Control Methods for Levitation System of EMSType Maglev Vehicles: An Overview
Abstract
:1. Introduction
 Combined with the characteristics of rail transit, the levitation control system of the EMS maglev train is presented to readers in an allround way, including the research routes, theoretical methods, and technical means of novel artificial intelligence methods. The target audience include scholars and engineers in the fields of rail transit, automatic control, and magnetic levitation.
 The advantages and disadvantages of various levitation control algorithms for EMStype maglev transportation are analyzed, covering specific problems such as multiple electromagnet module coupling and electromagnet–rail coupling vibration. This can guide the selection of levitation control methods under various speeds and scenes, which has more professional engineering significance.
2. Technical Characteristics of Levitation System
3. Linear State Feedback Levitation Control Methods
3.1. Levitation Control Method Based on PID
3.2. Linear Quadratic Regulator Levitation Controller
3.3. Linear State Feedback Levitation Controller under Flexible Track Condition
4. Nonlinear Control Methods
4.1. Feedback Linearization Controller
4.2. Sliding Mode Variable Structure Controller
4.3. Model Reference Adaptive Controller
5. Intelligent Control Methods
5.1. Fuzzy LogicBased Controller
5.2. Neural NetworkBased Controller
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
 Sun, B. UltraHighSpeed Ground Transportation Stagnated in the Bud. Railw. Technol. Trends 1976, 13, 13–17. [Google Scholar] [CrossRef]
 Zhai, W.; Zhao, C. Frontiers and challenges of sciences and technologies in modern railway engineering. J. Southwest Jiaotong Univ. 2016, 51, 209–226. [Google Scholar] [CrossRef]
 Geerlings, H. The rise and fall of new technologies: Maglev as technological substitution? Transp. Plann. Technol. 1998, 21, 263–286. [Google Scholar] [CrossRef]
 Yan, L. Development and application of the maglev transportation system. IEEE Trans. Appl. Supercond. 2008, 18, 92–99. [Google Scholar] [CrossRef]
 Zhou, D.; Hansen, C.H.; Li, J.; Chang, W. Review of coupled vibration problems in EMS maglev vehicles. Int. J. Acoust. Vib. 2010, 15, 10. [Google Scholar] [CrossRef]
 Murty, V.S.; Jain, S. Conventional Indian railways and the advanced transportation systems: A comparative review. In Proceedings of the 2016 7th India International Conference on Power Electronics (IICPE), Patiala, India, 17–19 November 2016. [Google Scholar] [CrossRef]
 Reza, N.Z.; Arsalan, H. A review of suspension and traction technologies in maglev trains. In Proceedings of the 2019 International Power System Conference (PSC), Tehran, Iran, 9–11 December 2019. [Google Scholar] [CrossRef]
 Lee, H.W.; Kim, K.C.; Lee, J. Review of maglev train technologies. IEEE Trans. Magn. 2006, 42, 1917–1925. [Google Scholar] [CrossRef]
 Prasad, N.; Jain, S.; Gupta, S. Electrical Components of Maglev Systems: Emerging Trends. Urban Rail Transit 2019, 5, 67–79. [Google Scholar] [CrossRef] [Green Version]
 Xu, F.; Luo, S.; Deng, Z. Study on key technologies and whole speed range application of maglev rail transport. J. China Railw. Soc. 2019, 41, 40–49. [Google Scholar]
 Deng, Z.; Liu, Z.; Li, H.; Zhang, W. Development status and prospect of maglev train. J. Southwest Jiaotong Univ. 2022, 57, 455–474, 530. [Google Scholar] [CrossRef]
 Yuling, S.; Aning, Q.; Lu, D. Research on development and prospects of maglev transportation and suggestions to China. World SCITECH R&D China 2019, 41, 109–119. [Google Scholar] [CrossRef]
 Pandey, A.; Adhyaru, D.M. Control techniques for electromagnetic levitation system: A literature review. Int. J. Dyn. Control 2023, 11, 441–451. [Google Scholar] [CrossRef]
 Poletkin, K.V.; Asadollahbaik, A.; Kampmann, R.; Korvink, J.G. Levitating MicroActuators: A Review. Actuators 2018, 7, 17. [Google Scholar] [CrossRef] [Green Version]
 Alseed, M.M.; Dabbagh, S.R.; Zhao, P.; Ozcan, O.; Tasoglu, S. Portable magnetic levitation technologies. Adv. Opt. Technol. 2021, 10, 109–121. [Google Scholar] [CrossRef]
 Ashkarran, A.A.; Mahmoudi, M. Magnetic levitation systems for disease diagnostics. Trends Biotechnol. 2021, 39, 311–321. [Google Scholar] [CrossRef]
 Zhang, X.; Lu, J.Y.; Long, X.L. Research on the ModelBuilding Error for EMS Maglev Vehicles. In Proceedings of the Applied Mechanics and Materials, Chongqing, China, 18–19 December 2014. [Google Scholar] [CrossRef]
 Gottzein, E.; Meisinger, R.; Miller, L. The “Magnetic Wheel” in the suspension of highspeed ground transportation vehicles. IEEE Trans. Veh. Technol. 1980, 29, 17–23. [Google Scholar] [CrossRef]
 Boudali, H.; Williams, R.; Giras, T. A Simulink simulation framework of a MagLev model. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2003, 217, 227–236. [Google Scholar] [CrossRef]
 Whidborne, J.F. EMS control system design for a maglev vehicle—A critical system. Automatica 1993, 29, 1345–1349. [Google Scholar] [CrossRef] [Green Version]
 Dakev, N.V.; Whidborne, J.F.; Chipperfield, A.J.; Fleming, P. Evolutionary Hinfin; design of an electromagnetic suspension control system for a maglev vehicle. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 1997, 211, 345–355. [Google Scholar] [CrossRef]
 Suebsomran, A. Adaptive neural network control of electromagnetic suspension system. Int. J. Rob. Autom. 2014, 29, 144–154. [Google Scholar] [CrossRef]
 Sinha, P.K. Electromagnetic Suspension Dynamics & Control. 1987. Available online: https://trid.trb.org/view/380792 (accessed on 1 January 2023).
