# Estimation Method of Short-Circuit Current Contribution of Inverter-Based Resources for Symmetrical Faults

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

- The change in the fault current level, whose value is applied to adjust the coordination time interval (CTI) between adjacent overcurrent protection devices (OCPDs);
- The coordination loss, highlighting the blind protection, sympathetic tripping and fuse protection philosophy (fuse-blow and fuse-saving);
- The change in the load current, whose value is used to adjust the sensitivity of the OCPDs.

## 2. Estimating the Short-Circuit Current Contribution for Symmetrical Faults

#### 2.1. Distribution Feeder without Lateral Branches

_{k}, IBR

_{(k+1)}, …, IBR

_{m}, from Figure 1), considering the same 3LG fault discussed previously, the currents through the OCPDs are the same and given by Equation (2).

_{j}, IBR

_{(j+1)}, …, IBR

_{w}, from Figure 1), taking into consideration the previous fault condition, the currents through OCPD1 and OCPD2 are the same as presented in Equation (3).

_{i}, IBR

_{(i+1)}, …, IBR

_{n}, from Figure 1), the currents through OCPD1 and OCPD2 are different and given by Equations (4) and (5), respectively.

#### 2.2. Distribution Feeder with Lateral Branches

#### 2.2.1. Fault without IBRs

#### 2.2.2. Fault with IBRs

#### 2.2.3. Feeder Dominated by IBRs

#### 2.3. A General Equation

- The substation;
- The IBRs located upstream seen from the perspective of the OCPD;
- The IBRs located downstream seen from the perspective of the OCPD.

## 3. Sensitivity Analysis of the General Equations

#### 3.1. OCPD Installed on Main Fault Trunk

#### 3.1.1. Upstream IBRs

#### 3.1.2. Downstream IBRs

#### 3.2. OCPD Installed on a Lateral of the Main Fault Trunk

#### 3.3. Intermediate Remarks

- The OCPD may be affected by the minimum fault at the end of the lateral;
- The reverse fault current through the OCPD may be greater than in the case without IBRs;
- The load current can be greater than in the case without IBRs.

## 4. Protection Coordination in Distribution Networks Dominated by IBRs

#### 4.1. Classical Protection Coordination

#### 4.2. Changing the Slope of the Characteristic Curves

#### 4.3. Adjustment of TMS

## 5. Case Study

#### 5.1. Overcurrent Protection for IEEE 34-Node Radial Test Feeder

#### 5.1.1. Placing the OCPDs

#### 5.1.2. Fuse Settings

#### 5.1.3. Relay Settings

#### 5.2. Estimation of the Short-Circuit Current Contribution

#### 5.2.1. IBRs on the Main Fault Trunk

- IBR upstream R1 (right before)—Case 1;
- IBR between R1 and R2 (righ after R1)—Case 2;
- IBR between R1 and R2 (right before R2)—Case 3;
- IBR downstream R2 (right after)—Case 4.

#### 5.2.2. IBRs on Lateral

- IBR right after fuse FS8—Case Begin;
- IBR at node 848—Case End.

