Role of Geothermal Energy in Sustainable Water Desalination—A Review on Current Status, Parameters, and Challenges
Abstract
:1. Introduction
2. Global Energy Scenario
3. Desalination Technologies
3.1. Single-Phase Desalination
3.2. Phase-Change Desalination
3.3. Hybrid Desalination
4. Geothermal Energy Used for Desalination Processes
5. Significance, Need, and Important Parameters for Associated with Geothermal Desalination
5.1. Significance of Geothermal Desalination
5.2. Need of Geothermal Desalination
5.2.1. Efficient Resource Utilization
5.2.2. Comparable Costs
5.2.3. Capacity Factor
5.2.4. Savings of Energy in Geothermal Applications
5.3. Important Parameters Associated with Geothermal Desalination
5.3.1. Availability of Geothermal Energy Sources
5.3.2. Capacity of the Plant
5.3.3. Characteristics of Feedwater
5.3.4. Product Water Quality
5.3.5. Techno-Economical Requirements
5.3.6. Desalination Technology
5.3.7. Brine Disposal
6. Challenges Associated with Development of Geothermal Energy
7. Conclusions and Scope for Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, A.; Panda, S.N.; Uzokwe, V.N.E.; Krause, P. An Assessment of Groundwater Recharge Estimation Techniques for Sustainable Resource Management. Groundw. Sustain. Dev. 2019, 9, 100218. [Google Scholar] [CrossRef]
- Sonawane, C.R.; Panchal, H.N.; Hoseinzadeh, S.; Ghasemi, M.H.; Alrubaie, A.J.; Sohani, A. Bibliometric Analysis of Solar Desalination Systems Powered by Solar Energy and CFD Modelled. Energies 2022, 15, 5279. [Google Scholar]
- Swain, S.; Taloor, A.K.; Dhal, L.; Sahoo, S.; Al-Ansari, N. Impact of Climate Change on Groundwater Hydrology: A Comprehensive Review and Current Status of the Indian Hydrogeology. Appl. Water Sci. 2022, 12, 120. [Google Scholar] [CrossRef]
- Mpandeli, S.; Naidoo, D.; Mabhaudhi, T.; Nhemachena, C.; Nhamo, L.; Liphadzi, S.; Hlahla, S.; Modi, A.T. Climate Change Adaptation through the Water-Energy-Food Nexus in Southern Africa. Int. J. Environ. Res. Public Health 2018, 15, 2306. [Google Scholar] [PubMed] [Green Version]
- Essa, F.A.; Elsheikh, A.H.; Algazzar, A.A.; Sathyamurthy, R.; Kamal, M.; Ali, A.; Abd, M.; Salman, K.H. Eco-Friendly Coffee-Based Colloid for Performance Augmentation of Solar Stills. Process Saf. Environ. Prot. 2020, 136, 259–267. [Google Scholar] [CrossRef]
- Feria-Díaz, J.J.; López-Méndez, M.C.; Rodríguez-Miranda, J.P.; Sandoval-Herazo, L.C.; Correa-Mahecha, F. Commercial Thermal Technologies for Desalination of Water from Renewable Energies: A State of the Art Review. Processes 2021, 9, 262. [Google Scholar]
- Belkhode, P.N.; Shelare, S.D.; Sakhale, C.N.; Kumar, R.; Shanmugan, S.; Soudagar, M.E.M.; Mujtaba, M.A. Performance Analysis of Roof Collector Used in the Solar Updraft Tower. Sustain. Energy Technol. Assess. 2021, 48, 101619. [Google Scholar] [CrossRef]
- Greco, A.; Gundabattini, E.; Solomon, D.G.; Singh Rassiah, R.; Masselli, C. A Review on Geothermal Renewable Energy Systems for Eco-Friendly Air-Conditioning. Energies 2022, 15, 5519. [Google Scholar]
- Ahmadvand, S.; Abbasi, B.; Azarfar, B.; Elhashimi, M.; Zhang, X.; Abbasi, B. Looking Beyond Energy Efficiency: An Applied Review of Water Desalination Technologies and an Introduction to Capillary-Driven Desalination. Water 2019, 11, 696. [Google Scholar] [CrossRef] [Green Version]
- Milousi, M.; Pappas, A.; Vouros, A.P.; Mihalakakou, G.; Souliotis, M.; Papaefthimiou, S. Evaluating the Technical and Environmental Capabilities of Geothermal Systems through Life Cycle Assessment. Energies 2022, 15, 5673. [Google Scholar]
