State of Health Estimation and Remaining Useful Life Prediction for a Lithium-Ion Battery with a Two-Layer Stacking Regressor
Abstract
:1. Introduction
2. Methodology
3. Data Preprocess
4. Results and Discussion
4.1. SOH Estimation
4.2. RUL Prediction
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, X.; Xu, L.; Lin, X.; Pecht, M. Battery Lifetime Prognostics. Joule 2020, 4, 310–346. [Google Scholar] [CrossRef]
- Song, L.; Liang, T.; Lu, L.; Ouyang, M. Lithium-ion battery pack equalization based on charging voltage curves. Int. J. Electr. Power 2020, 115, 105516. [Google Scholar] [CrossRef]
- Cao, W.; Wang, S.; Fernandez, C.; Zou, C.; Yu, C.; Li, X. A novel adaptive state of charge estimation method of full life cycling lithium-ion batteries based on the multiple parameter optimization. Energy Sci. Eng. 2019, 7, 1544–1556. [Google Scholar] [CrossRef]
- Feng, F.; Hu, X.; Liu, K.; Che, Y.; Lin, X.; Jin, G.; Liu, B. A Practical and Comprehensive Evaluation Method for Series-Connected Battery Pack Models. IEEE Trans. Transp. Electrif. 2020, 6, 391–416. [Google Scholar] [CrossRef]
- Li, Y.; Liu, K.; Foley, A.; Zülke, A.; Berecibar, M.; Nanini-Maury, E.; Van Mierlo, J.; Hoster, H.E. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review. Renew. Sustain. Energ. Rev. 2019, 113, 109254. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Q.; Zhang, Y.; Wang, J.; Stimming, U.; Lee, A.A. Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning. Nat. Commun. 2020, 11, 1706. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Chen, F.; Tong, Y.; Wang, Z.; Yu, X.; Huang, R. Impacts of Driving Conditions on EV Battery Pack Life Cycle. World Electr. Veh. J. 2020, 11, 17. [Google Scholar] [CrossRef] [Green Version]
- White, C.; Thompson, B.; Swan, L.G. Comparative performance study of electric vehicle batteries repurposed for electricity grid energy arbitrage. Appl. Energy 2021, 288, 116637. [Google Scholar] [CrossRef]
- Shahriari, M.; Farrokhi, M. Online State-of-Health Estimation of VRLA Batteries Using State of Charge. IEEE Trans. Ind. Electron. 2013, 60, 191–202. [Google Scholar] [CrossRef]
- Tang, X.; Zou, C.; Yao, K.; Chen, G.; Liu, B.; He, Z.; Gao, F. A fast estimation algorithm for lithium-ion battery state of health. J. Power Sources 2018, 396, 453–458. [Google Scholar] [CrossRef]
- Dong, H.; Jin, X.; Lou, Y.; Wang, C. Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter. J. Power Sources 2014, 271, 114–123. [Google Scholar] [CrossRef]
- Wei, J.; Dong, G.; Chen, Z. Remaining Useful Life Prediction and State of Health Diagnosis for Lithium-Ion Batteries Using Particle Filter and Support Vector Regression. IEEE Trans. Ind. Electron. 2018, 65, 5634–5643. [Google Scholar] [CrossRef]
- Ng, S.; Xing, Y.; Tsui, K. A naive Bayes model for robust remaining useful life prediction of lithium-ion battery. Appl. Energy 2014, 118, 114–123. [Google Scholar] [CrossRef]
- Ng, M.-F.; Zhao, J.; Yan, Q.; Conduit, G.; Seh, Z. Predicting the state of charge and health of batteries using data-driven machine learning. Nat. Mach. Intell. 2020, 2, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Jiang, J.; Cao, D.; Egardt, B. Battery Health Prognosis for Electric Vehicles Using Sample Entropy and Sparse Bayesian Predictive Modeling. IEEE Trans. Ind. Electron. 2016, 63, 2645–2656. [Google Scholar] [CrossRef]
- Widodo, A.; Shim, M.-C.; Caesarendra, W.; Yang, B.-S. Intelligent prognostics for battery health monitoring based on sample entropy. Expert Syst. Appl. 2011, 38, 11763–11769. [Google Scholar] [CrossRef]
- Patil, M.; Tagade, P.; Hariharan, K.; Kolake, S.; Song, T.; Yeo, T.; Doo, S. A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation. Appl. Energy 2015, 159, 285–297. [Google Scholar] [CrossRef]