#### 5.3. Impacts on the Actual Phase Protection Coordination Scheme

#### 5.4. Changing the Actual Phase Protection Scheme

#### 5.5. Assertiveness of the New Phase Protection Scheme

## 6. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Abbreviations

3LG | Three-phase line-to-ground |

ACSR | Aluminium-conductor steel-reinforced |

CTI | Coordination time interval |

CSI | Current source inverter |

DERs | Distributed energy resources |

DN | Distribution network |

DNO | Distribution network operator |

EI | Extreme inverse |

FS | Fuse |

IBRs | Inverter-based resources |

MFT | Main fault trunk |

OCPDs | Overcurrent protection devices |

PCC | Point of common coupling |

PL | Penetration level |

PV | Photovoltaic |

SCC | Short-circuit current |

TMS | Time multiplies settings |

## References

- Lew, D.; Asano, M.; Boemer, J.; Ching, C.; Focken, U.; Hydzik, R.; Lange, M.; Motley, A. The Power of Small: The Effects of Distributed Energy Resources on System Reliability. IEEE Power Energy Mag.
**2017**, 15, 50–60. [Google Scholar] [CrossRef] - Vargas, M.C.; Mendes, M.A.; Batista, O.E. Fault Current Analysis on Distribution Feeders with High Integration of Small Scale PV Generation. In Proceedings of the 2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, 4–8 August 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Meskin, M.; Domijan, A.; Grinberg, I. Impact of distributed generation on the protection systems of distribution networks: Analysis and remedies-review paper. IET Gener. Transm. Distrib.
**2020**, 14, 5944–5960. [Google Scholar] [CrossRef] - Kou, G.; Chen, L.; Vansant, P.; Velez-Cedeno, F.; Liu, Y. Fault Characteristics of Distributed Solar Generation. IEEE Trans. Power Deliv.
**2020**, 35, 1062–1064. [Google Scholar] [CrossRef] - Barker, P.P.; De Mello, R.W. Determining the impact of distributed generation on power systems. I. Radial distribution systems. In Proceedings of the 2000 Power Engineering Society Summer Meeting, Seattle, DC, USA, 16–20 July 2000; Volume 3, pp. 1645–1656. [Google Scholar] [CrossRef]
- Baran, M.E.; El-Markaby, I. Fault Analysis on Distribution Feeders with Distributed Generators. IEEE Trans. Power Syst.
**2005**, 20, 1757–1764. [Google Scholar] [CrossRef] - Keller, J.; Kroposki, B. Understanding Fault Characteristics of Inverter-Based Distributed Energy Resources; Technical Report; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2010. [Google Scholar] [CrossRef] [Green Version]
- Dugan, R.C.; McDermott, T.E. Distributed generation. IEEE Ind. Appl. Mag.
**2002**, 8, 19–25. [Google Scholar] [CrossRef] - Reno, M.J.; Brahma, S.; Bidram, A.; Ropp, M.E. Influence of Inverter-Based Resources on Microgrid Protection: Part 1: Microgrids in Radial Distribution Systems. IEEE Power Energy Mag.
**2021**, 19, 36–46. [Google Scholar] [CrossRef] - Manson, S.; McCullough, E. Practical Microgrid Protection Solutions: Promises and Challenges. IEEE Power Energy Mag.
**2021**, 19, 58–69. [Google Scholar] [CrossRef] - IEEE Power & Energy Society. PES-TR67.r1—Impact of IEEE 1547 Standard on Smart Inverters and the Applications in Power Systems; Technical Report August; IEEE PES: Piscataway, NJ, USA, 2020. [Google Scholar]
- Bhagavathy, S.; Pearsall, N.; Putrus, G.; Walker, S. Performance of UK Distribution Networks with single-phase PV systems under fault. Int. J. Electr. Power Energy Syst.
**2019**, 113, 713–725. [Google Scholar] [CrossRef] - IEEE Std 1547–2018; IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces. IEEE: Piscataway, NJ, USA, 2018; pp. 1547–2018. [CrossRef]
- Key, T.; Kou, G.; Jensen, M. On Good Behavior: Inverter-Grid Protections for Integrating Distributed Photovoltaics. IEEE Power Energy Mag.
**2020**, 18, 75–85. [Google Scholar] [CrossRef] - Blaabjerg, F.; Yang, Y.; Yang, D.; Wang, X. Distributed Power-Generation Systems and Protection. Proc. IEEE
**2017**, 105, 1311–1331. [Google Scholar] [CrossRef] [Green Version] - Mendes, M.A.; Vargas, M.C.; Simonetti, D.S.L.; Batista, O.E. Load Currents Behavior in Distribution Feeders Dominated by Photovoltaic Distributed Generation. Electr. Power Syst. Res.
**2021**, 201, 107532. [Google Scholar] [CrossRef] - Nassif, A.B. An Analytical Assessment of Feeder Overcurrent Protection with Large Penetration of Distributed Energy Resources. IEEE Trans. Ind. Appl.
**2018**, 54, 5400–5407. [Google Scholar] [CrossRef] - Razavi, S.; Rahimi, E.; Javadi, M.S.; Nezhad, A.E.; Lotfi, M.; Shafie-khah, M.; Catalão, J.P.S. Impact of distributed generation on protection and voltage regulation of distribution systems: A review. Renew. Sustain. Energy Rev.
**2019**, 105, 157–167. [Google Scholar] [CrossRef] - Haddadi, A.; Farantatos, E.; Kocar, I.; Karaagac, U. Impact of Inverter Based Resources on System Protection. Energies
**2021**, 14, 1050. [Google Scholar] [CrossRef] - Chae, W.; Lee, J.H.; Kim, W.H.; Hwang, S.; Kim, J.O.; Kim, J.E. Adaptive Protection Coordination Method Design of Remote Microgrid for Three-Phase Short Circuit Fault. Energies
**2021**, 14, 7754. [Google Scholar] [CrossRef] - Simic, N.; Strezoski, L.; Dumnic, B. Short-Circuit Analysis of DER-Based Microgrids in Connected and Islanded Modes of Operation. Energies
**2021**, 14, 6372. [Google Scholar] [CrossRef] - Kim, I. Steady-state short-circuit current calculation for internally limited inverter-based distributed generation sources connected as current sources using the sequence method. Int. Trans. Electr. Energy Syst.