- Lee, K.P.; Arnot, T.C.; Mattia, D. A Review of Reverse Osmosis Membrane Materials for Desalination—Development to Date and Future Potential. J. Memb. Sci. 2011, 370, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Pu, K.; Wu, P.; Wu, D.; Leng, J. Design, Selection and Application of Energy Recovery Device in Seawater Desalination: A Review. Energies 2020, 13, 4150. [Google Scholar] [CrossRef]
- Bundschuh, J.; Kaczmarczyk, M.; Ghaffour, N.; Tomaszewska, B. State-of-the-Art of Renewable Energy Sources Used in Water Desalination: Present and Future Prospects. Desalination 2021, 508, 115035. [Google Scholar] [CrossRef]
- Do Thi, H.T.; Pasztor, T.; Fozer, D.; Manenti, F.; Toth, A.J. Comparison of Desalination Technologies Using Renewable Energy Sources with Life Cycle, PESTLE, and Multi-Criteria Decision Analyses. Water 2021, 13, 3023. [Google Scholar] [CrossRef]
- Kabeel, A.E.; Sathyamurthy, R.; Manokar, A.M.; Sharshir, S.W.; Essa, F.A.; Elshiekh, A.H. Experimental Study on Tubular Solar Still Using Graphene Oxide Nano Particles in Phase Change Material (NPCM’s) for Fresh Water Production. J. Energy Storage 2020, 28, 101204. [Google Scholar] [CrossRef]
- Prajapati, M.; Shah, M.; Soni, B.; Parikh, S.; Sircar, A.; Balchandani, S.; Thakore, S.; Tala, M. Geothermal-Solar Integrated Groundwater Desalination System: Current Status and Future Perspective. Groundw. Sustain. Dev. 2021, 12, 100506. [Google Scholar] [CrossRef]
- Jia, X.; Klemeš, J.J.; Varbanov, P.S.; Wan Alwi, S.R. Analyzing the Energy Consumption, GHG Emission, and Cost of Seawater Desalination in China. Energies 2019, 12, 463. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, H.; Ronquim, F.; Seckler, M.; Kulay, L. Environmental Performance of Effluent Conditioning Systems for Reuse in Oil Refining Plants: A Case Study in Brazil. Energies 2019, 12, 326. [Google Scholar] [CrossRef] [Green Version]
- Jones, E.; Qadir, M.; van Vliet, M.T.H.; Smakhtin, V.; Kang, S. The State of Desalination and Brine Production: A Global Outlook. Sci. Total Environ. 2019, 657, 1343–1356. [Google Scholar] [CrossRef]
- Tomaszewska, B.; Szczepański, A. Possibilities for the Efficient Utilisation of Spent Geothermal Waters. Environ. Sci. Pollut. Res. 2014, 21, 11409–11417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, F.E.; Hashaikeh, R.; Hilal, N. Solar Powered Desalination—Technology, Energy and Future Outlook. Desalination 2019, 453, 54–76. [Google Scholar] [CrossRef] [Green Version]
- Alsaadi, A.S.; Francis, L.; Maab, H.; Amy, G.L.; Ghaffour, N. Evaluation of Air Gap Membrane Distillation Process Running under Sub-Atmospheric Conditions: Experimental and Simulation Studies. J. Memb. Sci. 2015, 489, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.A.; Tewari, S. Capacitive Deionization: Processes, Materials and State of the Technology. J. Electroanal. Chem. 2018, 813, 178–192. [Google Scholar] [CrossRef]
- Vasilachi, I.C.; Asiminicesei, D.M.; Fertu, D.I.; Gavrilescu, M. Occurrence and Fate of Emerging Pollutants in Water Environment and Options for Their Removal. Water 2021, 13, 181. [Google Scholar] [CrossRef]
- Sztekler, K.; Kalawa, W.; Nowak, W.; Mika, L.; Gradziel, S.; Krzywanski, J.; Radomska, E. Experimental Study of Three-Bed Adsorption Chiller with Desalination Function. Energies 2020, 13, 5827. [Google Scholar] [CrossRef]
- Schulze, E. Guidelines for Drinking-Water Quality. Vol. 2. Health Criteria and Other Supporting Information. 335 Seiten. World Health Organization, Geneva 1984. Preis: 35.–Sw. Fr. Food Nahr. 1986, 30, 80. [Google Scholar] [CrossRef]
- Curto, D.; Franzitta, V.; Guercio, A. A Review of the Water Desalination Technologies. Appl. Sci. 2021, 11, 670. [Google Scholar] [CrossRef]
- Kaczmarczyk, M.; Tomaszewska, B.; Operacz, A. Sustainable Utilization of Low Enthalpy Geothermal Resources to Electricity Generation through a Cascade System. Energies 2020, 13, 2495. [Google Scholar] [CrossRef]
