An Electrical Power System Reconfiguration Model Based on Optimal Transmission Switching under Scenarios of Intentional Attacks
Abstract
:1. Introduction
2. Optimal Transmission Switching (OTS)
2.1. Optimal Power Flow
2.2. Switching of Transmission Lines
2.3. Intentional Attacks and Ranking of Contingencies
3. Problem Formulation
Algorithm 1 Topology reconfiguration based on OTS-DC. |
|
4. Analysis of the Results
System in Pre-Contingency Conditions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
g | number of generators |
busbar number | |
line set | |
busbar set | |
generator set | |
generator operation cost | |
electrical susceptance of the transmission line | |
electrical reactance of the transmission line | |
electrical demand at the busbar i | |
i busbar load disconnect | |
maximum transmission line rate | |
maximum generation | |
minimum generation | |
origin busbar angle | |
destiny busbar angle | |
maximum angular difference between bars i − j | |
minimum angular difference between bars i − j | |
maximum number of switched lines | |
line state | |
contingency state | |
generator power | |
power flow transmitted by the line | |
variable to optimize | |
M | maximum power value of the lines |
Appendix A
Busbar | Active Power [MW] | Busbar | Active Power [MW] |
---|---|---|---|
1 | - | 16 | 3.5 |
2 | 21.7 | 17 | 9.0 |
3 | 2.4 | 18 | 3.2 |
4 | 7.6 | 19 | 9.5 |
5 | 94.2 | 20 | 2.2 |
6 | - | 21 | 17.5 |
7 | 22.8 | 22 | - |
8 | 30.0 | 23 | 3.2 |
9 | - | 24 | 8.7 |
10 | 5.8 | 25 | - |
11 | - | 26 | 3.5 |
12 | 11.2 | 27 | - |
13 | - | 28 | - |
14 | 6.2 | 29 | 2.4 |
15 | 8.2 | 30 | 10.6 |
Line | r [p.u.] | x [p.u.] | bij [p.u.] | SIL [MVA] | Line | r [p.u.] | x [p.u.] | bij [p.u.] | SIL [MVA] |
---|---|---|---|---|---|---|---|---|---|
1 − 2 | 0.0192 | 0.0575 | 0.0528 | 130 | 16 − 17 | 0.0824 | 0.1932 | 0 | 16 |
1 − 3 | 0.0452 | 0.1652 | 0.0408 | 130 | 18 − 19 | 0.0639 | 0.1292 | 0 | 16 |
2 − 4 | 0.0570 | 0.1737 | 0.0368 | 65 | 19 − 20 | 0.0340 | 0.0680 | 0 | 32 |
3 − 4 | 0.0132 | 0.0379 | 0.0084 | 130 | 10 − 20 | 0.0936 | 0.2090 | 0 | 32 |
2 − 5 | 0.0472 | 0.1983 | 0.0418 | 130 | 10 − 17 | 0.0324 | 0.0845 | 0 | 32 |
2 − 6 | 0.0581 | 0.1763 | 0.0374 | 65 | 10 − 21 | 0.0348 | 0.0749 | 0 | 32 |
4 − 6 | 0.0119 | 0.0414 | 0.0090 | 90 | 10 − 22 | 0.0727 | 0.1499 | 0 | 32 |
4 − 12 | 0 | 0.2560 | 0 | 65 | 21 − 22 | 0.0116 | 0.0236 | 0 | 32 |
5 − 7 | 0.0460 | 0.1160 | 0.0204 | 70 | 15 − 23 | 0.1000 | 0.2020 | 0 | 16 |
6 − 7 | 0.0267 | 0.0820 | 0.0170 | 130 | 22 − 24 | 0.1150 | 0.1790 | 0 | 16 |
6 − 8 | 0.0120 | 0.0420 | 0.0090 | 32 | 23 − 24 | 0.1320 | 0.2700 | 0 | 16 |
6 − 9 | 0 | 0.2080 | 0 | 65 | 24 − 25 | 0.1885 | 0.3292 | 0 | 16 |
6 − 10 | 0 | 0.5560 | 0 | 32 | 25 − 26 | 0.2544 | 0.3800 | 0 | 16 |
9 − 10 | 0 | 0.1100 | 0 | 65 | 25 − 27 | 0.1093 | 0.2087 | 0 | 16 |
9 − 11 | 0 | 0.2080 | 0 | 65 | 28 − 27 | 0 | 0.3960 | 0 | 65 |
12 − 13 | 0 | 0.1400 | 0 | 65 | 27 − 29 | 0.2198 | 0.4153 | 0 | 16 |
12 − 14 | 0.1231 | 0.2559 | 0 | 32 | 27 − 30 | 0.3202 | 0.6027 | 0 | 16 |
12 − 15 | 0.0662 | 0.1304 | 0 | 32 | 29 − 30 | 0.2399 | 0.4533 | 0 | 16 |
12 − 16 | 0.0945 | 0.1987 | 0 | 32 | 8 − 28 | 0.0636 | 0.2000 | 0.0428 | 32 |