**2019**, 29, e12125. [Google Scholar] [CrossRef] - Plet, C.A.; Green, T.C. Fault response of inverter interfaced distributed generators in grid-connected applications. Electr. Power Syst. Res.
**2014**, 106, 21–28. [Google Scholar] [CrossRef] - Mendes, M.A.; Vargas, M.C.; Batista, O.E.; Yang, Y.; Blaabjerg, F. Simplified Single-phase PV Generator Model for Distribution Feeders with High Penetration of Power Electronics-based Systems. In Proceedings of the 2019 IEEE 15th Brazilian Power Electronics Conference and 5th IEEE Southern Power Electronics Conference, COBEP/SPEC, Santos, Brazil, 1–4 December 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Dash, P.P.; Kazerani, M. Dynamic modeling and performance analysis of a grid-connected current-source inverter-based photovoltaic system. IEEE Trans. Sustain. Energy
**2011**, 2, 443–450. [Google Scholar] [CrossRef] - Seuss, J.; Reno, M.J.; Broderick, R.J.; Grijalva, S. Determining the Impact of Steady-State PV Fault Current Injections on Distribution Protection; Technical Report; Sandia National Laboratories (SNL): Golden, CO, USA, 2017. [Google Scholar] [CrossRef]
- Cho, N.; Yun, S.; Jung, J. Shunt fault analysis methodology for power distribution networks with inverter-based distributed energy resources of the Korea Electric Power Corporation. Renew. Sustain. Energy Rev.
**2020**, 133, 110140. [Google Scholar] [CrossRef] - Kim, I. Short-Circuit Analysis Models for Unbalanced Inverter-Based Distributed Generation Sources and Loads. IEEE Trans. Power Syst.
**2019**, 34, 3515–3526. [Google Scholar] [CrossRef] - Kim, I. A calculation method for the short-circuit current contribution of current-control inverter-based distributed generation sources at balanced conditions. Electr. Power Syst. Res.
**2021**, 190, 106839. [Google Scholar] [CrossRef] - Strezoski, L.; Prica, M.; Loparo, K.A. Generalized δ-Circuit Concept for Integration of Distributed Generators in Online Short-Circuit Calculations. IEEE Trans. Power Syst.
**2017**, 32, 3237–3245. [Google Scholar] [CrossRef] - Strezoski, L.; Prica, M.; Loparo, K.A. Sequence Domain Calculation of Active Unbalanced Distribution Systems Affected by Complex Short Circuits. IEEE Trans. Power Syst.
**2018**, 33, 1891–1902. [Google Scholar] [CrossRef] - Strezoski, L.; Stefani, I.; Bekut, D. Novel method for adaptive relay protection in distribution systems with electronically-coupled DERs. Int. J. Electr. Power Energy Syst.
**2020**, 116, 105551. [Google Scholar] [CrossRef] - Tonini, L.G.R.; Freire, R.S.F.; Batista, O.E. Load Flow and Short-Circuit Methods for Grids Dominated by Inverter-Based Distributed Generation. Energies
**2022**, 15, 4723. [Google Scholar] [CrossRef] - IEC 60909-0:2016; Short-Circuit Currents in Three-Phase a.c. Systems—Part 0: Calculation of Currents. 2016. Available online: https://webstore.iec.ch/publication/24100#:~:text=IEC%2060909%2D0%3A2016%20is,50%20Hz%20or%2060%20Hz (accessed on 18 February 2023).
- IEEE Std 242-2001; IEEE Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems. IEEE: Piscataway, NJ, USA, 2001.
- Anderson, P.M. Power System Protection; McGraw-Hill: New York, NY, USA, 1999; p. 1307. [Google Scholar]
- Horowitz, S.; Phadke, A.; Henville, C. Power System Relaying; Wiley: Hoboken, NJ, USA, 2022. [Google Scholar]
- Gers, J.; Holmes, E. Protection of Electricity Distribution Networks, 2nd ed.; IET: London, UK, 2004. [Google Scholar]
- Fani, B.; Bisheh, H.; Sadeghkhani, I. Protection coordination scheme for distribution networks with high penetration of photovoltaic generators. IET Gener. Transm. Distrib.
**2018**, 12, 1802–1814. [Google Scholar] [CrossRef] - IEC 60255-151:2009; Measuring Relays and Protection Equipment—Part 151: Functional Requirements for over/under Current Protection. IEEE: Piscataway, NJ, USA, 2009.
- Systems, C.P. Electrical Distribution-System Protection: A Textbook and Practical Reference on Overcurrent and Overvoltage Fundamentals, Protective Equipment and Applications; Cooper Power Systems: Pewaukee, WI, USA, 2005. [Google Scholar]
- Vargas, M.C.; Mendes, M.A.; Tonini, L.G.R.; Batista, O.E. Grid Support of Small-scale PV Generators with Reactive Power Injection in Distribution Systems. In Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies Conference—Latin America (ISGT Latin America), Washington, DC, USA, 15–18 September 2019; IEEE: Gramado, Brazil, 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Ferraz, R.S.F.; Ferraz, R.S.F.; Rueda-Medina, A.C.; Batista, O.E. Genetic optimisation-based distributed energy resource allocation and recloser-fuse coordination. IET Gener. Transm. Distrib.
**2020**, 14, 4501–4508. [Google Scholar] [CrossRef] - Matos, S.P.S.; Vargas, M.C.; Fracalossi, L.G.V.; Encarnação, L.F.; Batista, O.E. Protection philosophy for distribution grids with high penetration of distributed generation. Electr. Power Syst. Res.
**2021**, 196, 107203. [Google Scholar] [CrossRef]