- Chomać-Pierzecka, E.; Sobczak, A.; Soboń, D. The Potential and Development of the Geothermal Energy Market in Poland and the Baltic States—Selected Aspects. Energies 2022, 15, 4142. [Google Scholar]
- Wang, X.; Wang, G.L.; Gan, H.N.; Liu, Z.; Nan, D.W. Hydrochemical Characteristics and Evolution of Geothermal Fluids in the Chabu High-Temperature Geothermal System, Southern Tibet. Geofluids 2018, 2018, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Yudha, S.W.; Tjahjono, B.; Longhurst, P. Unearthing the Dynamics of Indonesia’s Geothermal Energy Development. Energies 2022, 15, 5009. [Google Scholar] [CrossRef]
- Dávalos-Elizondo, E.; Atekwana, E.A.; Atekwana, E.A.; Tsokonombwe, G.; Laó-Dávila, D.A. Medium to Low Enthalpy Geothermal Reservoirs Estimated from Geothermometry and Mixing Models of Hot Springs along the Malawi Rift Zone. Geothermics 2021, 89, 101963. [Google Scholar] [CrossRef]
- Reinsch, T.; Dobson, P.; Asanuma, H.; Huenges, E.; Poletto, F.; Sanjuan, B. Utilizing Supercritical Geothermal Systems: A Review of Past Ventures and Ongoing Research Activities. Geotherm. Energy 2017, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Gunnlaugsson, E. Geothermal District Heating in Reykjavik, Iceland. Tech. Poszuk. Geol. 2005, 44, 162–169. [Google Scholar]
- Teklemariam, M. Overview of Geothermal Resource Utilization and Potential in East African Rift System. Trans.—Geotherm. Resour. Counc. 2006, 30, 711–716. [Google Scholar]
- McNamara, D.D.; Sewell, S.; Buscarlet, E.; Wallis, I.C. A Review of the Rotokawa Geothermal Field, New Zealand. Geothermics 2016, 59, 281–293. [Google Scholar] [CrossRef] [Green Version]
- Hiriart, G.; Gutiérrez-Negrín, L.C.A. Main Aspects of Geothermal Energy in Mexico. Geothermics 2003, 32, 389–396. [Google Scholar] [CrossRef]
- Datuin, R.T.; Troncales, A.C. Philippine Geothermal Resources: General Geological Setting and Development. Geothermics 1986, 15, 613–622. [Google Scholar] [CrossRef]
- Ahmadi, E.; McLellan, B.; Ogata, S.; Mohammadi-Ivatloo, B.; Tezuka, T. An Integrated Planning Framework for Sustainable Water and Energy Supply. Sustainability 2020, 12, 4295. [Google Scholar] [CrossRef]
- Ahmadi, E.; McLellan, B.; Mohammadi-Ivatloo, B.; Tezuka, T. The Role of Renewable Energy Resources in Sustainability of Water Desalination as a Potential Fresh-Water Source: An Updated Review. Sustainability 2020, 12, 5233. [Google Scholar] [CrossRef]
- Aliewi, A.; El-Sayed, E.; Akbar, A.; Hadi, K.; Al-Rashed, M. Evaluation of Desalination and Other Strategic Management Options Using Multi-Criteria Decision Analysis in Kuwait. Desalination 2017, 413, 40–51. [Google Scholar] [CrossRef]
- ALMARWaterSolution. Desalination Technologies and Economics: CAPEX, OPEX & Technological Game Changers to Come. In Proceedings of the Mediterranean Regional Technical Meeting, Marseille, France, 14–16 December 2016. [Google Scholar]
- Khan, J.; Arsalan, M.H. Solar Power Technologies for Sustainable Electricity Generation—A Review. Renew. Sustain. Energy Rev. 2016, 55, 414–425. [Google Scholar] [CrossRef]
- Al-Obaidi, M.A.; Zubo, R.H.A.; Rashid, F.L.; Dakkama, H.J.; Abd-Alhameed, R.; Mujtaba, I.M. Evaluation of Solar Energy Powered Seawater Desalination Processes: A Review. Energies 2022, 15, 6562. [Google Scholar] [CrossRef]
- Alkaisi, A.; Mossad, R.; Sharifian-Barforoush, A. A Review of the Water Desalination Systems Integrated with Renewable Energy. Energy Procedia 2017, 110, 268–274. [Google Scholar] [CrossRef]