 Kim, K.J.; Han, H.S.; Yang, S.J. Air gap control simulation of maglev vehicles with feedback control system. Int. J. Control Autom. 2013, 6, 401–412. [Google Scholar] [CrossRef]
 Yim, B.; Han, H.; Lee, J.; Kim, S. Curving performance simulation of an EMStype Maglev vehicle. Veh. Syst. Dyn. 2009, 47, 1287–1304. [Google Scholar] [CrossRef]
 Balandin, D.; Biryukov, R.; Kogan, M.; Fedyukov, A. Optimal stabilization of bodies in electromagnetic suspensions without measurements of their location. J. Comput. Syst. Sci. Int. 2017, 56, 351–363. [Google Scholar] [CrossRef]
 Zhang, Z.; Long, Z.; She, L.; Chang, W. Faulttolerant control for maglev suspension system based on simultaneous stabilization. In Proceedings of the 2007 IEEE International Conference on Automation and Logistics, Jinan, China, 18–21 August 2007. [Google Scholar] [CrossRef]
 Ding, J.; Yang, X.; Long, Z.; Dang, N. Threedimensional numerical analysis and optimization of electromagnetic suspension system for 200 km/h maglev train considering eddy current effect. IEEE Access 2018, 6, 61547–61555. [Google Scholar] [CrossRef]
 Li, Y.; Chang, W.S. Cascade control of an EMS maglev vehicle’s levitation control system. Acta Autom. Sin. 1999, 25, 247–251. [Google Scholar] [CrossRef]
 Liang, D.; Zhang, K.; Jiang, Q.; Wang, Y.; Duan, J.; He, H. Mathematical model optimization of electromagnetic suspension system based on additional constraints. In Proceedings of the 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, China, 19–21 June 2019. [Google Scholar] [CrossRef]
 Liang, D.; Zhang, K.; Jiang, Q.; He, H. The Effects of Maglev Chopper’s Control Cycle on Suspension Performance in EMS System. In Proceedings of the 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019ECCE Asia), Busan, Republic of Korea, 27–30 May 2019. [Google Scholar] [CrossRef]
 Lu, H.; Han, X.; Li, Z.; He, X.; Liu, K.; Chen, Z. Analysis of Vibration Characteristics of Lowmedium Speed Maglev Levitation Systems in Lifting Stages. China Mech. Eng. 2019, 30, 318. [Google Scholar] [CrossRef]
 Wu, H.; Zeng, X.; Shi, H. Stability analysis of maglev vehicle with delayed position feedback control. Chin. J. Theor. Appl. Mech. 2019, 51, 550–557. [Google Scholar] [CrossRef]
 Gandhi, R.V.; Adhyaru, D.M.; Kasundra, J. Modeling of current and voltage controlled electromagnetic levitation system based on novel approximation of coil inductance. In Proceedings of the 2018 4th International Conference on Control, Automation and Robotics (ICCAR), Auckland, New Zealand, 20–23 April 2018. [Google Scholar] [CrossRef]
 Yang, Q.; Yu, P.; Li, J.; Chi, Z.; Wang, L. Modeling and Control of Maglev Train Considering Eddy Current Effect. In Proceedings of the 2020 39th Chinese Control Conference (CCC), Shenyang, China, 27–29 July 2020. [Google Scholar] [CrossRef]
 Nagurka, M.L. EMS Maglev vehicleguidewaycontroller model. In Proceedings of the American Control ConferenceACC’95, Seattle, WA, USA, 21–23 June 1995. [Google Scholar] [CrossRef]
 Longhua, S.; Guidong, L. Research on dynamics characteristic of single magnetic levitation control system. Electr. Locomot. Mass Transit Veh. 2006, 29, 7–19. [Google Scholar] [CrossRef]
 Cheng, H.; Li, Y.G.; Chang, W.S. Analysis and Simulation of Compliance Control in EMS Maglev Train. J. Syst. Simul. 2009, 21, 4756–4758. Available online: http://en.cnki.com.cn/Article_en/CJFDTotalXTFZ200915046.htm (accessed on 5 August 2009).
