A Review of the Use of Electrolytic Cells for Energy and Environmental Applications
Abstract
:1. Introduction
2. Methodology
3. Water Electrolysis
3.1. Production of H2
3.2. Production of Syngas
4. Electrolysis of Organic Solutions for H2 Production
5. Elesctrocracking Concept
5.1. Production of Syngas
5.2. Electroreduction of CO2
5.3. Production of Formic Acid (HCOOH)
6. Electrolysis of Industrial Wastewater
6.1. Production of H2
6.2. Pollutant Removal
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guerra, L.; Moura, K.; Rodrigues, J.; Gomes, J.; Puna, J.; Bordado, J.; Santos, T. Synthesis Gas Production from Water Electrolysis, Using the Electrocracking Concept. J. Environ. Chem. Eng. 2018, 6, 604–609. [Google Scholar] [CrossRef]
- Liang, S.; Altaf, N.; Huang, L.; Gao, Y.; Wang, Q. Electrolytic Cell Design for Electrochemical CO2 Reduction. J. CO2 Util. 2020, 35, 90–105. [Google Scholar] [CrossRef]
- Saleet, H.; Abdallah, S.; Yousef, E. The Effect of Electrical Variables on Hydrogen and Oxygen Production Using a Water Electrolyzing System. Int. J. Appl. Eng. Res. 2017, 12, 3730–3739. [Google Scholar]
- Sapountzi, F.M.; Gracia, J.M.; Weststrate, C.J.; Fredriksson, H.O.; Niemantsverdriet, J.H. Electrocatalysts for the Generation of Hydrogen, Oxygen and Synthesis Gas. Prog. Energy Combust. Sci. 2017, 58, 1–35. [Google Scholar] [CrossRef]
- Guerra, L.; Gomes, J.; Puna, J.; Rodrigues, J. Preliminary Study of Synthesis Gas Production from Water Electrolysis, Using the ELECTROFUEL® Concept. Energy 2015, 89, 1050–1056. [Google Scholar] [CrossRef]
- Caravaca, A.; Garcia-Lorefice, W.E.; Gil, S.; de Lucas-Consuegra, A.; Vernoux, P. Towards a Sustainable Technology for H2 Production: Direct Lignin Electrolysis in a Continuous-Flow Polymer Electrolyte Membrane Reactor. Electrochem. Commun. 2019, 100, 43–47. [Google Scholar] [CrossRef]
- Vanags, M.; Kleperis, J.; Bajars, G.; Vanags, M.; Kleperis, J.; Bajars, G. Water Electrolysis with Inductive Voltage Pulses. In Electrolysis; InTech: Riga, Latvia, 2012; pp. 19–44. [Google Scholar] [CrossRef]
- Mazloomi, S.K.; Sulaiman, N. Influencing Factors of Water Electrolysis Electrical Efficiency. Renew. Sustain. Energy Rev. 2012, 16, 4257–4263. [Google Scholar] [CrossRef]
- Guerra, L.; Rossi, S.; Rodrigues, J.; Gomes, J.; Puna, J.; Santos, M.T. Methane Production by a Combined Sabatier Reaction/Water Electrolysis Process. J. Environ. Chem. Eng. 2018, 6, 671–676. [Google Scholar] [CrossRef]
- Lu, X.; Leung, D.Y.C.; Wang, H.; Leung, M.K.H.; Xuan, J. Electrochemical Reduction of Carbon Dioxide to Formic Acid. ChemElectroChem 2014, 1, 836–849. [Google Scholar] [CrossRef]
- Carvalho, R. Cork Liquefaction: Improvement of the Process and Its Application on Adhesives Formulation; Universidade de Lisboa: Lisboa, Portugal, 2015. [Google Scholar]
- Alma, M.H.; Salan, T.; Altuntas, E.; Karaogul, E. Liquefaction Processes of Biomass for the Production of Valuable Chemicals and Biofuels: A Review. In Proceedings of the 55th International Convention of Society of Wood Science and Technology, Beijing, China, 27–31 August 2012. [Google Scholar]
- Popat, A.; Nidheesh, P.V.; Anantha Singh, T.S.; Kumar, M.S. Mixed Industrial Wastewater Treatment by Combined Electrochemical Advanced Oxidation and Biological Processes. Chemosphere 2019, 237, 124419. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Kumar, A.; Syam Babu, D.; Scaria, J.; Kumar, M.S. Treatment of Mixed Industrial Wastewater by Electrocoagulation and Indirect Electrochemical Oxidation. Chemosphere 2020, 251, 126437. [Google Scholar] [CrossRef] [PubMed]
- Samsudeen, N.; Spurgeon, J.; Matheswaran, M.; Satyavolu, J. Simultaneous Biohydrogen Production with Distillery Wastewater Treatment Using Modified Microbial Electrolysis Cell. Int. J. Hydrogen Energy 2020, 45, 18266–18274. [Google Scholar] [CrossRef]