- Akkala, S.R.; Kaviti, A.K.; ArunKumar, T.; Sikarwar, V.S. Progress on Suspended Nanostructured Engineering Materials Powered Solar Distillation—A Review. Renew. Sustain. Energy Rev. 2021, 143, 110848. [Google Scholar] [CrossRef]
- Vahid Pakdel, M.J.; Sohrabi, F.; Mohammadi-Ivatloo, B. Multi-Objective Optimization of Energy and Water Management in Networked Hubs Considering Transactive Energy. J. Clean. Prod. 2020, 266, 121936. [Google Scholar] [CrossRef]
- Cai, Y.; Cai, J.; Xu, L.; Tan, Q.; Xu, Q. Integrated Risk Analysis of Water-Energy Nexus Systems Based on Systems Dynamics, Orthogonal Design and Copula Analysis. Renew. Sustain. Energy Rev. 2019, 99, 125–137. [Google Scholar] [CrossRef]
- Kılkış, Ş. Sustainable Development of Energy, Water and Environment Systems Index for Southeast European Cities. J. Clean. Prod. 2016, 130, 222–234. [Google Scholar] [CrossRef]
- Stokes-Draut, J.; Taptich, M.; Kavvada, O.; Horvath, A. Evaluating the Electricity Intensity of Evolving Water Supply Mixes: The Case of California’s Water Network. Environ. Res. Lett. 2017, 12, 114005. [Google Scholar] [CrossRef]
- Xie, X.; Jia, B.; Han, G.; Wu, S.; Dai, J.; Weinberg, J. A Historical Data Analysis of Water-Energy Nexus in the Past 30 Years Urbanization of Wuxi City, China. Environ. Prog. Sustain. Energy 2018, 37, 46–55. [Google Scholar] [CrossRef]
- Stokes, J.R.; Horvath, A. Energy and Air Emission Effects of Water Supply. Environ. Sci. Technol. 2009, 43, 2680–2687. [Google Scholar] [CrossRef] [Green Version]
- Sperling, J.B.; Ramaswami, A. Cities and “Budget-Based” Management of the Energy-Water-Climate Nexus: Case Studies in Transportation Policy, Infrastructure Systems, and Urban Utility Risk Management. Environ. Prog. Sustain. Energy 2018, 37, 91–107. [Google Scholar] [CrossRef]
- Bolwig, S.; Bazbauers, G.; Klitkou, A.; Lund, P.D.; Blumberga, A.; Gravelsins, A.; Blumberga, D. Review of Modelling Energy Transitions Pathways with Application to Energy System Flexibility. Renew. Sustain. Energy Rev. 2019, 101, 440–452. [Google Scholar] [CrossRef]
- Valek, A.M.; Sušnik, J.; Grafakos, S. Quantification of the Urban Water-Energy Nexus in México City, México, with an Assessment of Water-System Related Carbon Emissions. Sci. Total Environ. 2017, 590–591, 258–268. [Google Scholar] [CrossRef] [PubMed]
- De Stercke, S.; Mijic, A.; Buytaert, W.; Chaturvedi, V. Modelling the Dynamic Interactions between London’s Water and Energy Systems from an End-Use Perspective. Appl. Energy 2018, 230, 615–626. [Google Scholar] [CrossRef]
- Cherp, A.; Vinichenko, V.; Jewell, J.; Brutschin, E.; Sovacool, B. Integrating Techno-Economic, Socio-Technical and Political Perspectives on National Energy Transitions: A Meta-Theoretical Framework. Energy Res. Soc. Sci. 2018, 37, 175–190. [Google Scholar] [CrossRef]
- Agency, I.E. International Energy Agency (IEA) World Energy Outlook. 2022. Available online: https://www.iea.org/reports/world-energy-outlook-2022 (accessed on 13 December 2022).
- Tokui, Y.; Moriguchi, H.; Nishi, Y. Comprehensive Environmental Assessment of Seawater Desalination Plants: Multistage Flash Distillation and Reverse Osmosis Membrane Types in Saudi Arabia. Desalination 2014, 351, 145–150. [Google Scholar] [CrossRef]
- Zhang, W.; Mossad, M.; Yazdi, J.S.; Zou, L. A Statistical Experimental Investigation on Arsenic Removal Using Capacitive Deionization. Desalin. Water Treat. 2016, 57, 3254–3260. [Google Scholar] [CrossRef]
- Zhang, W.; Jia, B. Toward Anti-Fouling Capacitive Deionization by Using Visible-Light Reduced TiO2/Graphene Nanocomposites. MRS Commun. 2015, 5, 613–617. [Google Scholar] [CrossRef]