 Shi, J.; Wei, Q.; Zhao, Y. Dynamic simulation of maglev with two degree on flexible guideway. J. Syst. Simul. 2007, 19, 519–523. [Google Scholar] [CrossRef]
 Yang, Q.; Chi, Z.; Zhu, Y.; Li, J.; Yu, P.; Chen, Q.; Wang, L. Orderreduction model and analysis of EMS mediumandlow speed maglev train suspension system using Pade approximation method. In Proceedings of the 2022 41st Chinese Control Conference (CCC), Hefei, China, 25–27 July 2022. [Google Scholar] [CrossRef]
 Bao, J.; Zhang, K. Research of electromagnetic suspension system of single magnetic. Comput. Autom. Meas. Control 2003, 11, 863–865. [Google Scholar] [CrossRef]
 Wai, R.J.; Lee, J.D. Dynamic analyses and stabilizing control of linear magneticlevitation rail system. In Proceedings of the IECON 200733rd Annual Conference of the IEEE Industrial Electronics Society, Taipei, Taiwan, 5–8 November 2007. [Google Scholar] [CrossRef]
 Moreno, D. Design and Implementation of an Uncoupled and Parallelly Actuated Control for the Highly Nonlinear Suspension System of a Maglev Train. In Proceedings of the 2015 6th International Conference on Intelligent Systems, Modelling and Simulation, Kuala Lumpur, Malaysia, 9–12 February 2015. [Google Scholar] [CrossRef]
 Zhou, H.B.; Duan, J.A. Levitation mechanism modelling for maglev transportation system. J. Cent. South Univ. Technol. 2010, 17, 1230–1237. [Google Scholar] [CrossRef]
 Luat, T.H.; Kim, Y.T. Design of a MIMO levitation controller for MagLev transportation system. J. Adv. Comput. Intell. Intell. Inform. 2017, 21, 591–596. [Google Scholar] [CrossRef]
 Han, J.B.; Kim, K.J. Characteristics of vibration in magnetically levitated trains subjected to crosswind. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2018, 232, 1347–1359. [Google Scholar] [CrossRef]
 Aly, M.; Alberts, T. On levitation and lateral control of electromagnetic suspension maglev systems. J. Dyn. Syst. Meas. Contr. 2012, 134, 061012. [Google Scholar] [CrossRef]
 Kim, C.H. Robust control of magnetic levitation systems considering disturbance force by LSM propulsion systems. IEEE Trans. Magn. 2017, 53, 1–5. [Google Scholar] [CrossRef]
 Wu, H.; Zeng, X.H.; Gao, D.G.; Lai, J. Dynamic stability of an electromagnetic suspension maglev vehicle under steady aerodynamic load. Appl. Math. Modell. 2021, 97, 483–500. [Google Scholar] [CrossRef]
 Danfeng, Z.; Jie, L. Analysis of the lowfrequency vibration of ems maglev vehicles. In Proceedings of the 2007 IEEE International Conference on Control and Automation, Guangzhou, China, 30 May–1 June 2007. [Google Scholar] [CrossRef]
 Xu, Y.; Zhao, Z.; Yin, S.; Long, Z. RealTime Performance Optimization of Electromagnetic Levitation Systems and the Experimental Validation. IEEE Trans. Ind. Electron. 2022, 70, 3035–3044. [Google Scholar] [CrossRef]
 Wang, Z.; Long, Z.; Li, X. Levitation control of permanent magnet electromagnetic hybrid suspension maglev train. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2018, 232, 315–323. [Google Scholar] [CrossRef]
 Sun, Y.; Qiang, H.; Lin, G.; Ren, J.; Li, W. Dynamic modeling and control of nonlinear electromagnetic suspension systems. Chem. Eng. Trans. 2015, 46, 1039–1044. [Google Scholar] [CrossRef]
 Shu, G.W.; Meisinger, R. Magnetic suspension control system based on stochastic linear quadratic optimization. J. East China Univ. Ence Technol. 2005, 5, 649–652. [Google Scholar] [CrossRef]
 Shu, G.W.; Meisinger, R. Simulation of Magnetic Suspension Control System Based on Simulink. J. Syst. Simul. 2008, 20, 2168–2170. [Google Scholar] [CrossRef]
 Li, S.; Zhang, K.; Liu, G.; Cai, L. The Research of Vibration Reduction of EMS Maglev Vehicles Based on Semiactive Control. In Proceedings of the 2018 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018. [Google Scholar] [CrossRef]
 Byun, Y.S.; Cho, T.S.; Kim, Y.C. A Design of Suspension Controller for Magnetic Levitation System Using Gain Scheduling Control. J. Korean Inst. Telemat. Electron. S 1999, 36, 57–66. Available online: https://koreascience.kr/article/JAKO199915875824918.page (accessed on 1 January 2023).