14 − 15 | 0.2210 | 0.1997 | 0 | 16 | 6 − 28 | 0.0169 | 0.0599 | 0.0130 | 32 |
15 − 18 | 0.1073 | 0.2185 | 0 | 16 |
Generator | Pmin [MW] | Pmax [MW] |
---|---|---|
G1 | 50 | 200 |
G2 | 20 | 80 |
G3 | 15 | 50 |
G4 | 10 | 35 |
G5 | 10 | 30 |
G6 | 12 | 40 |
References
- Huang, G.; Wang, J.; Chen, C.; Qi, J.; Guo, C. Integration of Preventive and Emergency Responses for Power Grid Resilience Enhancement. IEEE Trans. Power Syst. 2017, 32, 4451–4463. [Google Scholar] [CrossRef]
- Nguyen, T.; Wang, S.; Alhazmi, M.; Nazemi, M.; Estebsari, A.; Dehghanian, P. Electric Power Grid Resilience to Cyber Adversaries: State of the Art. IEEE Access 2020, 8, 87592–87608. [Google Scholar] [CrossRef]
- Dehghanian, P.; Wang, Y.; Gurrala, G.; Moreno-Centeno, E.; Kezunovic, M. Flexible implementation of power system corrective topology control. Electr. Power Syst. Res. 2015, 128, 79–89. [Google Scholar] [CrossRef]
- Bosisio, A.; Berizzi, A.; Amaldi, E.; Bovo, C.; Morotti, A.; Greco, B.; Iannarelli, G. A GIS-based approach for high-level distribution networks expansion planning in normal and contingency operation considering reliability. Electr. Power Syst. Res. 2021, 190, 106684. [Google Scholar] [CrossRef]
- Carrión, D.; Palacios, J.; Espinel, M.; González, J.W. Transmission Expansion Planning Considering Grid Topology Changes and N−1 Contingencies Criteria; Springer: Berlin/Heidelberg, Germany, 2021; pp. 266–279. [Google Scholar] [CrossRef]
- Pilatásig, J.; Carrión, D.; Jaramillo, M. Resilience Maximization in Electrical Power Systems through Switching of Power Transmission Lines. Energies 2022, 15, 8138. [Google Scholar] [CrossRef]
- Quinteros, F.; Carrión, D.; Jaramillo, M. Optimal Power Systems Restoration Based on Energy Quality and Stability Criteria. Energies 2022, 15, 2062. [Google Scholar] [CrossRef]
- Khanabadi, M.; Ghasemi, H.; Doostizadeh, M. Optimal Transmission Switching Considering Voltage Security and N−1 Contingency Analysis. IEEE Trans. Power Syst. 2013, 28, 542–550. [Google Scholar] [CrossRef]
- Dehghan, S.; Amjady, N. Robust Transmission and Energy Storage Expansion Planning in Wind Farm-Integrated Power Systems Considering Transmission Switching. IEEE Trans. Sustain. Energy 2016, 7, 765–774. [Google Scholar] [CrossRef]
- Roque Coelho, E.P.; Moreira Paiva, M.H.; Vieira Segatto, M.E.; Caporossi, G. A New Approach for Contingency Analysis Based on Centrality Measures. IEEE Syst. J. 2019, 13, 1915–1923. [Google Scholar] [CrossRef]
- Gunduz, M.Z.; Das, R. Analysis of cyber-attacks on smart grid applications. In Proceedings of the 2018 International Conference on Artificial Intelligence and Data Processing, IDAP 2018, Malatya, Turkey, 28–30 September 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Pinzón, S.; Carrión, D.; Inga, E. Optimal Transmission Switching Considering N−1 Contingencies on Power Transmission Lines. IEEE Lat. Am. Trans. 2021, 19, 534–541. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, Z.; Liu, G.; Qi, W.; Xie, Z. Preventive Security-Constrained Optimal Power Flow Considering UPFC Control Modes. Energies 2017, 10, 1199. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Li, G.; Yuan, H. Collaborative Optimization of Post-Disaster Damage Repair and Power System Operation. Energies 2018, 11, 2611. [Google Scholar] [CrossRef] [Green Version]
