Applicability of WorldCover in Wind Power Engineering: Application Research of Coupled Wake Model Based on Practical Project
Abstract
:1. Introduction
2. Background
2.1. Data Source
2.2. The Context of the Experimental Project
2.3. Making the Roughness Length
3. Verification Mode
3.1. Wake Model
3.2. Nacelle Transfer Function
3.3. The Sector Affected by the Wake
4. Results and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sadorsky, P. Wind energy for sustainable development: Driving factors and future outlook. J. Clean. Prod. 2021, 289, 125779. [Google Scholar] [CrossRef]
- Lee, J.; Zhao, F. GWEC Global Wind Report 2022; Global Wind Energy Council: Brussels, Belgium, 2022. [Google Scholar]
- Musial, W.; Spitsen, P.; Duffy, P.; Beiter, P.; Marquis, M.; Hammond, R.; Shields, M. Offshore Wind Market Report: 2022 Edition; National Renewable Energy Lab (NREL): Golden, CO, USA, 2022. [Google Scholar]
- Xu, K.; Chang, J.; Zhou, W.; Li, S.; Shi, Z.; Zhu, H.; Guo, K. A comprehensive estimate of life cycle greenhouse gas emissions from onshore wind energy in China. J. Clean. Prod. 2022, 338, 130683. [Google Scholar] [CrossRef]
- DeCastro, M.; Salvador, S.; Gómez-Gesteira, M.; Costoya, X.; Carvalho, D.; Sanz-Larruga, F.J.; Gimeno, L. Europe, China and the United States: Three different approaches to the development of offshore wind energy. Renew. Sustain. Energy Rev. 2019, 109, 55–70. [Google Scholar] [CrossRef]
- Dong, C.; Qi, Y.; Dong, W.; Lu, X.; Liu, T.; Qian, S. Decomposing driving factors for wind curtailment under economic new normal in China. Appl. Energy 2018, 217, 178–188. [Google Scholar] [CrossRef]
- Neff, D.E.; Meroney, R.N. Wind-tunnel modeling of hill and vegetation influence on wind power availability. J. Wind Eng. Ind. Aerodyn. 1998, 74, 335–343. [Google Scholar] [CrossRef]
- Jacobs, A.F.G.; Van Boxel, J.H.; El-Kilani, R.M.M. Vertical and horizontal distribution of wind speed and air temperature in a dense vegetation canopy. J. Hydrol. 1995, 166, 313–326. [Google Scholar] [CrossRef] [Green Version]
- Fu, D.; Liu, Y.; Li, H.; Liu, S.; Li, B.; Thapa, S.; Tian, C. Evaluating the impacts of land cover and soil texture changes on simulated surface wind and temperature. Earth Space Sci. 2020, 7, e2020EA001173. [Google Scholar] [CrossRef]
- Wen, X.; Liao, X.; Yuan, W.; Yan, X.; Wei, Z.; Liu, H.; Dong, W. Numerical simulation and data assimilation of the water-energy cycle over semiarid northeastern China. Sci. China Earth Sci. 2014, 57, 2340–2356. [Google Scholar] [CrossRef]
- Baier, F.; Metz-Marconcini, A.; Esch, T.; Schroedter-Homscheidt, M. Impact of higher-resolved satellite-based land cover classification on near surface wind speed forecasts. Meteorol. Z. 2022, 31, 101–116. [Google Scholar] [CrossRef]
- Churchfield, M.J.; Lee, S.; Michalakes, J.; Moriarty, P.J. A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics. J. Turbul. 2012, 13, N14. [Google Scholar] [CrossRef]
- Elliott, D.L.; Barnard, J.C. Observations of wind turbine wakes and surface roughness effects on wind flow variability. Sol. Energy 1990, 45, 265–283. [Google Scholar] [CrossRef]
- Stevens, R.J.; Gayme, D.F.; Meneveau, C. Coupled wake boundary layer model of wind-farms. J. Renew. Sustain. Energy 2015, 7, 023115. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, D.; Melican, J.E.; Wemmelmann, E.; Jones, T.B. GeoCover LC-A moderate resolution global land cover database. In Proceedings of the ESRI International User Conference, San Diego, CA, USA, 8–12 July 2002. [Google Scholar]
- Buchhorn, M.; Lesiv, M.; Tsendbazar, N.E.; Herold, M.; Bertels, L.; Smets, B. Copernicus global land cover layers—Collection 2. Remote Sens. 2020, 12, 1044. [Google Scholar] [CrossRef] [Green Version]
- National Geomatics Center of China. 30-Meter Global Land Cover Dataset (GlobeLand30) Product Description; National Geomatics Center of China: Beijing, China, 2020.