**Figure 1.**Single-line diagram of a radial distribution feeder, with two OCPDs, dominated by IBRs, and a three-phase line-to-ground fault at point F.

**Figure 5.**Hypothetical extreme situations for fault currents through OCPDs in a high penetration scenario of IBRs.

**Figure 7.**Strategy to restore the protection coordination between two OCPDs in a distribution feeder dominated by IBRs.

**Figure 10.**Phase fault protection coordination for R1 (in black), R2 (in red) and fuses 6 K, 15 K and 25 K. The vertical lines represent fault currents: downwards triangle is a 3LG fault, X is a phase-to-phase fault and circle is the maximum fault through the highest fuse for R2. The SCC damage curves for ACSR 1/0 and #2 6/1 bare conductors are also represented.

**Figure 11.**Earth fault protection coordination for R1 (in black), R2 (in red) and fuses 6 K, 15 K and 25 K. The vertical lines represent fault currents: upwards triangle is a line-to-earth fault. The SCC damage curves for ACSR 1/0 and #2 6/1 bare conductors are also represented.

**Figure 12.**Modified phase fault protection coordination for R1 (in black), R2 (in red) and fuse 25 K, considering a 100% PL of IBRs and different SCC contribution capacities on IBR’s base rating. The continuous curves represent the protection coordination without IBRs.

**Table 1.**Maximum load currents, minimum line-to-ground faults and fuse link to protect laterals on the IEEE 34-node test feeder.

Max. Load Current (A) | Min. Line-to-Ground Fault (A) | Fuse Link | |
---|---|---|---|

FS1 | 1.22 | 298.00 | 6 K |

FS2 | 13.02 | 135.30 | 25 K |

FS3 | 10.62 | 135.30 | 15 K |

FS4 | 3.10 | 190.40 | 6 K |

FS5 | 0.31 | 148.00 | 6 K |

FS6 | 11.70 | 94.00 | 20 K |

FS7 | 0.14 | 139.40 | 6 K |

FS8 | 16.30 | 133.60 | 25 K |

FS9 | 2.09 | 131.40 | 6 K |

Max. Load Current (A) | Max. Three Phase Fault (A) | Max. Double Phase Fault (A) | Max. Single Phase Fault (A) | Min. Three Phase Fault (A) | Min. Double Phase Fault (A) | Min. Single Phase Fault (A) | Neutral Current (A) | |
---|---|---|---|---|---|---|---|---|

R1 | 51.56 | 627.3 | 543.3 | 655.2 | 439.9 | 471.7 | 135.3 | 11.13 |

R2 | 37.77 | 292.8 | 253.8 | 235.4 | 221.0 | 216.3 | 131.4 | 4.55 |

Phase Protection | Earth Protection | ||
---|---|---|---|

R1 | Pickup (A) | 90 | 40 |

Curve – IEC 60255 | EI | EI | |

TMS | 0.09 | 0.34 | |

R2 | Pickup (A) | 75 | 30 |

Curve – IEC 60255 | EI | EI | |

TMS | 0.07 | 0.38 |

**Table 4.**CTI between relays and fuses FS2 and FS8 for maximum and minimum fault types on the IEEE 34-node test feeder.