- Fei, Z.; Yang, F.; Tsui, K.-L.; Li, L.; Zhang, Z. Early prediction of battery lifetime via a machine learning based framework. Energy 2021, 225, 120205. [Google Scholar] [CrossRef]
- Nuhic, A.; Terzimehic, T.; Soczka-Guth, T.; Buchholz, M.; Dietmayer, K. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. J. Power Sources 2013, 239, 680–688. [Google Scholar] [CrossRef]
- Dai, H.; Zhao, G.; Lin, M.; Wu, J.; Zheng, G. A Novel Estimation Method for the State of Health of Lithium-Ion Battery Using Prior Knowledge-Based Neural Network and Markov Chain. IEEE Trans. Ind. Electron. 2019, 66, 7706–7716. [Google Scholar] [CrossRef]
- Liu, J.; Saxena, A.; Goebel, K.; Saha, B.; Wang, W. An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries. In Proceedings of the Annual Conference of the Prognostics and Health Management Society 2010, NASA Moffett Field CA ARC, Oregon, Portland, 10–16 October 2010; Available online: https://apps.dtic.mil/sti/citations/ADA562707 (accessed on 10 October 2010).
- Dong, G.; Chen, Z.; Wei, J.; Ling, Q. Battery Health Prognosis Using Brownian Motion Modeling and Particle Filtering. IEEE Trans. Ind. Electron. 2018, 65, 8646–8655. [Google Scholar] [CrossRef]
- Dalal, M.; Ma, J.; He, D. Lithium-ion battery life prognostic health management system using particle filtering framework. J. Risk Reliab. 2011, 225, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Saha, B.; Goebel, K. Modeling Li-ion battery capacity depletion in a particle filtering framework. Annu. Conf. PHM Soc. Mar. 2021, 1, 1–10. [Google Scholar]
- Charkhgard, M.; Farrokhi, M. State-of-Charge Estimation for Lithium-Ion Batteries Using Neural Networks and EKF. IEEE Trans. Ind. Electron. 2010, 57, 4178–4187. [Google Scholar] [CrossRef]
- Kim, J.; Cho, B.-H. State-of-charge estimation and state-of-health prediction of a Li-ion degraded battery based on an EKF combined with a per-unit system. IEEE Trans. Veh. Technol. 2011, 60, 4249–4260. [Google Scholar] [CrossRef]
- Hongwen, H.; Rui, X.; Xiaowei, Z.; Fengchun, S.; JinXin, F. State-of-Charge Estimation of the Lithium-Ion Battery Using an Adaptive Extended Kalman Filter Based on an Improved Thevenin Model. IEEE Trans. Veh. Technol. 2011, 60, 1461–1469. [Google Scholar] [CrossRef]
- Zhu, Q.; Xu, M.; Liu, W.; Zheng, M. A state of charge estimation method for lithium-ion batteries based on fractional order adaptive extended kalman filter. Energy 2019, 187, 115880. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, G.; Liu, Y.; Zhang, B.; Hu, C. Lithium-ion battery remaining useful life prediction with deep belief network and relevance vector machine. In Proceedings of the 2017 IEEE International Conference on Prognostics and Health Management (ICPHM), Dallas, TX, USA, 19–21 June 2017; pp. 7–13. [Google Scholar]
- He, Z.; Shen, X.; Sun, Y.; Zhao, S.; Fan, B.; Pan, C. State-of-health estimation based on real data of electric vehicles concerning user behavior. J. Energy Storage 2021, 41, 102867. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, S.; Li, W.; Miao, Q. State-of-charge estimation of lithium-ion batteries using LSTM and UKF. Energy 2020, 201, 117664. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Z.; Xiong, Q.; Ding, B.; Hou, J.; Luo, D.; Rong, Y.; Li, S. State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network. J. Power Sources 2020, 459, 228069. [Google Scholar] [CrossRef]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Saha, K.G.B. Battery Data Set, NASA Ames Prognostics Data Repository 2007. Available online: http://ti.arc.nasa.gov/project/prognostic-datarepository (accessed on 10 October 2007).