 Kim, C.; Ahn, H.; Lee, J.; Lee, H. Linear Quadratic Servo Design for Magnetic Levitation Systems Considering Disturbance Forces from Linear Synchronous Motor. J. Electr. Eng. Technol. 2017, 12, 944–949. [Google Scholar] [CrossRef] [Green Version]
 Park, J.S.; Kim, J.S.; Lee, J.K. Robust control of maglev vehicles with multimagnets using separate control techniques. J. Mech. Sci. Technol. 2001, 15, 1240–1247. [Google Scholar] [CrossRef]
 Sadrnia, M.A.; Jafari, A.H. Robust Control Design for Maglev Train with Parametric Uncertainties Using MuSynthesis. In Proceedings of Proceedings of the World Congress on Engineering 2007, London, UK, 2–4 July 2017; Available online: https://www.iaeng.org/publication/WCE2007/WCE2007_pp384390.pdf (accessed on 1 January 2023).
 Zhao, C.F. Dynamics of maglev vehicle/guideway systems (Ⅰ)magnet/rail interaction and system stability. Chin. J. Mech. Eng. 2005, 41, 1–10. [Google Scholar] [CrossRef]
 Zheng, X.J.; Wu, J.J.; Zhou, Y.H. Numerical analyses on dynamic control of fivedegreeoffreedom maglev vehicle moving on flexible guideways. J. Sound Vib. 2000, 235, 43–61. [Google Scholar] [CrossRef] [Green Version]
 Han, H.; Yim, B.; Lee, N.; Kim, Y. Prediction of ride quality of a Maglev vehicle using a full vehicle multibody dynamic model. Veh. Syst. Dyn. 2009, 47, 1271–1286. [Google Scholar] [CrossRef]
 Wang, D.; Li, X.; Liang, L.; Qiu, X. Influence of the track structure on the vertical dynamic interaction analysis of the lowtomediumspeed maglev trainbridge system. Adv. Struct. Eng. 2019, 22, 2937–2950. [Google Scholar] [CrossRef]
 Lee, J.S.; Kwon, S.D.; Kim, M.Y.; Yeo, I.H. A parametric study on the dynamics of urban transit maglev vehicle running on flexible guideway bridges. J. Sound Vib. 2009, 328, 301–317. [Google Scholar] [CrossRef]
 Kim, K.J.; Han, J.B.; Han, H.S.; Yang, S.J. Coupled vibration analysis of maglev vehicleguideway while standing still or moving at low speeds. Veh. Syst. Dyn. 2015, 53, 587–601. [Google Scholar] [CrossRef]
 Li, M.; Chen, X.; Luo, S.; Ma, W.; Lei, C.; Liu, W.; Gong, J. Experimental study on vertical vibration characteristics of mediumlow speed maglev vehicle when standing still on steel beams. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2022, 236, 609–622. [Google Scholar] [CrossRef]
 Zhou, D.; Li, J.; Zhang, K. Amplitude control of the trackinduced selfexcited vibration in a maglev system. Isa Trans. 2014, 53, 1463–1469. [Google Scholar] [CrossRef] [PubMed]
 Xia, W.; Zeng, J.; Dou, F.; Long, Z. Method of combining theoretical calculation with numerical simulation for analyzing effects of parameters on the Maglev vehiclebridge system. IEEE Trans. Veh. Technol. 2021, 70, 2250–2257. [Google Scholar] [CrossRef]
 Zhou, D.; Hansen, C.; Li, J. Suppression of maglev vehicle–girder selfexcited vibration using a virtual tuned mass damper. J. Sound Vib. 2011, 330, 883–901. [Google Scholar] [CrossRef]
 Zhou, D.; Li, J.; Hansen, C.H. Suppression of the stationary maglev vehicle–bridge coupled resonance using a tuned mass damper. J. Vib. Control 2013, 19, 191–203. [Google Scholar] [CrossRef]
 Li, Z.; Dong, H.; Chen, Z.; Lin, H.; Yang, J. Nonlinear vibration and control of maglev vehicleswitch beam coupling system. Adv. Mech. Eng. 2021, 13, 16878140211044049. [Google Scholar] [CrossRef]
 Zhou, D.; Guo, Z.; Li, J.; Yu, P. Suppression of the maglev vehicletrack coupled selfexcited vibration using two gap sensors. In Proceedings of the 2019 Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019. [Google Scholar] [CrossRef]
 Han, J.B.; Han, H.S.; Lee, J.M.; Kim, S.S. Dynamic modeling and simulation of EMS maglev vehicle to evaluate the levitation stability and operational safety over an elastic segmented switch track. J. Mech. Sci. Technol. 2018, 32, 2987–2998. [Google Scholar] [CrossRef]
 Han, H.; Yim, B.; Lee, N.; Hur, Y.; Kim, S. Effects of the guideway’s vibrational characteristics on the dynamics of a maglev vehicle. Veh. Syst. Dyn. 2009, 47, 309–324. [Google Scholar] [CrossRef]
 Feng, Y.; Zhao, C.; Zhai, W.; Tong, L.; Liang, X.; Shu, Y. Dynamic performance of medium speed maglev train running over girders: Field test and numerical simulation. Int. J. Struct. Stab. Dyn. 2023, 23, 2350006. [Google Scholar] [CrossRef]
 Chi, Z.; Li, J. Simulation analysis of the vehicleguideway coupling vibration of EMS maglev train. In Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017. [Google Scholar] [CrossRef]