- Onishi, V.C.; Carrero-Parreño, A.; Reyes-Labarta, J.A.; Ruiz-Femenia, R.; Salcedo-Díaz, R.; Fraga, E.S.; Caballero, J.A. Shale Gas Flowback Water Desalination: Single vs Multiple-Effect Evaporation with Vapor Recompression Cycle and Thermal Integration. Desalination 2017, 404, 230–248. [Google Scholar] [CrossRef]
- Al-Karaghouli, A.; Renne, D.; Kazmerski, L.L. Technical and Economic Assessment of Photovoltaic-Driven Desalination Systems. Renew. Energy 2010, 35, 323–328. [Google Scholar] [CrossRef]
- Ghaffour, N.; Bundschuh, J.; Mahmoudi, H.; Goosen, M.F.A. Renewable Energy-Driven Desalination Technologies: A Comprehensive Review on Challenges and Potential Applications of Integrated Systems. Desalination 2015, 356, 94–114. [Google Scholar] [CrossRef] [Green Version]
- Himri, Y.; Rehman, S.; Mostafaeipour, A.; Himri, S.; Mellit, A.; Merzouk, M.; Merzouk, N.K. Overview of the Role of Energy Resources in Algeria’s Energy Transition. Energies 2022, 15, 4731. [Google Scholar]
- Ginsberg, M.; Zhang, Z.; Atia, A.A.; Venkatraman, M.; Esposito, D.V.; Fthenakis, V.M. Integrating Solar Energy, Desalination, and Electrolysis. Sol. RRL 2022, 6, 2100732. [Google Scholar] [CrossRef]
- Ahmed, F.; Sharizal Abdul Aziz, M.; Palaniandy, P.; Shaik, F. A Review on Application of Renewable Energy for Desalination Technologies with Emphasis on Concentrated Solar Power. Sustain. Energy Technol. Assess. 2022, 53, 102772. [Google Scholar] [CrossRef]
- Mabrouk, A.N.A. Technoeconomic Analysis of Once through Long Tube MSF Process for High Capacity Desalination Plants. Desalination 2013, 317, 84–94. [Google Scholar] [CrossRef]
- Mezher, T.; Fath, H.; Abbas, Z.; Khaled, A. Techno-Economic Assessment and Environmental Impacts of Desalination Technologies. Desalination 2011, 266, 263–273. [Google Scholar] [CrossRef]
- Shekarchi, N.; Shahnia, F. A Comprehensive Review of Solar-driven Desalination Technologies for Off-grid Greenhouses. Int. J. Energy Res. 2019, 43, 1357–1386. [Google Scholar] [CrossRef]
- Kasaeian, A.; Babaei, S.; Jahanpanah, M.; Sarrafha, H.; Sulaiman Alsagri, A.; Ghaffarian, S.; Yan, W.-M. Solar Humidification-Dehumidification Desalination Systems: A Critical Review. Energy Convers. Manag. 2019, 201, 112129. [Google Scholar] [CrossRef]
- Sharon, H.; Reddy, K.S. A Review of Solar Energy Driven Desalination Technologies. Renew. Sustain. Energy Rev. 2015, 41, 1080–1118. [Google Scholar] [CrossRef]
- Al-Sahali, M.; Ettouney, H.M. Humidification Dehumidification Desalination Process: Design and Performance Evaluation. Chem. Eng. J. 2008, 143, 257–264. [Google Scholar] [CrossRef]
- Reif, J.H.; Alhalabi, W. Solar-Thermal Powered Desalination: Its Significant Challenges and Potential. Renew. Sustain. Energy Rev. 2015, 48, 152–165. [Google Scholar] [CrossRef]
- Ortiz, J.M.; Expósito, E.; Gallud, F.; García-García, V.; Montiel, V.; Aldaz, A. Electrodialysis of Brackish Water Powered by Photovoltaic Energy without Batteries: Direct Connection Behaviour. Desalination 2007, 208, 89–100. [Google Scholar] [CrossRef]
- Eltawil, M.A.; Zhengming, Z. Wind Turbine-Inclined Still Collector Integration with Solar Still for Brackish Water Desalination. Desalination 2009, 249, 490–497. [Google Scholar] [CrossRef]
- Orfi, J.; Laplante, M.; Marmouch, H.; Galanis, N.; Benhamou, B.; Nasrallah, S.B.; Nguyen, C.T. Experimental and Theoretical Study of a Humidification-Dehumidification Water Desalination System Using Solar Energy. Desalination 2004, 168, 151–159. [Google Scholar] [CrossRef]
- Dsilva Winfred Rufuss, D.; Iniyan, S.; Suganthi, L.; Davies, P.A. Solar Stills: A Comprehensive Review of Designs, Performance and Material Advances. Renew. Sustain. Energy Rev. 2016, 63, 464–496. [Google Scholar] [CrossRef] [Green Version]
- Koschikowski, J.; Wieghaus, M.; Rommel, M. Solar Thermal-Driven Desalination Plants Based on Membrane Distillation. Desalination 2003, 156, 295–304. [Google Scholar] [CrossRef]