- Olivares, B.; Munoz, M.; Orchard, M.; Silva, J.F. Particle-filtering-based prognosis framework for energy storage devices with a statistical characterization of state-of-health regeneration phenomena. IEEE Trans. Instrum. Meas. 2012, 62, 364–376. [Google Scholar] [CrossRef]
- Liu, D.; Pang, J.; Zhou, J.; Peng, Y.; Pecht, M. Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression. Microelectron. Reliab. 2013, 53, 832–839. [Google Scholar] [CrossRef]
- Jia, J.; Liang, J.; Shi, Y.; Wen, J.; Pang, X.; Zeng, J. SOH and RUL Prediction of Lithium-Ion Batteries Based on Gaussian Process Regression with Indirect Health Indicators. Energies 2020, 13, 375. [Google Scholar] [CrossRef] [Green Version]
- Qu, J.; Liu, F.; Ma, Y.; Fan, J. A Neural-Network-Based Method for RUL Prediction and SOH Monitoring of Lithium-Ion Battery. IEEE Access 2019, 7, 87178–87191. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, X.; Pan, R.; Wang, Y.; Chen, Z. A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve. J. Power Sources 2018, 384, 387–395. [Google Scholar] [CrossRef]
- Yu, J. State of health prediction of lithium-ion batteries: Multiscale logic regression and Gaussian process regression ensemble. Reliab. Eng. Syst. Saf. 2018, 174, 82–95. [Google Scholar] [CrossRef]
- Liu, D.; Zhou, J.; Pan, D.; Peng, Y.; Peng, X. Lithium-ion battery remaining useful life estimation with an optimized Relevance Vector Machine algorithm with incremental learning. Measurement 2015, 63, 143–151. [Google Scholar] [CrossRef]
- Bühlmann, P.; Yu, B. Analyzing bagging. Ann. Stat. 2002, 30, 927–961. [Google Scholar] [CrossRef]
- Chandran, V.; Patil, C.; Karthick, A.; Ganeshaperumal, D.; Rahim, R.; Ghosh, A. State of charge estimation of lithium-ion battery for electric vehicles using machine learning algorithms. World Electr. Veh. J. 2021, 12, 38. [Google Scholar] [CrossRef]
- Yang, F.; Wang, D.; Xu, F.; Huang, Z.; Tsui, K.-L. Lifespan prediction of lithium-ion batteries based on various extracted features and gradient boosting regression tree model. J. Power Sources 2020, 476, 228654. [Google Scholar] [CrossRef]
- Prettenhofer, P.; Louppe, G. Gradient boosted regression trees in scikit-learn. In Proceedings of the PyData 2014, London, UK, 21–23 February 2014. [Google Scholar]
- Guryanov, A. Histogram-based algorithm for building gradient boosting ensembles of piecewise linear decision trees. In AIST 2019: Analysis of Images, Social Networks and Texts; Springer International Publishing: New York, NY, USA, 2019; pp. 39–50. [Google Scholar]
- Awad, M.; Khanna, R. Support vector regression. In Efficient Learning Machines; Springer: Cham, Switzerland, 2015; pp. 67–80. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Shi, Q.; Zhang, C.; Cui, N. Estimation of battery state-of-charge using ν-support vector regression algorithm. Int. J. Auto Technol. 2008, 9, 759–764. [Google Scholar] [CrossRef]