A | B | Fault (A)3LG | A TrippingTime (ms) | B TrippingTime (ms) | CTI (ms)(A–B) | Fault (A)2L | A TrippingTime (ms) | B TrippingTime (ms) | CTI (ms)(A–B) | ||

R1 | R2 | Max. | 292.8 | 751.2 | 393.2 | 358.0 | Max. | 253.8 | 1035.6 | 535.8 | 499.8 |

Min. | 221.0 | 1431.5 | 728.9 | 702.6 | Min. | 216.3 | 1507.5 | 765.3 | 742.2 | ||

R2 | FS8 | Max. | 203.4 | 881.2 | 433.7 | 447.5 | Max. | 175.0 | 1260.0 | 588.1 | 671.9 |

Min. | 159.3 | 1594.8 | 714.0 | 880.8 | Min. | 152.8 | 1777.4 | 779.7 | 997.6 | ||

A | B | Fault (A)LG (start) | A TrippingTime (ms) | B TrippingTime (ms) | CTI (ms)(A–B) | Fault (A)LG (end) | A TrippingTime (ms) | B TrippingTime (ms) | CTI (ms)(A–B) | ||

R1 | R2 | Max. | 235.4 | 808.7 | 501.9 | 306.8 | Max. | 150.7 | 2061.5 | 1254.4 | 807.1 |

Min. | 194.0 | 1207.7 | 744.8 | 462.9 | Min. | 131.4 | 2778.0 | 1671.8 | 1106.2 | ||

FS2 | Max. | 254.9 | 686.7 | 278.3 | 408.4 | Max. | 157.3 | 1880.5 | 731.6 | 1148.8 | |

Min. | 207.9 | 1045.6 | 416.3 | 629.3 | Min. | 135.3 | 2605.0 | 1020.1 | 1584.9 | ||

R2 | FS8 | Max. | 158.3 | 1132.5 | 722.8 | 409.7 | Max. | 154.0 | 1199.2 | 765.7 | 433.4 |

Min. | 137.0 | 1531.1 | 992.0 | 539.1 | Min. | 133.6 | 1614.3 | 1048.1 | 566.1 |

**Table 5.**Currents Through R1 and R2 for a 3LG Fault at Node 840 on the IEEE 34-Node Test Feeder and IBR Located on the MFT for Different Penetration Levels (PL) and Fault Resistances (${Z}_{f}$).

${\mathit{Z}}_{\mathit{f}}=0\phantom{\rule{4pt}{0ex}}\mathbf{\Omega}$ | ${\mathit{Z}}_{\mathit{f}}=20\phantom{\rule{4pt}{0ex}}\mathbf{\Omega}$ | Error (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|

PL | Case | Method | Simulink | Method | Simulink | Method/ | ||||||

Current | Current | Current | Current | Simulink | ||||||||

(A) | % | (A) | % | (A) | % | (A) | % | $0\phantom{\rule{4pt}{0ex}}\mathbf{\Omega}$ | $20\phantom{\rule{4pt}{0ex}}\mathbf{\Omega}$ | |||