- Qtaishat, M.R.; Banat, F. Desalination by Solar Powered Membrane Distillation Systems. Desalination 2013, 308, 186–197. [Google Scholar] [CrossRef]
- Alkhudhiri, A.; Darwish, N.; Hilal, N. Membrane Distillation: A Comprehensive Review. Desalination 2012, 287, 2–18. [Google Scholar] [CrossRef]
- M, C.; Yadav, A. Water Desalination System Using Solar Heat: A Review. Renew. Sustain. Energy Rev. 2017, 67, 1308–1330. [Google Scholar] [CrossRef]
- RALUY, G.; SERRA, L.; UCHE, J. Life Cycle Assessment of MSF, MED and RO Desalination Technologies. Energy 2006, 31, 2361–2372. [Google Scholar] [CrossRef]
- Khawaji, A.D.; Kutubkhanah, I.K.; Wie, J.-M. Advances in Seawater Desalination Technologies. Desalination 2008, 221, 47–69. [Google Scholar] [CrossRef]
- Tarpani, R.R.Z.; Miralles-Cuevas, S.; Gallego-Schmid, A.; Cabrera-Reina, A.; Cornejo-Ponce, L. Environmental Assessment of Sustainable Energy Options for Multi-Effect Distillation of Brackish Water in Isolated Communities. J. Clean. Prod. 2019, 213, 1371–1379. [Google Scholar] [CrossRef]
- Ali, M.T.; Fath, H.E.S.; Armstrong, P.R. A Comprehensive Techno-Economical Review of Indirect Solar Desalination. Renew. Sustain. Energy Rev. 2011, 15, 4187–4199. [Google Scholar] [CrossRef]
- Saeed, M.O.; Al-Nomazi, M.A.; Al-Amoudi, A.S. Evaluating Suitability of Source Water for a Proposed SWRO Plant Location. Heliyon 2019, 5, e01119. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, D. The Application of Solar Energy for Large-Scale Seawater Desalination. Desalination 1992, 89, 115–183. [Google Scholar] [CrossRef]
- Khawaji, A.D.; Kutubkhanah, I.K.; Wie, J.-M. A 13.3 MGD Seawater RO Desalination Plant for Yanbu Industrial City. Desalination 2007, 203, 176–188. [Google Scholar] [CrossRef]
- Ghalavand, Y.; Hatamipour, M.S.; Rahimi, A. A Review on Energy Consumption of Desalination Processes. Desalin. Water Treat. 2014, 54, 1526–1541. [Google Scholar] [CrossRef]
- Al-Karaghouli, A.; Renne, D.; Kazmerski, L.L. Solar and Wind Opportunities for Water Desalination in the Arab Regions. Renew. Sustain. Energy Rev. 2009, 13, 2397–2407. [Google Scholar] [CrossRef]
- Li, C.; Goswami, Y.; Stefanakos, E. Solar Assisted Sea Water Desalination: A Review. Renew. Sustain. Energy Rev. 2013, 19, 136–163. [Google Scholar] [CrossRef]
- Narayan, G.P.; Sharqawy, M.H.; Summers, E.K.; Lienhard, J.H.; Zubair, S.M.; Antar, M.A. The Potential of Solar-Driven Humidification–Dehumidification Desalination for Small-Scale Decentralized Water Production. Renew. Sustain. Energy Rev. 2010, 14, 1187–1201. [Google Scholar] [CrossRef]
- Parekh, S.; Farid, M.M.; Selman, J.R.; Al-Hallaj, S. Solar Desalination with a Humidification-Dehumidification Technique—A Comprehensive Technical Review. Desalination 2004, 160, 167–186. [Google Scholar] [CrossRef]
- Shah, M.; Sircar, A.; Varsada, R.; Vaishnani, S.; Savaliya, U.; Faldu, M.; Vaidya, D.; Bhattacharya, P. Assessment of Geothermal Water Quality for Industrial and Irrigation Purposes in the Unai Geothermal Field, Gujarat, India. Groundw. Sustain. Dev. 2019, 8, 59–68. [Google Scholar] [CrossRef]
- Shah, M.; Vaidya, D.; Sircar, A. Using Monte Carlo Simulation to Estimate Geothermal Resource in Dholera Geothermal Field, Gujarat, India. Multiscale Multidiscip. Model. Exp. Des. 2018, 1, 83–95. [Google Scholar] [CrossRef]
- Gude, V.G. Geothermal Source Potential for Water Desalination—Current Status and Future Perspective. Renew. Sustain. Energy Rev. 2016, 57, 1038–1065. [Google Scholar] [CrossRef]
- Kabeel, A.E.; Omara, Z.M.; Essa, F.A. Enhancement of Modified Solar Still Integrated with External Condenser Using Nanofluids: An Experimental Approach. Energy Convers. Manag. 2014, 78, 493–498. [Google Scholar] [CrossRef]