 Zhang, L.; Huang, L.; Zhang, Z. Stability and Hopf bifurcation of the maglev system with delayed position and speed feedback control. Nonlinear Dyn. 2009, 57, 197–207. [Google Scholar] [CrossRef]
 Zhang, L.; Huang, L.; Zhang, Z. Hopf bifurcation of the maglev timedelay feedback system via pseudooscillator analysis. Math. Comput. Modell. 2010, 52, 667–673. [Google Scholar] [CrossRef]
 Hu, J.; Ma, W.; Chen, X.; Luo, S. Levitation stability and Hopf bifurcation of EMS maglev trains. Math. Probl. Eng. 2020, 2020, 2936838. [Google Scholar] [CrossRef]
 Zhou, D.; Li, J.; Hansen, C.H. Application of least mean square algorithm to suppression of maglev trackinduced selfexcited vibration. J. Sound Vib. 2011, 330, 5791–5811. [Google Scholar] [CrossRef]
 Zhou, D.; Li, J.; Zhang, K. An adaptive control method to suppress the maglev trackinduced selfexcited vibration. In Proceedings of the 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet), Xianning, China, 16–18 April 2011. [Google Scholar] [CrossRef]
 Wang, H.; Shen, G.; Li, L.; Zhong, X. Study on the Maglev vehicle–guideway coupling vibration system. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2015, 229, 507–517. [Google Scholar] [CrossRef]
 Songqi, L.; Kunlun, Z. Selfexcited vibration of singlemagnet suspension system: Stability analysis and inhibition. J. Southwest Jiaotong Univ. 2015, 50, 410–416. [Google Scholar] [CrossRef]
 Keren, W.; Shihui, L.U.O.; Jiye, Z. Design of Magnetic Levitation Controller and Static Stability Analysis. J. Southwest Jiaotong Univ. 2017, 30, 118–126. [Google Scholar] [CrossRef]
 Zeng, J.; Xia, W.; Xiang, X.; Long, Z. Research on the Mechanism and Control Characteristics of Vehicletrack beam Coupling Vibration for Mediumspeed Maglev Vehicle. IEEE Trans. Transp. Electrif. 2022, 8, 3236–3246. [Google Scholar] [CrossRef]
 Junqi, X. Magnetic suspension control method based on force balance. Electr. Mach. Control Appl. 2010, 37, 20–23. [Google Scholar] [CrossRef]
 Long, X.L.; She, L.H.; Chang, W.S. Study on nonlinear control method for Hybrid EMS maglev train. J. China Railw. Soc. 2011, 33, 36–39. [Google Scholar] [CrossRef]
 Li, S.Q.; Zhang, K.L.; Liu, G.Q.; Guo, W. Nonlinear Control of Maglev Train Based on Inverse System Method. Control Eng. China 2017, 5, 1542–1546. [Google Scholar] [CrossRef]
 Gandhi, R.; Adhyaru, D. Novel Approximation based Dynamical Modelling and Nonlinear Control of Electromagnetic Levitation System. Int. J. Comput. Syst. Eng. 2018, 4, 224–237. [Google Scholar] [CrossRef]
 Gandhi, R.V.; Adhyaru, D.M. Feedback linearization based optimal controller design for electromagnetic levitation system. In Proceedings of the 2016 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kumaracoil, India, 16–17 December 2016. [Google Scholar] [CrossRef]
 Malik, A.S.; Ahmad, I.; Rahman, A.U.; Islam, Y. Integral backstepping and synergetic control of magnetic levitation system. IEEE Access 2019, 7, 173230–173239. [Google Scholar] [CrossRef]
 Xu, J.; Sun, Y.; Gao, D.; Ma, W.; Luo, S.; Qian, Q. Dynamic modeling and adaptive sliding mode control for a maglev train system based on a magnetic flux observer. IEEE Access 2018, 6, 31571–31579. [Google Scholar] [CrossRef]
 Sun, Y.; Li, W.; Lin, G.; Xu, J. Dynamic modeling and nonlinear control research on magnetic suspension systems of lowspeed maglev train. J. Tongji Univ 2017, 45, 741–749. [Google Scholar] [CrossRef]
 Chen, C.; Xu, J.; Ji, W.; Rong, L.; Lin, G. Sliding mode robust adaptive control of maglev vehicle’s nonlinear suspension system based on flexible track: Design and experiment. IEEE Access 2019, 7, 41874–41884. [Google Scholar] [CrossRef]
 Hao, A.; Li, X.; She, L. Adaptive control of electromagnetic suspension system by HOPF bifurcation. Math. Probl. Eng. 2013, 2013, 841–860. [Google Scholar] [CrossRef]
 Qiang, H.; Li, W.; Sun, Y.; Liu, X. Levitation chassis dynamic analysis and robust position control for maglev vehicles under nonlinear periodic disturbance. J. Vibroengineering 2017, 19, 1273–1286. [Google Scholar] [CrossRef] [Green Version]
 Gopi, R.S.; Srinivasan, S.; Panneerselvam, K.; Teekaraman, Y.; Kuppusamy, R.; Urooj, S. Enhanced Model Reference Adaptive Control Scheme for Tracking Control of Magnetic Levitation System. Energies 2021, 14, 1455. [Google Scholar] [CrossRef]