- Solomatine, D.; Shrestha, D. AdaBoost. RT: A boosting algorithm for regression problems. In Proceedings of the 2004 IEEE International Joint Conference on Neural Networks, Budapest, Hungary, 25–29 July 2004; pp. 1163–1168. [Google Scholar]
- Zhu, X.; Zhang, P.; Xie, M. A Joint Long Short-Term Memory and AdaBoost regression approach with application to remaining useful life estimation. Measurement 2021, 170, 108707. [Google Scholar] [CrossRef]
- Vilsen, S.; Stroe, D.-I. Battery state-of-health modelling by multiple linear regression. J. Clean. Prod. 2021, 290, 125700. [Google Scholar] [CrossRef]
- Hong, J.; Wang, Z.; Chen, W.; Wang, L.-Y.; Qu, C. Online joint-prediction of multi-forward-step battery SOC using LSTM neural networks and multiple linear regression for real-world electric vehicles. J. Energy Storage 2020, 30, 101459. [Google Scholar] [CrossRef]
Voltage | Current | Cycle Time | Temperature | SOH | RUL | |||
Voltage | 1 | 0.8578 | 0.7836 | 0.4276 | 0.8963 | 0.8469 | ||
Current | 0.8578 | 1 | 0.7268 | 0.4963 | 0.8836 | 0.7986 | ||
Cycle Time | 0.7836 | 0.7268 | 1 | 0.5529 | 0.9287 | 0.8301 | ||
Temperature | 0.4276 | 0.4963 | 0.5529 | 1 | 0.4276 | 0.3483 | ||
SOH | 0.8963 | 0.8836 | 0.9287 | 0.4276 | 1 | 0.9117 | ||
RUL | 0.8469 | 0.7986 | 0.8301 | 0.3483 | 0.9117 | 1 |
CC: 2A (24 °C) | |||||||||||
Battery | B0005 | B0006 | B0007 | B0018 | B0036 | ||||||
Training Set | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | ARMSE |
20% | 0.0048 | 0.0065 | 0.0077 | 0.0104 | 0.0074 | 0.0091 | 0.0070 | 0.0091 | 0.0092 | 0.0403 | 0.0151 |
30% | 0.0046 | 0.0063 | 0.0051 | 0.0068 | 0.0040 | 0.0080 | 0.0052 | 0.0070 | 0.0102 | 0.0438 | 0.0144 |
50% | 0.0051 | 0.0074 | 0.0051 | 0.0068 | 0.0042 | 0.0094 | 0.0047 | 0.0058 | 0.0120 | 0.0485 | 0.0156 |
70% | 0.0031 | 0.0041 | 0.0038 | 0.0053 | 0.0039 | 0.0049 | 0.0043 | 0.0060 | 0.0123 | 0.0287 | 0.0098 |
80% | 0.0024 | 0.0030 | 0.0033 | 0.0045 | 0.0048 | 0.0060 | 0.0041 | 0.0055 | 0.0137 | 0.0193 | 0.0077 |
Average | 0.0040 | 0.0055 | 0.0050 | 0.0068 | 0.0049 | 0.0075 | 0.0051 | 0.0067 | 0.0115 | 0.0361 | 0.0125 |
CC: 4A (24 °C) | |||||||||||
Battery | B0033 | B0034 | |||||||||
Training set | MAE | RMSE | MAE | RMSE | ARMSE | ||||||
20% | 0.0514 | 0.1152 | 0.0152 | 0.0416 | 0.0784 | ||||||
30% | 0.0200 | 0.0487 | 0.0168 | 0.0423 | 0.0455 | ||||||
50% | 0.0283 | 0.0732 | 0.0150 | 0.0449 | 0.0591 | ||||||
70% | 0.0375 | 0.0812 | 0.0228 | 0.0393 | 0.0603 | ||||||
80% | 0.0210 | 0.0400 | 0.0158 | 0.0309 | 0.0355 | ||||||
Average | 0.0316 | 0.0717 | 0.0171 | 0.0398 | 0.0558 |
CC: 4A (43 °C) | |||||||||