- Shah, M.; Sircar, A.; Shaikh, N.; Patel, K.; Thakar, V.; Sharma, D.; Sarkar, P.; Vaidya, D. Groundwater Analysis of Dholera Geothermal Field, Gujarat, India for Suitable Applications. Groundw. Sustain. Dev. 2018, 7, 143–156. [Google Scholar] [CrossRef]
- Loutatidou, S.; Arafat, H.A. Techno-Economic Analysis of MED and RO Desalination Powered by Low-Enthalpy Geothermal Energy. Desalination 2015, 365, 277–292. [Google Scholar] [CrossRef]
- Christ, A.; Rahimi, B.; Regenauer-Lieb, K.; Chua, H.T. Techno-Economic Analysis of Geothermal Desalination Using Hot Sedimentary Aquifers: A Pre-Feasibility Study for Western Australia. Desalination 2017, 404, 167–181. [Google Scholar] [CrossRef]
- Al-Sarihi, A.; Mansouri, N. Renewable Energy Development in the Gulf Cooperation Council Countries: Status, Barriers, and Policy Options. Energies 2022, 15, 1923. [Google Scholar] [CrossRef]
- Goosen, M.; Mahmoudi, H.; Ghaffour, N. Water Desalination Using Geothermal Energy. Energies 2010, 3, 1423–1442. [Google Scholar] [CrossRef] [Green Version]
- Awerbuch, L.; Lindemuth, T.E.; May, S.C.; Rogers, A.N. Geothermal Energy Recovery Process. Desalination 1976, 19, 325–336. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; El Haj Assad, M.; Sayed, E.T.; Soudan, B. Recent Progress in the Use of Renewable Energy Sources to Power Water Desalination Plants. Desalination 2018, 435, 97–113. [Google Scholar] [CrossRef]
- Michelle, L.S.Z.; Palmer, A.; Oliver, G.; Tjiawi, H. Geothermal Desalination in Singapore. IES J. Part A Civ. Struct. Eng. 2013, 6, 42–50. [Google Scholar] [CrossRef]
- Mahmoudi, H.; Spahis, N.; Goosen, M.F.; Ghaffour, N.; Drouiche, N.; Ouagued, A. Application of Geothermal Energy for Heating and Fresh Water Production in a Brackish Water Greenhouse Desalination Unit: A Case Study from Algeria. Renew. Sustain. Energy Rev. 2010, 14, 512–517. [Google Scholar] [CrossRef]
- Li, K.; Bian, H.; Liu, C.; Zhang, D.; Yang, Y. Comparison of Geothermal with Solar and Wind Power Generation Systems. Renew. Sustain. Energy Rev. 2015, 42, 1464–1474. [Google Scholar] [CrossRef]
- Szacsvay, T.; Hofer-Noser, P.; Posnansky, M. Technical and Economic Aspects of Small-Scale Solar-Pond-Powered Seawater Desalination Systems. Desalination 1999, 122, 185–193. [Google Scholar] [CrossRef]
- Solar Energy Technologies Office Crystalline Silicon Photovoltaics Research. Available online: https://www.energy.gov/eere/solar/crystalline-silicon-photovoltaics-research (accessed on 15 December 2022).
- Evans, A.; Strezov, V.; Evans, T.J. Assessment of Sustainability Indicators for Renewable Energy Technologies. Renew. Sustain. Energy Rev. 2009, 13, 1082–1088. [Google Scholar] [CrossRef]
- Mahmoud, M.; Ramadan, M.; Naher, S.; Pullen, K.; Ali Abdelkareem, M.; Olabi, A.G. A Review of Geothermal Energy-Driven Hydrogen Production Systems. Therm. Sci. Eng. Prog. 2021, 22, 100854. [Google Scholar] [CrossRef]
- Chamorro, C.R.; Mondéjar, M.E.; Ramos, R.; Segovia, J.J.; Martín, M.C.; Villamañán, M.A. World Geothermal Power Production Status: Energy, Environmental and Economic Study of High Enthalpy Technologies. Energy 2012, 42, 10–18. [Google Scholar] [CrossRef]
- Goldstein, B.A.; Hiriart, G.; Tester, J.W.; Bertani, R.; Bromley, C.; Guiterrez-Negrin, L.; Huenges, E.; Ragnarsson, A.; Mongillo, M.; Muraoka, H.; et al. Great Expectations For Geothermal Energy—Forecast to 2100. Aust. Geotherm. Energy Conf. 2010, 665, 281–289. [Google Scholar]
- Zywietz, D. Geothermal Energy: An Option for Oman. Available online: https://www.iqpc.com/media/8328/11981.pdf (accessed on 15 December 2022).