0% | R1 | 199.91 | - | 197.66 | - | 164.41 | - | 164.42 | - | 1.1% | 0.0% | |

R2 | 199.91 | - | 195.20 | - | 164.41 | - | 161.08 | - | 2.4% | 2.1% | ||

25% | 1 | R1 | 200.36 | 0.2% | 199.67 | 1.0% | 164.79 | 0.2% | 166.38 | 1.2% | 0.3% | −1.0% |

R2 | 200.36 | 0.2% | 196.64 | 0.7% | 164.79 | 0.2% | 162.46 | 0.9% | 1.9% | 1.4% | ||

2 | R1 | 191.53 | −4.2% | 189.23 | −4.3% | 154.71 | −5.9% | 155.38 | −5.5% | 1.2% | −0.4% | |

R2 | 200.36 | 0.2% | 196.64 | 0.7% | 164.79 | 0.2% | 162.46 | 0.9% | 1.9% | 1.4% | ||

3 | R1 | 195.86 | −2.0% | 194.16 | −1.8% | 158.27 | −3.7% | 159.23 | −3.2% | 0.9% | −0.6% | |

R2 | 204.83 | 2.5% | 202.37 | 3.7% | 168.46 | 2.5% | 167.10 | 3.7% | 1.2% | 0.8% | ||

4 | R1 | 195.86 | −2.0% | 194.16 | −1.8% | 158.27 | −3.7% | 159.23 | −3.2% | 0.9% | −0.6% | |

R2 | 195.86 | −2.0% | 191.09 | −2.1% | 158.27 | −3.7% | 155.25 | −3.6% | 2.5% | 1.9% | ||

50% | 1 | R1 | 200.87 | 0.5% | 200.77 | 1.6% | 165.21 | 0.5% | 167.22 | 1.7% | 0.0% | −1.2% |

R2 | 200.87 | 0.5% | 197.73 | 1.3% | 165.21 | 0.5% | 163.28 | 1.4% | 1.6% | 1.2% | ||

2 | R1 | 183.30 | −8.3% | 180.13 | −8.9% | 145.14 | −11.7% | 145.51 | −11.5% | 1.8% | −0.3% | |

R2 | 200.87 | 0.5% | 197.73 | 1.3% | 165.21 | 0.5% | 163.28 | 1.4% | 1.6% | 1.2% | ||

3 | R1 | 191.84 | −4.0% | 189.85 | −4.0% | 152.15 | −7.5% | 152.97 | −7.0% | 1.0% | −0.5% | |

R2 | 209.94 | 5.0% | 209.11 | 7.1% | 172.66 | 5.0% | 172.53 | 7.1% | 0.4% | 0.1% | ||

4 | R1 | 191.84 | −4.0% | 189.85 | −4.0% | 152.15 | −7.5% | 152.97 | −7.0% | 1.0% | −0.5% | |

R2 | 191.84 | −4.0% | 186.71 | −4.3% | 152.15 | −7.5% | 148.90 | −7.6% | 2.7% | 2.2% | ||

75% | 1 | R1 | 201.44 | 0.8% | 201.82 | 2.1% | 165.67 | 0.8% | 168.02 | 2.2% | −0.2% | −1.4% |

R2 | 201.44 | 0.8% | 198.76 | 1.8% | 165.67 | 0.8% | 164.06 | 1.9% | 1.3% | 1.0% | ||

2 | R1 | 175.24 | −12.3% | 171.24 | −13.4% | 135.72 | −17.5% | 135.88 | −17.4% | 2.3% | −0.1% | |

R2 | 201.44 | 0.8% | 198.76 | 1.8% | 165.67 | 0.8% | 164.06 | 1.9% | 1.3% | 1.0% | ||

3 | R1 | 187.83 | −6.0% | 185.59 | −6.1% | 146.04 | −11.2% | 146.70 | −10.8% | 1.2% | −0.4% | |

R2 | 215.24 | 7.7% | 215.70 | 10.5% | 177.02 | 7.7% | 177.88 | 10.4% | −0.2% | −0.5% | ||

4 | R1 | 187.83 | −6.0% | 185.59 | −6.1% | 146.04 | −11.2% | 146.70 | −10.8% | 1.2% | −0.4% | |

R2 | 187.83 | −6.0% | 182.40 | −6.6% | 146.04 | −11.2% | 142.56 | −11.5% | 3.0% | 2.4% | ||

100% | 1 | R1 | 202.06 | 1.1% | 202.82 | 2.6% | 166.19 | 1.1% | 168.77 | 2.6% | −0.4% | −1.5% |

R2 | 202.06 | 1.1% | 199.75 | 2.3% | 166.19 | 1.1% | 164.79 | 2.3% | 1.2% | 0.8% | ||

2 | R1 | 167.38 | −16.3% | 162.62 | −17.7% | 126.50 | −23.1% | 126.52 | −23.0% | 2.9% | 0.0% | |

R2 | 202.06 | 1.1% | 199.75 | 2.3% | 166.19 | 1.1% | 164.79 | 2.3% | 1.2% | 0.8% | ||

3 | R1 | 183.85 | −8.0% | 181.40 | −8.2% | 139.96 | −14.9% | 140.43 | −14.6% | 1.4% | −0.3% | |

R2 | 220.70 | 10.4% | 222.15 | 13.8% | 181.52 | 10.4% | 183.14 | 13.7% | −0.7% | −0.9% | ||

4 | R1 | 183.85 | −8.0% | 181.40 | −8.2% | 139.96 | −14.9% | 140.43 | −14.6% | 1.4% | −0.3% | |

R2 | 183.85 | −8.0% | 178.15 | −8.7% | 139.96 | −14.9% | 136.22 | −15.4% | 3.2% | 2.7% |

**Table 6.**Currents Through R1 and R2 for a 3LG Fault at Node 840 on IEEE 34-Node Test Feeder and IBR Located on the Lateral 7 for Different Penetration Levels (PL) and Fault Resistances (${Z}_{f}$).

