help Advance the Renewable Energy Transformation. Sol. Energy 2018, 174, 1016–1018. [Google Scholar] [CrossRef]
- Gu, J.; Umar, M.; Soran, S.; Yue, X.-G. Exacerbating Effect of Energy Prices on Resource Curse: Can Research and Development Be a Mitigating Factor? Resour. Policy 2020, 67, 101689. [Google Scholar] [CrossRef]
- Pandey, N.; de Coninck, H.; Sagar, A.D. Beyond Technology Transfer: Innovation Cooperation to Advance Sustainable Development in Developing Countries. WIREs Energy Environ. 2022, 11, e422. [Google Scholar] [CrossRef]
- Khalid, H.M.; Flitti, F.; Mahmoud, M.S.; Hamdan, M.M.; Muyeen, S.M.; Dong, Z.Y. Wide Area Monitoring System Operations in Modern Power Grids: A Median Regression Function-Based State Estimation Approach towards Cyber Attacks. Sustain. Energy Grids Netw. 2023, 34, 101009. [Google Scholar] [CrossRef]
- Said, Z.; Sharma, P.; Thi Bich Nhuong, Q.; Bora, B.J.; Lichtfouse, E.; Khalid, H.M.; Luque, R.; Nguyen, X.P.; Hoang, A.T. Intelligent Approaches for Sustainable Management and Valorisation of Food Waste. Bioresour. Technol. 2023, 377, 128952. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, M.S.; Khalid, H.M.; Hamdan, M.M. Cyberphysical Infrastructures in Power Systems: Architectures and Vulnerabilities, 1st ed.; Academic Press: Cambridge, UK, 2021; ISBN 978-0-323-85261-6. [Google Scholar]
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | ||
References | [56] | [57] | [58,59] | [58,60] | [61] | [61,62,63] | [64] | [65,66,67] | [68] | [69] | [61] | [70] | [69] | [71,72] | [71] | [73] | [74,75] | |||||
1 | Scenario | EEDM | RPS | NM | FIT | CPM | EMD | ECS | AIEC | RETI | SATM | ESST | EVCI | CCS | EDA | EB | ETP | EE | ERD | EMD | ICEC | |
Code AI and Machine Learning Methods | ||||||||||||||||||||||
2 | Neural Networks | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | |
3 | Decision Trees | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | |
4 | Linear Regression | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | |
5 | Support Vector Machines | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
6 | Computer Vision | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | |
7 | Natural Language Processing | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | |
8 | Time Series Analysis | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
9 | Clustering | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
10 | Interdisciplinary Tools | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
11 | Deep Learning | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | |
12 | Evolutionary Algorithms | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | |
13 | Particle Swarm Optimization | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | |
14 | Convolutional Neural Networks | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | |
15 | Generative Models | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | |
16 | Sentiment Analysis | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | |
17 | Text Classification | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | |
18 | Random Forest | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danish, M.S.S. AI and Expert Insights for Sustainable Energy Future. Energies 2023, 16, 3309. https://doi.org/10.3390/en16083309
Danish MSS. AI and Expert Insights for Sustainable Energy Future. Energies. 2023; 16(8):3309. https://doi.org/10.3390/en16083309
Chicago/Turabian StyleDanish, Mir Sayed Shah. 2023. "AI and Expert Insights for Sustainable Energy Future" Energies 16, no. 8: 3309. https://doi.org/10.3390/en16083309