- Gude, V.G. Desalination and Sustainability—An Appraisal and Current Perspective. Water Res. 2016, 89, 87–106. [Google Scholar] [CrossRef]
- Gude, V.G. Energy Consumption and Recovery in Reverse Osmosis. Desalin. Water Treat. 2011, 36, 239–260. [Google Scholar] [CrossRef]
- Andrianne, J.; Alardin, F. Thermal and Membrane Processe Economics: Optimized Selection for Seawater Desalination. Desalination 2003, 153, 305–311. [Google Scholar] [CrossRef]
- Finster, M.; Clark, C.; Schroeder, J.; Martino, L. Geothermal Produced Fluids: Characteristics, Treatment Technologies, and Management Options. Renew. Sustain. Energy Rev. 2015, 50, 952–966. [Google Scholar] [CrossRef] [Green Version]
Type | Desalination Technology | Limitations | Significance | Reference |
---|---|---|---|---|
Single-phase/Membrane processes | Reverse osmosis | Additional devices must be considered; It needs additional pretreatment processes; High operating pressures | High system capacity; Low operating and maintenance costs; Low operating temperature; Has no impact on the environment; Flexibility in operation; Safe in operation | [69,70,71,72,73] |
Electrodialysis | Low efficiency; High cost of fresh water; High operating costs; Polarity reversed periodically. | Quick starting and shot down; Low pretreatment processes are required; Lower membrane fouling and scaling; High membrane lifetime; Low operating pressures; Low electrical losses | [71,74,75] | |
Capacitive deionization | Not convenient to high capacity; Low efficiency | High quality of fresh water; Low operating and maintenance costs; Has no impact on the environment | [71,72,76,77,78,79] | |
Membrane distillation | A membrane with a large surface area is necessary; High cost of the membrane; Membrane wetting; Pretreatment processes are required; Fouling of membrane | Thinner pipelines; Suitable to use any energy resource (non-renewable and renewable); Can prevent rusting by employing materials made of plastic; Low operating temperature; High rejection capacity | [71,72,79,80,81] | |
Phase-change/Thermal processes | Multiple-effect distillation | Energy-intensive process of keeping a vacuum; Heavy structure; High initial capital cost | Low emissions; No pretreatment processes are required; Moderate operating temperature; High quality of fresh water; Reliable operation; Low thermal energy consumption | [70,71,82,83,84,85,86] |
Multistage flash | High capital cost; Heavy structure; Exposed to corrosion; High operating temperature; High energy consumption | There is no need for any sort of pretreatment; it produces no harmful effects on nature; Convenient for large-scale applications; High-quality fresh water. | [69,82,83,84,85,87,88,89] | |
Vapor compression | Higher freshwater cost; Compressor corrosion; High capital cost; Needs an additional cooling system; Low system capacity; Compressor size is directly related to system efficiency. | Produces little to no harm to nature; There is no need for any sort of pretreatment.; High quality of fresh water; High system efficiency; Low energy consumption | [69,71,72,90,91,92] | |
Freezing | Function most effectively when a mass flow rate ratio between gas and water is maximized; Required high footprint; High energy consumption; The need for large number of steps for maintaining efficiency; Higher water cost; High capital cost. | Capacity for integration with different approaches; Wide capacity range (high, medium, and small); Any form of energy source may be used easily (non-renewable and renewable); Suitable for remote areas; Costs that are low to operate and maintain; High degree of flexibility. | [70,71,72,73,90,93,94] |
Input Water Source | Location and Starting Year | Capacity | Desalination Method | Energy Utilization | Remark | Operational Cost (per/m3) | Reference |
---|---|---|---|---|---|---|---|
Brackish water | Tunisia, South Tunisia, France, 1996 | 3 m3/h | MED | Low-enthalpy geothermal source | 50 m from the coast, the temperature was 85 °C. | USD 1.20 | [16] |
Kimolos, Greece, 2000 | 80 m3/day | MED | Geothermal energy | The two-stage MED operating in vertical tubes under vacuum. | EUR 1.60 | [97] | |
Seawater | MilosIsland, Greek, 2004 | 80 m3/h | MED | Solar energy and lower enthalpy geothermal | They produced 470 kW of electricity using an ORC (natural Rankine cycle) unit with a 7% thermal capacity. Unit cost of freshwater production is around USD 2 per cubic meter. | EUR 1.50 | [106] |
Arabian Gulf Country, 2013 | 30,000m3/day | MED and RO | Grid electricity, geothermal energy, PV | This plant has an annual availability of 92% and an accessibility rate of 8% due to plant support and other factors. Full load operating 24 h a day. | - | [105] | |
Baja California, Mexico, 2008 | 1 m3/day | MED & MSF | Geothermal energy | This facility combines MED and MSF desalination technologies and is called multiflash with heaters (MFWH) | - | [97] | |
USA | 79.5 m3/day | ED/VTE | Geothermal energy | This facility utilized a 15-effect evaporation unit. | - | [105] | |
USA | 18.9 m3/day | MED/VTE | Geothermal energy | This station utilized a two-fold effect evaporation technology. | - | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shelare, S.; Kumar, R.; Gajbhiye, T.; Kanchan, S. Role of Geothermal Energy in Sustainable Water Desalination—A Review on Current Status, Parameters, and Challenges. Energies 2023, 16, 2901. https://doi.org/10.3390/en16062901
Shelare S, Kumar R, Gajbhiye T, Kanchan S. Role of Geothermal Energy in Sustainable Water Desalination—A Review on Current Status, Parameters, and Challenges. Energies. 2023; 16(6):2901. https://doi.org/10.3390/en16062901
Chicago/Turabian StyleShelare, Sagar, Ravinder Kumar, Trupti Gajbhiye, and Sumit Kanchan. 2023. "Role of Geothermal Energy in Sustainable Water Desalination—A Review on Current Status, Parameters, and Challenges" Energies 16, no. 6: 2901. https://doi.org/10.3390/en16062901
APA StyleShelare, S., Kumar, R., Gajbhiye, T., & Kanchan, S. (2023). Role of Geothermal Energy in Sustainable Water Desalination—A Review on Current Status, Parameters, and Challenges. Energies, 16(6), 2901. https://doi.org/10.3390/en16062901