 Mohagheghi, A.; Javanmardi, H.; Safavi, S.A.A.; Moallem, M. Air Gap Control of a Magnetic Levitation System using Nonlinear Model Predictive Control. In Proceedings of the IECON 201945th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019. [Google Scholar] [CrossRef]
 Liu, D.; Li, J.; Zhang, K. The design of the nonlinear suspension controller for EMS maglev train based on feedback linearization. J. Natl. Univ. Def. Technol. 2005, 27, 96–101. [Google Scholar] [CrossRef]
 Peng, C.; Zhaoyu, G.; Jie, L. Study on two feedback linearization control methods for the magnetic suspension system. In Proceedings of the 2015 34th Chinese Control Conference (CCC), Hangzhou, China, 28–30 July 2015. [Google Scholar] [CrossRef]
 Oh, S.Y.; Choi, H.L. Robust approximate feedback linearisation control for nonlinear systems with uncertain parameters and external disturbance: Its application to an electromagnetic levitation system. Int. J. Syst. Sci. 2018, 49, 2695–2703. [Google Scholar] [CrossRef]
 Pandey, A.; Adhyaru, D.M. Stability Analysis of Electromagnetic Levitation System Using LyapunovKrasovskii’s Method. In Proceedings of the 2022 International Conference for Advancement in Technology (ICONAT), Goa, India, 21–22 January 2022. [Google Scholar] [CrossRef]
 Afshar, K.K.; Javadi, A. Mass estimation and adaptive output feedback control of nonlinear electromagnetic levitation system. J. Sound Vib. 2021, 495, 115923. [Google Scholar] [CrossRef]
 Zheng, Y.B.; Li, J.; Liu, D.S. Modeling and decoupled sliding mode control of maglev train module. In Proceedings of the 2006 9th International Conference on Control, Automation, Robotics and Vision, Singapore, 5–8 December 2006. [Google Scholar] [CrossRef]
 Kong, E.; Song, J.S.; Kang, B.B.; Na, S. Dynamic response and robust control of coupled maglev vehicle and guideway system. J. Sound Vib. 2011, 330, 6237–6253. [Google Scholar] [CrossRef]
 Yang, J.; Li, S.; Yu, X. Slidingmode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans. Ind. Electron. 2012, 60, 160–169. [Google Scholar] [CrossRef]
 Yang, J.; Su, J.; Li, S.; Yu, X. Highorder mismatched disturbance compensation for motion control systems via a continuous dynamic slidingmode approach. IEEE Trans. Ind. Inf. 2013, 10, 604–614. [Google Scholar] [CrossRef] [Green Version]
 Chen, C.; Xu, J.; Lin, G.; Sun, Y.; Zhao, X. Sliding Mode Bifurcation Control Based on Acceleration Feedback Correction Adaptive Compensation for Maglev Train Suspension System with TimeVarying Disturbance. IEEE Trans. Transp. Electrif. 2022, 8, 2273–2287. [Google Scholar] [CrossRef]
 Sinha, P.K.; Pechev, A.N. Model reference adaptive control of a maglev system with stable maximum descent criterion. Automatica 1999, 35, 1457–1465. [Google Scholar] [CrossRef]
 Li, S.Q.; Zhang, K.L.; Liu, G.Q.; Guo, W. Guo EMS maglev vehicles model reference adaptive control. In Proceedings of the 2015 34th Chinese Control Conference (CCC), Hangzhou, China, 28–30 July 2015. [Google Scholar] [CrossRef]
 Zhou, D.; Wang, Y.; Chen, Q.; Yu, P.; Li, J.; Tan, Y. Adaptive Vibration Control of the Maglev VehicleTrack Coupled High Frequency Resonance. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020. [Google Scholar] [CrossRef]
 Cai, W.C.; Zhu, D.; Chen, Z.R.; Liu, X.Q. An Cascade Transformation Based Adaptive Electromagnetic Suspension Control of Maglev Trains without Speed Measurement. In Proceedings of the 2022 41st Chinese Control Conference (CCC), Hefei, China, 25–27 July 2022. [Google Scholar] [CrossRef]
 Wai, R.J.; Lee, J.D. Backsteppingbased levitation control design for linear magnetic levitation rail system. IET Control Theory Appl. 2008, 2, 72–86. [Google Scholar] [CrossRef]
 Wang, Y.; Zhou, D.; Li, J.; Song, M.; Yang, Q. Integral backstepping and lyapunov calm control design for magnetic levitation system. In Proceedings of the 2021 40th Chinese Control Conference (CCC), Shanghai, China, 26–28 July 2021. [Google Scholar] [CrossRef]
 Sinha, P.K.; Pechev, A.N. Nonlinear H_{∞} controllers for electromagnetic suspension systems. IEEE Trans. Autom. Control 2004, 49, 563–568. [Google Scholar] [CrossRef]
 Yang, J.; Zolotas, A.; Chen, W.H.; Michail, K.; Li, S. Robust control of nonlinear MAGLEV suspension system with mismatched uncertainties via DOBC approach. ISA Trans. 2011, 50, 389–396. [Google Scholar] [CrossRef] [Green Version]