${\mathit{Z}}_{\mathit{f}}=0\phantom{\rule{4pt}{0ex}}\mathbf{\Omega}$ | ${\mathit{Z}}_{\mathit{f}}=20\phantom{\rule{4pt}{0ex}}\mathbf{\Omega}$ | Error (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|

PL | Case | Method | Simulink | Method | Simulink | Method/ | ||||||

Current | Current | Current | Current | Simulink | ||||||||

(A) | % | (A) | % | (A) | % | (A) | % | $0\phantom{\rule{4pt}{0ex}}\mathbf{\Omega}$ | $20\phantom{\rule{4pt}{0ex}}\mathbf{\Omega}$ | |||

0% | R1 | 199.91 | - | 198.51 | - | 164.41 | - | 165.49 | - | 0.7% | −0.6% | |

R2 | 199.91 | - | 195.50 | - | 164.41 | - | 161.59 | - | 2.3% | 1.7% | ||

FS8 | 0.00 | - | 0.41 | - | 0.00 | - | 3.55 | - | −100.0% | −100.0% | ||

25% | Begin | R1 | 199.60 | −0.2% | 198.51 | 0.0% | 161.35 | −1.9% | 163.22 | −1.4% | 0.5% | −1.1% |

R2 | 199.60 | −0.2% | 195.50 | 0.0% | 161.35 | −1.9% | 159.27 | −1.4% | 2.1% | 1.3% | ||

FS8 | 12.31 | - | 0.41 | 0.0% | 12.31 | - | 9.78 | 175.2% | 2938.0% | 25.9% | ||

End | R1 | 199.60 | −0.2% | 198.51 | 0.0% | 161.35 | −1.9% | 163.22 | −1.4% | 0.5% | −1.1% | |

R2 | 199.60 | −0.2% | 195.50 | 0.0% | 161.35 | −1.9% | 159.27 | −1.4% | 2.1% | 1.3% | ||

FS8 | 12.31 | - | 0.41 | 0.0% | 12.31 | - | 9.77 | 175.0% | 2938.0% | 25.9% | ||

50% | Begin | R1 | 199.30 | −0.3% | 198.51 | 0.0% | 158.28 | −3.7% | 160.88 | −2.8% | 0.4% | −1.6% |

R2 | 199.30 | −0.3% | 195.50 | 0.0% | 158.28 | −3.7% | 156.87 | −2.9% | 1.9% | 0.9% | ||

FS8 | 24.61 | - | 0.41 | 0.0% | 24.61 | - | 21.72 | 511.3% | 5975.9% | 13.3% | ||

End | R1 | 199.30 | −0.3% | 198.51 | 0.0% | 158.28 | −3.7% | 160.86 | −2.8% | 0.4% | −1.6% | |

R2 | 199.30 | −0.3% | 195.50 | 0.0% | 158.28 | −3.7% | 156.86 | −2.9% | 1.9% | 0.9% | ||

FS8 | 24.61 | - | 0.41 | 0.0% | 24.61 | - | 21.71 | 510.9% | 5975.9% | 13.4% | ||

75% | Begin | R1 | 199.00 | −0.5% | 198.51 | 0.0% | 155.22 | −5.6% | 158.46 | −4.2% | 0.2% | −2.0% |

R2 | 199.00 | −0.5% | 195.50 | 0.0% | 155.22 | −5.6% | 154.41 | −4.4% | 1.8% | 0.5% | ||

FS8 | 36.92 | - | 0.41 | 0.0% | 36.92 | - | 33.77 | 850.5% | 9013.9% | 9.3% | ||

End | R1 | 199.00 | −0.5% | 198.51 | 0.0% | 155.22 | −5.6% | 158.42 | −4.3% | 0.2% | −2.0% | |

R2 | 199.00 | −0.5% | 195.50 | 0.0% | 155.22 | −5.6% | 154.36 | −4.5% | 1.8% | 0.6% | ||

FS8 | 36.92 | - | 0.41 | 0.0% | 36.92 | - | 33.75 | 849.9% | 9013.9% | 9.4% | ||

100% | Begin | R1 | 198.69 | −0.6% | 198.51 | 0.0% | 152.15 | −7.5% | 155.98 | −5.7% | 0.1% | -2.5% |

R2 | 198.69 | −0.6% | 195.50 | 0.0% | 152.15 | −7.5% | 151.87 | −6.0% | 1.6% | 0.2% | ||

FS8 | 49.22 | - | 0.41 | 0.0% | 49.22 | - | 45.85 | 1190.4% | 12,051.8% | 7.4% | ||

End | R1 | 198.69 | −0.6% | 198.51 | 0.0% | 152.15 | −7.5% | 155.90 | −5.8% | 0.1% | −2.4% | |

R2 | 198.69 | −0.6% | 195.50 | 0.0% | 152.15 | −7.5% | 151.79 | −6.1% | 1.6% | 0.2% | ||

FS8 | 49.22 | - | 0.41 | 0.0% | 49.22 | - | 45.82 | 1189.6% | 12,051.8% | 7.4% |

**Table 7.**Tripping Times for R1 and R2 for a Fault at Node 828 of the IEEE 34-Node Test Feeder with 100% of Penetration Level of IBRs.