- ESA. Chapter 3.1 Statistical Accuracy Assessment. In WorldCover Product Validation Report v1.0; ESA: Paris, France, 2021. [Google Scholar]
- Brown, C.F.; Brumby, S.P.; Guzder-Williams, B.; Birch, T.; Hyde, S.B.; Mazzariello, J.; Czerwinski, W.; Pasquarella, V.J.; Haertel, R.; Ilyushchenko, S.; et al. Dynamic World, Near real-time global 10 m land use land cover mapping. Sci. Data 2022, 9, 251. [Google Scholar] [CrossRef]
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global land use/land cover with Sentinel 2 and deep learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 4704–4707. [Google Scholar]
- Venter, Z.S.; Barton, D.N.; Chakraborty, T.; Simensen, T.; Singh, G. Global 10 m Land Use Land Cover Datasets: A Comparison of Dynamic World, World Cover and Esri Land Cover. Remote Sens. 2022, 14, 4101. [Google Scholar] [CrossRef]
- Wang, J.; Yang, X.; Wang, Z.; Cheng, H.; Kang, J.; Tang, H.; Li, Y.; Bian, Z.; Bai, Z. Consistency Analysis and Accuracy Assessment of Three Global Ten-Meter Land Cover Products in Rocky Desertification Region—A Case Study of Southwest China. ISPRS Int. J. Geo-Inf. 2022, 11, 202. [Google Scholar] [CrossRef]
- Kang, J.; Yang, X.; Wang, Z.; Cheng, H.; Wang, J.; Tang, H.; Li, Y.; Bian, Z.; Bai, Z. Comparison of Three Ten Meter Land Cover Products in a Drought Region: A Case Study in Northwestern China. Land 2022, 11, 427. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Wang, F.; Gong, Y.; Tong, X.; Jin, Y.; Zhao, A.; Wei, C.; Zhang, X.; Liao, S. Spatially Balanced Sampling for Validation of GlobeLand30 Using Landscape Pattern-Based Inclusion Probability. Sustainability 2022, 14, 2479. [Google Scholar] [CrossRef]
- Troen, I.E.L.P.; Lundtang Petersen, E. European Wind Atlas; Commission of the European Communities: Brussels, Belgium, 1989. [Google Scholar]
- Dörenkämper, M.; Olsen, B.T.; Witha, B.; Hahmann, A.N.; Davis, N.N.; Barcons, J.; Ezber, Y.; García-Bustamante, E.; González-Rouco, J.F.; Navarro, J.; et al. The making of the new european wind atlas–part 2: Production and evaluation. Geosci. Model Dev. 2020, 13, 5079–5102. [Google Scholar] [CrossRef]
- De Bruin, H.A.; Moore, C.J. Zero-plane displacement and roughness length for tall vegetation, derived from a simple mass conservation hypothesis. Bound.-Layer Meteorol. 1985, 31, 39–49. [Google Scholar] [CrossRef]
- Garratt, J.R. The atmospheric boundary layer. Earth-Sci. Rev. 1994, 37, 89–134. [Google Scholar] [CrossRef]
- Davenport, A.G.; Grimmond, C.S.; Oke, T.R.; Wieringa, J. Estimating the roughness of cities and sheltered country. In Proceedings of the 12th Conference on Applied Climatology (Asheville Meeting), Asheville, NC, USA, 8–11 May 2000; Volume 96, p. 99. [Google Scholar]
- Anderson, J.R. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; US Government Printing Office: Washington, DC, USA, 1976.