- Santos, D.M.F.; Sequeira, C.A.C.; Figueiredo, J.L. Hydrogen Production by Alkaline Water Electrolysis. Quim. Nova 2013, 36, 1176–1193. [Google Scholar] [CrossRef]
- Zeng, K.; Zhang, D. Recent Progress in Alkaline Water Electrolysis for Hydrogen Production and Applications. Prog. Energy Combust. Sci. 2010, 36, 307–326. [Google Scholar] [CrossRef]
- Millet, P.; Grigoriev, S. Water Electrolysis Technologies. In Renewable Hydrogen Technologies. Production, Purification, Storage, Applications and Safety; Elsevier: Amsterdam, The Netherlands, 2013; pp. 19–41. [Google Scholar] [CrossRef]
- Chi, J.; Yu, H. Water Electrolysis Based on Renewable Energy for Hydrogen Production. Chin. J. Catal. 2018, 39, 390–394. [Google Scholar] [CrossRef]
- de Fátima Palhares, D.D.A.; Vieira, L.G.M.; Damasceno, J.J.R. Hydrogen Production by a Low-Cost Electrolyzer Developed through the Combination of Alkaline Water Electrolysis and Solar Energy Use. Int. J. Hydrogen Energy 2018, 43, 4265–4275. [Google Scholar] [CrossRef]
- Kreuter, W.; Hofmann, H. Electrolysis: The Important Energy Transformer in a World of Sustainable Energy. Int. J. Hydrogen Energy 1998, 23, 661–666. [Google Scholar] [CrossRef]
- Barco-Burgos, J.; Eicker, U.; Saldaña-Robles, N.; Saldaña-Robles, A.L.; Alcántar-Camarena, V. Thermal Characterization of an Alkaline Electrolysis Cell for Hydrogen Production at Atmospheric Pressure. Fuel 2020, 276, 117910. [Google Scholar] [CrossRef]
- Khatib, F.N.; Wilberforce, T.; Ijaodola, O.; Ogungbemi, E.; El-Hassan, Z.; Durrant, A.; Thompson, J.; Olabi, A.G. Material Degradation of Components in Polymer Electrolyte Membrane (PEM) Electrolytic Cell and Mitigation Mechanisms: A Review. Renew. Sustain. Energy Rev. 2019, 111, 1–14. [Google Scholar] [CrossRef]
- Shiva Kumar, S.; Himabindu, V. Hydrogen Production by PEM Water Electrolysis—A Review. Mater. Sci. Energy Technol. 2019, 2, 442–454. [Google Scholar] [CrossRef]
- Khan, S.N.; Yang, Z.; Dong, W.; Zhao, M. Cost and Technology Readiness Level Assessment of Emerging Technologies, New Perspectives, and Future Research Directions in H2 Production. Sustain. Energy Fuels 2022, 6, 4357–4374. [Google Scholar] [CrossRef]
- Krivina, R.A.; Lindquist, G.A.; Beaudoin, S.R.; Stovall, T.N.; Thompson, W.L.; Twight, L.P.; Marsh, D.; Grzyb, J.; Fabrizio, K.; Hutchison, J.E.; et al. Anode Catalysts in Anion-Exchange-Membrane Electrolysis without Supporting Electrolyte: Conductivity, Dynamics, and Ionomer Degradation. Adv. Mater. 2022, 34, 2203033. [Google Scholar] [CrossRef] [PubMed]
- Faid, A.Y.; Sunde, S. Anion Exchange Membrane Water Electrolysis from Catalyst Design to the Membrane Electrode Assembly. Energy Technol. 2022, 10, 2200506. [Google Scholar] [CrossRef]
- Riemer, M.; Duval-Dachary, S.; Bachmann, T.M. Environmental Implications of Reducing the Platinum Group Metal Loading in Fuel Cells and Electrolysers: Anion Exchange Membranes Versus Proton Exchange Membranes. SSRN 2022. [Google Scholar] [CrossRef]
- Li, C.; Baek, J.B. The Promise of Hydrogen Production from Alkaline Anion Exchange Membrane Electrolyzers. Nano Energy 2021, 87, 106162. [Google Scholar] [CrossRef]
- Biga, R. Experimental Characterization of a Pre-Commercial Anion Exchange Membrane Electrolyzer and Its Techno-Economic Prospects for Industrial-Scale Hydrogen Production; Politecnico di Torino: Torino, Italy, 2021. [Google Scholar]
- Mahmood, N.; Yao, Y.; Zhang, J.W.; Pan, L.; Zhang, X.; Zou, J.J. Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes: Mechanisms, Challenges, and Prospective Solutions. Adv. Sci. 2018, 5, 1700464. [Google Scholar] [CrossRef]