 Ni, F.; Mu, S.; Kang, J.; Xu, J. Robust controller design for maglev suspension systems based on improved suspension force model. IEEE Trans. Transp. Electrif. 2021, 7, 1765–1779. [Google Scholar] [CrossRef]
 Pakkhesal, S.; Mohammadzaman, I.; Vali, A.R.; Behnamgol, V. Nonlinear control of a maglev system using sumofsquares optimization. In Proceedings of the 2017 Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 2–4 May 2017. [Google Scholar] [CrossRef]
 Shihui, J.; Dong, S.; Tianbo, Z.; Hongze, X. Nonlinear Robust Composite Levitation Control for HighSpeed EMS Trains With Input Saturation and Track Irregularities. IEEE Trans. Intell. Transp. Syst. 2022, 23, 20323–20336. [Google Scholar] [CrossRef]
 Jiang, S.; Xu, H.; Zhang, T.; Yao, X.; Long, Z. Lazy prescribedtime synchronization control of half bogie for highspeed maglev train considering track irregularities and input constraints. IEEE Trans. Veh. Technol. 2022, 71, 6924–6937. [Google Scholar] [CrossRef]
 Kusagawa, S.; Baba, J.; Shutoh, K.; Masada, E. Application of fuzzy logic to EMStype magnetically levitated railway vehicle. IEEJ Trans. Ind. Appl. 2004, 124, 396–404. [Google Scholar] [CrossRef] [Green Version]
 Xu, Z.; Liu, Y.; Wang, J.; Shi, L.; Jin, N. Fuzzy logic based control strategy for hybridmagnets used in maglev systems. Diangong Jishu Xuebao/Trans. China Electrotech. Soc. 2006, 21, 76–80. [Google Scholar] [CrossRef]
 Javadi, A.; Pezeshki, S. A new modelfree adaptive controller versus nonlinear H∞ controller for levitation of an electromagnetic system. Trans. Inst. Meas. Control 2013, 35, 321–329. [Google Scholar] [CrossRef]
 Sun, Y.; Wang, L.; Xu, J.; Lin, G. An intelligent coupling 3grade fuzzy comprehensive evaluation approach with AHP for selection of levitation controller of maglev trains. IEEE Access 2020, 8, 99509–99518. [Google Scholar] [CrossRef]
 Gandhi, R.V.; Adhyaru, D.M. Hybrid intelligent controller design for an unstable electromagnetic levitation system: A fuzzy interpolative controller approach. Int. J. Autom. Control 2019, 13, 735–754. [Google Scholar] [CrossRef]
 Gandhi, R.V.; Adhyaru, D.M. PrefuzzyPID controller for effective control of electromagnetic levitation system. In Proceedings of the 2018 Indian Control Conference (ICC), Kanpur, India, 4–6 January 2018. [Google Scholar] [CrossRef]
 Wai, R.J.; Yao, J.X.; Lee, J.D. Backstepping fuzzyneuralnetwork control design for hybrid maglev transportation system. IEEE Trans. Neural Netw. Learn. Syst. 2014, 26, 302–317. [Google Scholar] [CrossRef]
 Wai, R.J.; Chen, M.W.; Yao, J.X. Observerbased adaptive fuzzyneuralnetwork control for hybrid maglev transportation system. Neurocomputing 2016, 175, 10–24. [Google Scholar] [CrossRef]
 Long, Z.; Xue, S.; Zhang, Z.; Xie, Y. A new strategy of active faulttolerant control for suspension system of maglev train. In Proceedings of the 2007 IEEE International Conference on Automation and Logistics, Jinan, China, 18–21 August 2007. [Google Scholar] [CrossRef]
 Zhai, M.; Li, X.; Long, Z. Faulttolerant control strategy for the suspension module of EMS Highspeed maglev train. In Proceedings of the 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, 15–17 December 2017. [Google Scholar] [CrossRef]
 Zhai, M.; Long, Z.; Li, X. Faulttolerant control of magnetic levitation system based on state observer in high speed maglev train. IEEE Access 2019, 7, 31624–31633. [Google Scholar] [CrossRef]
 Banerjee, S. Extension of operating airgap in electromagnetic levitation system by using intelligent controllers. Int. J. Autom. Control 2018, 12, 526–554. [Google Scholar] [CrossRef]
 Dey, S.; Dey, J.; Banerjee, S. Optimization algorithm based PID controller design for a magnetic levitation system. In Proceedings of the 2020 IEEE Calcutta Conference (CALCON), Kolkata, India, 28–29 February 2020. [Google Scholar] [CrossRef]
 Chen, Q.; Tan, Y.; Li, J.; Mareels, I. Decentralized PID control design for magnetic levitation systems using extremum seeking. IEEE Access 2017, 6, 3059–3067. [Google Scholar] [CrossRef]
 Yang, J.; Sun, R.; Cui, J.; Ding, X. Application of composite fuzzyPID algorithm to suspension system of Maglev train. In Proceedings of the 30th Annual Conference of IEEE Industrial Electronics Society, 2004. IECON 2004, Busan, Republic of Korea, 2–6 November 2004. [Google Scholar] [CrossRef]