- Karagali, I.; Mann, J.; Dellwik, E.; Vasiljević, N. New European wind atlas: The Østerild balconies experiment. J. Phys. Conf. Ser. 2018, 1037, 052029. [Google Scholar] [CrossRef] [Green Version]
- Mason, P.J. The formation of areally-averaged roughness lengths. Q. J. R. Meteorol. Soc. 1988, 114, 399–420. [Google Scholar] [CrossRef]
- Bottema, M. Landscape roughness parameters for Sherwood Forest–Experimental results. Bound.-Layer Meteorol. 1998, 89, 285–316. [Google Scholar] [CrossRef]
- OpenWind Online Help. Available online: https://openwind.ul-renewables.com/index.html (accessed on 2 December 2022).
- Phillips, G.T.; Traci, R.M. A Preliminary Users Guide for the NOABL Objective Analysis Code; Science Applications, Inc.: La Jolla, CA, USA, 1979. [Google Scholar]
- Ainslie, J.F. Calculating the flowfield in the wake of wind turbines. J. Wind Eng. Ind. Aerodyn. 1988, 27, 213–224. [Google Scholar] [CrossRef]
- Brower, M.C.; Robinson, N.M. The OpenWind Deep-Array Wake Model: Development and Validation; AWS Truepower: New York, NY, USA, 2012. [Google Scholar]
- Emeis, S. Wind Energy Meteorology: Atmospheric Physics for Wind Power Generation; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- St Martin, C.M.; Lundquist, J.K.; Clifton, A.; Poulos, G.S.; Schreck, S.J. Atmospheric turbulence affects wind turbine nacelle transfer functions. Wind Energy Sci. 2017, 2, 295–306. [Google Scholar] [CrossRef] [Green Version]
- IEC 61400-12-2; Wind Turbines-Part 12-2: Power Performance of Electricity Producing Wind Turbines Based on Nacelle Anemometry. International Electrotechnical Commission: Geneva, Switzerland, 2013.
- Shin, D.; Ko, K. Application of the nacelle transfer function by a nacelle-mounted light detection and ranging system to wind turbine power performance measurement. Energies 2019, 12, 1087. [Google Scholar] [CrossRef] [Green Version]
- IEC 61400-12-1; Wind Turbines-Part 12-1: Power Performance Measurements of Electricity Producing Wind Turbines. International Electrotechnical Commission: Geneva, Switzerland, 2017.