- Fisher, E.; O’Neill, R.; Ferris, M. Optimal Transmission Switching. IEEE Trans. Power Syst. 2008, 23, 1346–1355. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Cao, Y.; Zhang, H.; Ma, S.; Song, Y.; Chen, D. A Multi-Objective Optimization Approach for Corrective Switching of Transmission Systems in Emergency Scenarios. Energies 2017, 10, 1204. [Google Scholar] [CrossRef] [Green Version]
- Carrion, D.; Gonzalez, J.W. Optimal PMU Location in Electrical Power Systems under N−1 Contingency. In Proceedings of the 2018 International Conference on Information Systems and Computer Science (INCISCOS), Quito, Ecuador, 13–15 November 2018; IEEE: New York, NY, USA, 2018; pp. 165–170. [Google Scholar] [CrossRef]
- Salmeron, J.; Wood, K.; Baldick, R. Worst-Case Interdiction Analysis of Large-Scale Electric Power Grids. IEEE Trans. Power Syst. 2009, 24, 96–104. [Google Scholar] [CrossRef] [Green Version]
- Kryukov, A.; Suslov, K.; Van Thao, L.; Hung, T.D.; Akhmetshin, A. Power Flow Modeling of Multi-Circuit Transmission Lines. Energies 2022, 15, 8249. [Google Scholar] [CrossRef]
- Arroyo, J.; Galiana, F. On the Solution of the Bilevel Programming Formulation of the Terrorist Threat Problem. IEEE Trans. Power Syst. 2005, 20, 789–797. [Google Scholar] [CrossRef]
- Basumallik, S.; Eftekharnejad, S.; Johnson, B.K. The impact of false data injection attacks against remedial action schemes. Int. J. Electr. Power Energy Syst. 2020, 123, 106225. [Google Scholar] [CrossRef]
- Mo, Y.; Kim, T.H.J.; Brancik, K.; Dickinson, D.; Lee, H.; Perrig, A.; Sinopoli, B. Cyber–Physical Security of a Smart Grid Infrastructure. Proc. IEEE 2012, 100, 195–209. [Google Scholar] [CrossRef]
- Liu, C.C.; Jung, J.; Heydt, G.T.; Vittal, V.; Phadke, A.G. The strategic power infrastructure defense (SPID) system. A conceptual design. IEEE Control Syst. 2000, 20, 40–52. [Google Scholar] [CrossRef]
- Rocco, C.M.; Ramirez-Marquez, J.E.; Salazar, D.E.; Yajure, C. Assessing the Vulnerability of a Power System Through a Multiple Objective Contingency Screening Approach. IEEE Trans. Reliab. 2011, 60, 394–403. [Google Scholar] [CrossRef]
- Salmeron, J.; Wood, K.; Baldick, R. Analysis of Electric Grid Security Under Terrorist Threat. IEEE Trans. Power Syst. 2004, 19, 905–912. [Google Scholar] [CrossRef] [Green Version]
- Delgadillo, A.; Arroyo, J.M.; Alguacil, N. Analysis of Electric Grid Interdiction With Line Switching. IEEE Trans. Power Syst. 2010, 25, 633–641. [Google Scholar] [CrossRef]
- T. C., P.; Boroojeni, K.G.; Hadi Amini, M.; Sunitha, N.; Iyengar, S. Key pre-distribution scheme with join leave support for SCADA systems. Int. J. Crit. Infrastruct. Prot. 2019, 24, 111–125. [Google Scholar] [CrossRef]
- Yan, J.; He, H.; Zhong, X.; Tang, Y. Q-Learning-Based Vulnerability Analysis of Smart Grid Against Sequential Topology Attacks. IEEE Trans. Inf. Forensics Secur. 2017, 12, 200–210. [Google Scholar] [CrossRef]
- Jabarnejad, M. Approximate optimal transmission switching. Electr. Power Syst. Res. 2018, 161, 1–7. [Google Scholar] [CrossRef]