Battery | B0029 | B0030 | B0031 | B0032 | |||||
Training Set | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | ARMSE |
20% | 0.0405 | 0.0589 | 0.0426 | 0.0692 | 0.0342 | 0.0445 | 0.0727 | 0.1026 | 0.0688 |
30% | 0.0093 | 0.0130 | 0.0117 | 0.0166 | 0.0096 | 0.0120 | 0.0055 | 0.0088 | 0.0126 |
50% | 0.0070 | 0.0098 | 0.0109 | 0.0152 | 0.0044 | 0.0065 | 0.0076 | 0.0105 | 0.0105 |
70% | 0.0041 | 0.0053 | 0.0042 | 0.0047 | 0.0038 | 0.0051 | 0.0047 | 0.0058 | 0.0052 |
80% | 0.0023 | 0.0027 | 0.0035 | 0.0044 | 0.0036 | 0.0060 | 0.0027 | 0.0036 | 0.0042 |
Average | 0.0126 | 0.0179 | 0.0146 | 0.0220 | 0.0111 | 0.0148 | 0.0186 | 0.0263 | 0.0203 |
Multiple fixed load current (4 °C) | |||||||||
Battery | B0041 | B0042 | B0043 | B0044 | |||||
Training set | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | ARMSE |
20% | 0.0875 | 0.2095 | 0.0240 | 0.0471 | 0.0951 | 0.3381 | 0.0562 | 0.1424 | 0.1843 |
30% | 0.1344 | 0.2617 | 0.0214 | 0.0335 | 0.0971 | 0.2989 | 0.0192 | 0.0310 | 0.1563 |
50% | 0.0211 | 0.0552 | 0.0222 | 0.0347 | 0.0071 | 0.0115 | 0.0095 | 0.0193 | 0.0302 |
70% | 0.0627 | 0.0644 | 0.0044 | 0.0068 | 0.0024 | 0.0034 | 0.0042 | 0.0060 | 0.0202 |
80% | 0.0052 | 0.0083 | 0.0062 | 0.0092 | 0.0028 | 0.0036 | 0.0038 | 0.0047 | 0.0065 |
Average | 0.0623 | 0.1198 | 0.0156 | 0.0263 | 0.0409 | 0.1311 | 0.0186 | 0.0407 | 0.0795 |
/ | Meta-Predictors | Stacking | |||||
---|---|---|---|---|---|---|---|
Batteries | Indices | SVR | GBR | Hist-GBR | Bagging | AdaBoost | SR |
#B0005 | R2 | 0.42 ± 0.03 | 0.99 ± 0.01 | 0.05 ± 0.06 | 0.98 ± 0.01 | 0.98 ± 0.02 | 0.99 ± 0.01 |
Time(s) | 1.86 | 0.14 | 0.08 | 0.06 | 0.11 | 2.14 | |
#B0006 | R2 | 0.79 ± 0.02 | 0.98 ± 0.02 | 0.10 ± 0.15 | 0.98 ± 0.02 | 0.98 ± 0.002 | 0.98 ± 0.01 |
Time(s) | 1.89 | 0.14 | 0.08 | 0.06 | 0.14 | 2.14 | |
#B0007 | R2 | 0.26 ± 0.02 | 0.99 ± 0.00 | 0.06 ± 0.07 | 0.98 ± 0.02 | 0.99 ± 0.01 | 0.99 ± 0.00 |
Time(s) | 1.85 | 0.13 | 0.11 | 0.06 | 0.17 | 2.32 | |
#B0018 | R2 | 0.01 ± 0.69 | 0.98 ± 0.02 | 0.30 ± 0.49 | 0.97 ± 0.23 | 0.96 ± 0.04 | 0.97 ± 0.01 |
Time(s) | 2.19 | 0.16 | 0.18 | 0.08 | 0.20 | 2.21 |
Method | Battery | ARMSE | |||
---|---|---|---|---|---|
#B0005 | #B0006 | #B0007 | #B00018 | ||
RNN [38] | 0.0162 | 0.0503 | 0.0257 | 0.0125 | 0.0262 |
LSTM [38] | 0.0091 | 0.0385 | 0.0196 | 0.0122 | 0.0199 |
SVR [35] | 0.0075 | 0.0166 | 0.0097 | - | 0.0169 |
RVM [38] | 0.0731 | 0.1148 | - | 0.0215 | 0.0523 |
GPR [39] | 0.0095 | 0.0149 | 0.0078 | - | 0.0107 |
AST-LSTM [32] | 0.0038 | 0.0078 | 0.0085 | 0.0122 | 0.0081 |
SR model | 0.0063 | 0.0068 | 0.0080 | 0.0070 | 0.0070 |
Method | Pred. Point (nth) | RMSE | ARMSE | E | AAE | |
---|---|---|---|---|---|---|
MLR/GPR [40] (EOL = 129) | 50 | 53 | - | 0.0168 | 26 | 19 |