Code | Land Use Land Cover Class | EWA Roughness Classification | EWA Roughness Length (m) | Modified Roughness Length (m) |
---|---|---|---|---|
10 | Tree cover | 2.5 | 0.65 | 0.7 |
20 | Shrubland | 1.5 | 0.15 | 0.2 |
30 | Grassland | 1 | 0.03 | 0.05 |
40 | Cropland | 1 | 0.05 | 0.03 |
50 | Built-up | 3 | 1 | 0.55 |
60 | Bare | 1 | 0.01 | 0.01 |
70 | Snow and ice | 0 | 0.001 | 0.001 |
80 | Water | 0 | 0.0001 | 0.0001 |
90 | Wetland | 1 | 0.03 | 0.02 |
95 | Mangroves | 2 | 0.15 | 0.15 |
100 | Moss and lichen | 1 | 0.01 | 0.01 |
FSR | EV | DAWM-EV | ASM-EV | Actual | |
---|---|---|---|---|---|
Mean Speed [m/s] | 5.496 | 5.265 | 5.265 | 5.265 | 5.291 |
Gross Energy [GWh] | 127.644 | 125.611 | 125.611 | 125.611 | 123.644 |
Waked Energy [GWh] | 114.107 | 105.322 | 104.097 | 97.119 | 96.411 |
Wake Loss [%] | 10.63 | 16.13 | 17.10 | 22.66 | 22.03 |
Net Energy [GWh] | 91.445 | 84.405 | 83.423 | 77.831 | 79.057 |
Down | 5# | 6# | 7# | 8# | |
---|---|---|---|---|---|
Up | |||||
4# | 103.3°~173.3° | 115.5°~168.1° | 123.5°~167.9° | 130.3°~169.3° | |
5# | 101.7°~177.7° | 120.3°~176.5° | 129.3°~174.5° | ||
6# | 118.1°~196.9° | 131.7°~186.7° | |||
7# | 123.6°~196.6° |
4# | 5# | 6# | 7# | 8# | |
---|---|---|---|---|---|
Actual Waked Speed [m/s] | 8.403 | 5.587 | 4.815 | 5.294 | 6.967 |
EV Waked Speed [m/s] | 8.379 | 5.274 | 5.134 | 5.177 | 7.092 |
DAWM-EV Waked Speed [m/s] | 8.379 | 5.274 | 4.519 | 4.338 | 7.034 |
ASM-EV Waked Speed [m/s] | 8.379 | 5.494 | 4.868 | 4.822 | 6.741 |
4# | 5# | 6# | 7# | 8# | |
---|---|---|---|---|---|
Ambient TI [%] | 6.66 | 6.52 | 6.51 | 6.27 | 5.77 |
EV Total TI [%] | 6.66 | 21.16 | 22.28 | 21.48 | 15.68 |
DAWM-EV Total TI [%] | 6.66 | 20.15 | 25.86 | 27.03 | 16.66 |
ASM-EV Total TI [%] | 15.80 | 34.89 | 43.34 | 48.38 | 35.17 |
4# | 5# | 6# | 7# | 8# | |
---|---|---|---|---|---|
Actual Array Yield [kWh] | 4320.583 | 1566.864 | 1011.900 | 1240.540 | 2786.203 |
EV Array Yield [kWh] | 4619.868 | 1372.439 | 1214.295 | 1482.740 | 3143.623 |
DAWM-EV Array Yield [kWh] | 4619.868 | 1372.439 | 806.209 | 902.434 | 3071.128 |
ASM-EV Array Yield [kWh] | 4070.235 | 1534.638 | 1040.528 | 1155.667 | 2803.804 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Chen, J.; Liu, H.; Chen, Y.; Yang, J.; Yuan, Z.; Li, Q. Applicability of WorldCover in Wind Power Engineering: Application Research of Coupled Wake Model Based on Practical Project. Energies 2023, 16, 2193. https://doi.org/10.3390/en16052193
Zhang J, Chen J, Liu H, Chen Y, Yang J, Yuan Z, Li Q. Applicability of WorldCover in Wind Power Engineering: Application Research of Coupled Wake Model Based on Practical Project. Energies. 2023; 16(5):2193. https://doi.org/10.3390/en16052193
Chicago/Turabian StyleZhang, Jing, Jixing Chen, Hao Liu, Yining Chen, Jingwen Yang, Zongtao Yuan, and Qingan Li. 2023. "Applicability of WorldCover in Wind Power Engineering: Application Research of Coupled Wake Model Based on Practical Project" Energies 16, no. 5: 2193. https://doi.org/10.3390/en16052193
APA StyleZhang, J., Chen, J., Liu, H., Chen, Y., Yang, J., Yuan, Z., & Li, Q. (2023). Applicability of WorldCover in Wind Power Engineering: Application Research of Coupled Wake Model Based on Practical Project. Energies, 16(5), 2193. https://doi.org/10.3390/en16052193