- Wang, Q.; Watson, J.P.; Guan, Y. Two-stage robust optimization for N-k contingency-constrained unit commitment. IEEE Trans. Power Syst. 2013, 28, 2366–2375. [Google Scholar] [CrossRef]
- Zhu, J. Optimization of Power System Operation; John Wiley & Sons: Hoboken, NJ, USA, 2016; Volume 4, p. 665. [Google Scholar]
- Montoya, O.D.; Gil-González, W.; Garces, A. Sequential quadratic programming models for solving the OPF problem in DC grids. Electr. Power Syst. Res. 2019, 169, 18–23. [Google Scholar] [CrossRef]
- Lin, J.; Hou, Y.; Zhu, G.; Luo, S.; Li, P.; Qin, L.; Wang, L. Co-optimization of unit commitment and transmission switching with short-circuit current constraints. Int. J. Electr. Power Energy Syst. 2019, 110, 309–317. [Google Scholar] [CrossRef]
- Sahraei-Ardakani, M.; Li, X.; Balasubramanian, P.; Hedman, K.W.; Abdi-Khorsand, M. Real-Time Contingency Analysis With Transmission Switching on Real Power System Data. IEEE Trans. Power Syst. 2016, 31, 2501–2502. [Google Scholar] [CrossRef]
Generator | Pmin [MW] | Pmax [MW] | OPF−DC [MW] | Cost [USD/MWh] |
---|---|---|---|---|
G1 | 50 | 200 | 149.74 | 2.00 |
G2 | 20 | 80 | 80 | 1.75 |
G3 | 15 | 50 | 50 | 1.00 |
G4 | 10 | 35 | 10 | 3.25 |
G5 | 10 | 30 | 10 | 3.00 |
G6 | 12 | 40 | 12 | 3.00 |
Demand [MW] | 311.74 | |||
Total cost [USD/MWh] | 587.98 |
Line i − j | PI | Line i − j | PI | Line i − j | PI | Line i − j | PI |
---|---|---|---|---|---|---|---|
1 − 2 | 3.9363 | 6 − 8 | 3.2872 | 15 − 18 | 3.3991 | 22 − 24 | 3.4561 |
1 − 3 | 3.7719 | 6 − 9 | 3.9005 | 16 − 17 | 3.3694 | 23 − 24 | 3.3499 |
2 − 4 | 2.6575 | 6 − 10 | 3.5468 | 18 − 19 | 3.2893 | 24 − 25 | 3.3212 |
3 − 4 | 3.6249 | 9 − 10 | 4.4464 | 19 − 20 | 3.8554 | 6 − 28 | 3.4661 |
2 − 5 | 4.0129 | 9 − 11 | 2.8382 | 10 − 20 | 4.1776 | 25 − 27 | 3.4748 |
2 − 6 | 3.7255 | 12 − 13 | 2.6251 | 10 − 17 | 3.4511 | 28 − 27 | 12.5999 |
4 − 6 | 3.1247 | 12 − 14 | 3.5334 | 10 − 21 | 3.6143 | 27 − 29 | 3.4913 |
4 − 12 | 5.3373 | 12 − 15 | 3.8665 | 10 − 22 | 3.4427 | 27 − 30 | 3.7432 |
5 − 7 | 3.3368 | 12 − 16 | 3.5437 | 21 − 22 | 3.3322 | 29 − 30 | 3.3574 |
6 − 7 | 3.1905 | 14 − 15 | 3.3493 | 15 − 23 | 3.5543 | 8 − 28 | 3.3071 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toctaquiza, J.; Carrión, D.; Jaramillo, M. An Electrical Power System Reconfiguration Model Based on Optimal Transmission Switching under Scenarios of Intentional Attacks. Energies 2023, 16, 2879. https://doi.org/10.3390/en16062879
Toctaquiza J, Carrión D, Jaramillo M. An Electrical Power System Reconfiguration Model Based on Optimal Transmission Switching under Scenarios of Intentional Attacks. Energies. 2023; 16(6):2879. https://doi.org/10.3390/en16062879
Chicago/Turabian StyleToctaquiza, Juan, Diego Carrión, and Manuel Jaramillo. 2023. "An Electrical Power System Reconfiguration Model Based on Optimal Transmission Switching under Scenarios of Intentional Attacks" Energies 16, no. 6: 2879. https://doi.org/10.3390/en16062879
APA StyleToctaquiza, J., Carrión, D., & Jaramillo, M. (2023). An Electrical Power System Reconfiguration Model Based on Optimal Transmission Switching under Scenarios of Intentional Attacks. Energies, 16(6), 2879. https://doi.org/10.3390/en16062879