70 | 41 | - | 18 | |||
90 | 26 | - | 13 | |||
RNN [38] (EOL = 124) | 50 | 94 | 0.1047 | 0.0621 | −20 | 11.67 |
70 | 63 | 0.0331 | −9 | |||
90 | 28 | 0.0484 | 6 | |||
PA-LSTM [38] (EOL = 124) | 50 | 81 | 0.0937 | 0.0422 | −7 | 3.33 |
70 | 54 | 0.0163 | 0 | |||
90 | 31 | 0.0166 | 3 | |||
RVM [41] (EOL = 128) | 40 | 87 | 0.0173 | 0.0514 | 1 | 2.67 |
60 | 74 | 0.0189 | 6 | |||
80 | 47 | 0.0195 | 1 | |||
AST-LSTM-II [32] (EOL = 125) | 50 | 69 | 0.0265 | 0.0202 | 4 | 2 |
70 | 54 | 0.0159 | 1 | |||
90 | 33 | 0.0183 | 1 | |||
SR model (EOL = 125) | 50 | 76 | 0.0183 | 0.0173 | −1 | 2 |
70 | 55 | 0.0226 | 0 | |||
90 | 40 | 0.0110 | −5 |
Pred. Point (nth) | RMSE | ARMSE | E | AAE | RE | |||
---|---|---|---|---|---|---|---|---|
#B0005 (EOL = 125) | 30 | 95 | 97 | 0.0152 | 0.0168 | −2 | 1.80 | 2.10% |
50 | 75 | 76 | 0.0183 | −1 | 1.33% | |||
70 | 55 | 55 | 0.0226 | 0 | 0.00% | |||
90 | 35 | 40 | 0.0110 | −5 | 14.29% | |||
110 | 15 | 16 | 0.0171 | −1 | 6.67% | |||
#B0006 (EOL = 108) | 30 | 78 | 80 | 0.0269 | 0.0180 | −2 | 1.75 | 2.54% |
50 | 58 | 59 | 0.0246 | −1 | 1.72% | |||
70 | 38 | 38 | 0.0137 | 0 | 0.00% | |||
90 | 18 | 22 | 0.0066 | −4 | 22.22% | |||
#B0007 (EOL = 167) | 30 | 137 | 136 | 0.0168 | 0.0121 | 1 | 1.86 | 0.73% |
50 | 117 | 118 | 0.0120 | −1 | 0.85% | |||
70 | 97 | 98 | 0.0097 | −7 | 1.03% | |||
90 | 77 | 80 | 0.0135 | −3 | 3.89% | |||
110 | 57 | 58 | 0.0142 | −1 | 1.75% | |||
130 | 37 | 38 | 0.0122 | −1 | 2.70% | |||
150 | 17 | 23 | 0.0076 | −5 | 29.42% | |||
#B0018 (EOL = 96) | 30 | 66 | 65 | 0.0247 | 0.0141 | 1 | 2.25 | 1.51% |
50 | 46 | 46 | 0.0119 | 0 | 0.00% | |||
70 | 26 | 31 | 0.0135 | −5 | 19.23% | |||
90 | 6 | 9 | 0.0063 | −3 | 50.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, J.; Qin, Z.; Huang, H.; Gan, X.; Li, S.; Li, B. State of Health Estimation and Remaining Useful Life Prediction for a Lithium-Ion Battery with a Two-Layer Stacking Regressor. Energies 2023, 16, 2313. https://doi.org/10.3390/en16052313
Yuan J, Qin Z, Huang H, Gan X, Li S, Li B. State of Health Estimation and Remaining Useful Life Prediction for a Lithium-Ion Battery with a Two-Layer Stacking Regressor. Energies. 2023; 16(5):2313. https://doi.org/10.3390/en16052313
Chicago/Turabian StyleYuan, Jun, Zhili Qin, Haikun Huang, Xingdong Gan, Shuguang Li, and Baihai Li. 2023. "State of Health Estimation and Remaining Useful Life Prediction for a Lithium-Ion Battery with a Two-Layer Stacking Regressor" Energies 16, no. 5: 2313. https://doi.org/10.3390/en16052313
APA StyleYuan, J., Qin, Z., Huang, H., Gan, X., Li, S., & Li, B. (2023). State of Health Estimation and Remaining Useful Life Prediction for a Lithium-Ion Battery with a Two-Layer Stacking Regressor. Energies, 16(5), 2313. https://doi.org/10.3390/en16052313