IBR SCC | Case | R1 (A) | R2 (A) | R1 (ms) | R2 (ms) | Δt (ms) |
---|---|---|---|---|---|---|

0 pu | - | 303.91 | 303.91 | 692 | 363 | 329 |

1.2 pu | 1 | 307.18 | 307.18 | 676 | 355 | 321 |

2 | 277.86 | 307.18 | 844 | 355 | 489 | |

3 | 300.63 | 332.07 | 709 | 301 | 408 | |

4 | 300.63 | 300.63 | 709 | 372 | 337 | |

2.0 pu | 1 | 310.91 | 310.91 | 659 | 346 | 313 |

2 | 261.33 | 310.91 | 969 | 346 | 623 | |

3 | 298.45 | 352.93 | 720 | 265 | 455 | |

4 | 298.45 | 298.45 | 720 | 377 | 343 |

**Table 8.**Tripping Times for R1, R2 and FS8 for a Fault at Node 834 of the IEEE 34-Node Test Feeder with 100% Penetration Level of IBRs.

IBR SCC | Case | R1 (A) | R2 (A) | FS8 (A) | R1 Trip (ms) | R2 Trip (ms) | FS8 Trip (ms) | Δt (R1-R2) (ms) | Δt (R2-FS8) (ms) |
---|---|---|---|---|---|---|---|---|---|

0 pu | - | 199.68 | 199.68 | 199.68 | 1836 | 920 | 448 | 916 | 472 |

1.2 pu | 1 | 201.83 | 201.83 | 201.83 | 1787 | 897 | 439 | 890 | 458 |

2 | 167.14 | 201.83 | 201.83 | 2940 | 897 | 439 | 2043 | 458 | |

3 | 183.59 | 220.45 | 220.45 | 2278 | 733 | 368 | 1545 | 365 | |

4 | 183.59 | 183.59 | 220.45 | 2278 | 1122 | 368 | 1156 | 754 | |

5 | 198.41 | 198.41 | 236.29 | 1865 | 934 | 321 | 932 | 613 | |

6 | 198.41 | 198.41 | 198.41 | 1865 | 934 | 455 | 932 | 479 | |

2.0 pu | 1 | 203.77 | 203.77 | 203.77 | 1745 | 878 | 432 | 867 | 446 |

2 | 147.37 | 203.77 | 203.77 | 4283 | 878 | 432 | 3405 | 446 | |

3 | 173.10 | 235.75 | 235.75 | 2667 | 631 | 322 | 2037 | 309 | |

4 | 173.10 | 173.10 | 235.75 | 2667 | 1294 | 322 | 1373 | 972 | |

5 | 197.56 | 197.56 | 262.71 | 1885 | 943 | 263 | 942 | 680 | |

6 | 197.57 | 197.57 | 197.57 | 1885 | 943 | 459 | 942 | 484 |

IBR with SCC of 1.2 pu | IBR with SCC of 2.0 pu | ||
---|---|---|---|

R1 | Pickup (A) | 90 | 90 |

Curve-IEC 60255 | EI | EI | |

TMS | 0.10 | 0.11 | |

R2 | Pickup (A) | 75 | 75 |

Curve-IEC 60255 | EI | EI | |

TMS | 0.08 | 0.09 |

**Table 10.**Tripping times and CTI Between R1, R2 and FS8 for the New Adjustments for Phase Protection of the IEEE 34-Node Test Feeder with 100% PL of IBRs.

IBR SCC | A | B | Fault (A) 3LG | A Trip (ms) | B Trip (ms) | A-B (ms) |
---|---|---|---|---|---|---|

1.2 pu | R1 | R2 | 307.18 | 751 | 406 | 346 |

R2 | FS8 | 220.45 | 838 | 368 | 470 | |

2.0 pu | R1 | R2 | 310.91 | 805 | 445 | 360 |

R2 | FS8 | 235.75 | 811 | 322 | 489 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Vargas, M.C.; Batista, O.E.; Yang, Y.
Estimation Method of Short-Circuit Current Contribution of Inverter-Based Resources for Symmetrical Faults. *Energies* **2023**, *16*, 3130.
https://doi.org/10.3390/en16073130

**AMA Style**

Vargas MC, Batista OE, Yang Y.
Estimation Method of Short-Circuit Current Contribution of Inverter-Based Resources for Symmetrical Faults. *Energies*. 2023; 16(7):3130.
https://doi.org/10.3390/en16073130

**Chicago/Turabian Style**

Vargas, Murillo Cobe, Oureste Elias Batista, and Yongheng Yang.
2023. "Estimation Method of Short-Circuit Current Contribution of Inverter-Based Resources for Symmetrical Faults" *Energies* 16, no. 7: 3130.
https://doi.org/10.3390/en16073130