 Sun, Y.; Xu, J.; Qiang, H.; Lin, G. Adaptive neuralfuzzy robust position control scheme for maglev train systems with experimental verification. IEEE Trans. Ind. Electron. 2019, 66, 8589–8599. [Google Scholar] [CrossRef]
 Sun, Y.G.; Xu, J.Q.; Chen, C.; Lin, G.B. Fuzzy H∞ robust control for magnetic levitation system of maglev vehicles based on TS fuzzy model: Design and experiments. J. Intell. Fuzzy Syst. 2019, 36, 911–922. [Google Scholar] [CrossRef]
 Sun, Y.; Qiang, H.; Xu, J.; Lin, G. Internet of Thingsbased online condition monitor and improved adaptive fuzzy control for a mediumlowspeed maglev train system. IEEE Trans. Ind. Inf. 2019, 16, 2629–2639. [Google Scholar] [CrossRef]
 Jing, Y.; Xiao, J.; Zhang, K. Compensation of gap sensor for highspeed maglev train with RBF neural network. Trans. Inst. Meas. Control 2013, 35, 933–939. [Google Scholar] [CrossRef]
 Sun, Y.; Xu, J.; Lin, G.; Sun, N. Adaptive neural network control for maglev vehicle systems with timevarying mass and external disturbance. Neural Comput. Appl. 2021, 9, 1–12. [Google Scholar] [CrossRef]
 Sun, Y.; Xu, J.; Lin, G.; Ji, W.; Wang, L. RBF neural networkbased supervisor control for maglev vehicles on an elastic track with network time delay. IEEE Trans. Ind. Inf. 2020, 18, 509–519. [Google Scholar] [CrossRef]
 Sun, Y.; Xu, J.; Chen, C.; Hu, W. Reinforcement learningbased optimal tracking control for levitation system of maglev vehicle with input time delay. IEEE Trans. Instrum. Meas. 2022, 71, 1–13. [Google Scholar] [CrossRef]
 Kusagawa, S.; Baba, J.; Shutoh, K.; Masada, E. Multipurpose design optimization of EMStype magnetically levitated vehicle based on genetic algorithm. IEEE Trans. Appl. Supercond. 2004, 14, 1922–1925. [Google Scholar] [CrossRef]
 Wai, R.J.; Lee, J.D.; Chuang, K.L. Realtime PID control strategy for maglev transportation system via particle swarm optimization. IEEE Trans. Ind. Electron. 2010, 58, 629–646. [Google Scholar] [CrossRef]
 Gao, D.G.; Sun, Y.G.; Luo, S.H.; Lin, G.B.; Tong, L.S. Deep learning controller design of embedded control system for maglev train via deep belief network algorithm. Des. Autom. Embed. Syst. 2020, 24, 161–181. [Google Scholar] [CrossRef]
 Sun, Y.; Xu, J.; Wu, H.; Lin, G.; Mumtaz, S. Deep learning based semisupervised control for vertical security of maglev vehicle with guaranteed bounded airgap. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4431–4442. [Google Scholar] [CrossRef]
 Acharya, D.S.; Mishra, S.K. A multiagent based symbiotic organisms search algorithm for tuning fractional order PID controller. Measurement 2020, 155, 107559. [Google Scholar] [CrossRef]
Performance  Maglev Train  OnWheelRail Systems 

Speed domain 


Maintenance  1.2% of the total investment  4.4% of the total investment. Periodic replacement of wheels, gear, rails, etc. 
Noise  No mechanical contact 60–65 (dB)  Contact between wheels and rails, 75–80 (dB) 
Curve  In 30 (m) in radius  In 150 (m) in radius 
Grade  About 80–100/1000  About 30–50/1000 
Safety  No possible derailment  Derails from minor defects 
Specific energy consumption  45–54 (Wh/pl/km)  48.5–59 (Wh/pl/km) 
Cost of construction  High  Low 
Energy consumption  Very little  Mechanical resistance and wheel–rail resistance 
Service life  The life of rail is 80 years, and the life of vehicle is 35 years  The life of rail is less than 50–60 years, and the life of vehicle is 20–25 years 
Mode of track change  High difficulty and cost  Simple and low cost 
Levitation Control Methods  Advantages  Disadvantages 

Linear state feedback control 


Nonlinear control 


Intelligent control 


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. 
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Sun, Y.; Xu, J.; He, Z.; Lin, G. Control Methods for Levitation System of EMSType Maglev Vehicles: An Overview. Energies 2023, 16, 2995. https://doi.org/10.3390/en16072995
Li F, Sun Y, Xu J, He Z, Lin G. Control Methods for Levitation System of EMSType Maglev Vehicles: An Overview. Energies. 2023; 16(7):2995. https://doi.org/10.3390/en16072995
Chicago/Turabian StyleLi, Fengxing, Yougang Sun, Junqi Xu, Zhenyu He, and Guobin Lin. 2023. "Control Methods for Levitation System of EMSType Maglev Vehicles: An Overview" Energies 16, no. 7: 2995. https://doi.org/10.3390/en16072995