- El-Emam, R.S.; Özcan, H. Comprehensive Review on the Techno-Economics of Sustainable Large-Scale Clean Hydrogen Production. J. Clean. Prod. 2019, 220, 593–609. [Google Scholar] [CrossRef]
- Patel, C.R.P.; Tripathi, P.; Vishwakarma, A.K.; Talat, M.; Soni, P.K.; Yadav, T.P.; Srivastava, O.N. Enhanced Hydrogen Generation by Water Electrolysis Employing Carbon Nano-Structure Composites. Int. J. Hydrogen Energy 2018, 43, 3180–3189. [Google Scholar] [CrossRef]
- Kovač, A.; Marciuš, D.; Budin, L. Solar Hydrogen Production via Alkaline Water Electrolysis. Int. J. Hydrogen Energy 2019, 44, 9841–9848. [Google Scholar] [CrossRef]
- Yuzer, B.; Selcuk, H.; Chehade, G.; Demir, M.E.; Dincer, I. Evaluation of Hydrogen Production via Electrolysis with Ion Exchange Membranes. Energy 2020, 190, 116420. [Google Scholar] [CrossRef]
- Rodrigues, J. Obtenção de Gás de Síntese por Eletrólise Alcalina da Água; Instituto Superior de Engenharia de Lisboa: Lisboa, Portugal, 2013. [Google Scholar]
- Fernandes, V.R.; Furtado, O.; Rodrigues, J.; Rangel, C.M. Synthetic Fuels Production by Graphite-Assisted Electrolysis. In Proceedings of the European Hydrogen Energy Conference, Malaga, Spain, 14–16 March 2018. [Google Scholar]
- Hibino, T.; Kobayashi, K.; Nagao, M.; Teranishi, S. Hydrogen Production by Direct Lignin Electrolysis at Intermediate Temperatures. ChemElectroChem 2017, 4, 3032–3036. [Google Scholar] [CrossRef]
- Ruiz-López, E.; Caravaca, A.; Vernoux, P.; Dorado, F.; de Lucas-Consuegra, A. Over-Faradaic Hydrogen Production in Methanol Electrolysis Cells. Chem. Eng. J. 2020, 396, 125217. [Google Scholar] [CrossRef]
- Yang, L.; Liu, W.; Zhang, Z.; Du, X.; Gong, J.; Dong, L.; Deng, Y. Hydrogen Evolution from Native Biomass with Fe3+/Fe2+ Redox Couple Catalyzed Electrolysis. Electrochim. Acta 2017, 246, 1163–1173. [Google Scholar] [CrossRef]
- Hansen, S.; Mirkouei, A.; Diaz, L.A. A Comprehensive State-of-Technology Review for Upgrading Bio-Oil to Renewable or Blended Hydrocarbon Fuels. Renew. Sustain. Energy Rev. 2020, 118, 109548. [Google Scholar] [CrossRef]
- Silva, T.; Condeço, J.; Santos, D.M.F. Preliminary Studies on the Electrochemical Conversion of Liquefied Forest Biomass. Reactions 2022, 3, 553–575. [Google Scholar] [CrossRef]
- Endrődi, B.; Bencsik, G.; Darvas, F.; Jones, R.; Rajeshwar, K.; Janáky, C. Continuous-Flow Electroreduction of Carbon Dioxide. Prog. Energy Combust. Sci. 2017, 62, 133–154. [Google Scholar] [CrossRef]
- Malkhandi, S.; Yeo, B.S. Electrochemical Conversion of Carbon Dioxide to High Value Chemicals Using Gas-Diffusion Electrodes. Curr. Opin. Chem. Eng. 2019, 26, 112–121. [Google Scholar] [CrossRef]
- Masel, R.I.; Liu, Z.; Yang, H.; Kaczur, J.J.; Carrillo, D.; Ren, S.; Salvatore, D.; Berlinguette, C.P. An Industrial Perspective on Catalysts for Low-Temperature CO2 Electrolysis. Nat. Nanotechnol. 2021, 16, 118–128. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y.; Wu, J. Sustainable Production of Formic Acid from Biomass and Carbon Dioxide. Mol. Catal. 2020, 483, 110716. [Google Scholar] [CrossRef]
- Yang, H.; Kaczur, J.J.; Sajjad, S.D.; Masel, R.I. Electrochemical Conversion of CO2 to Formic Acid Utilising SustainionTM Membranes. J. CO2 Util. 2017, 20, 208–217. [Google Scholar] [CrossRef]
- Ramdin, M.; Morrison, A.R.T.; de Groen, M.; van Haperen, R.; de Kler, R.; van den Broeke, L.J.P.; Martin Trusler, J.P.; de Jong, W.; Vlugt, T.J.H. High Pressure Electrochemical Reduction of CO2 to Formic Acid/Formate: A Comparison between Bipolar Membranes and Cation Exchange Membranes. Ind. Eng. Chem. Res. 2019, 58, 1834–1847. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Guo, X.; Yang, J.; Wang, L. Electrodeposited Bi Dendrites/2D Black Phosphorus Nanosheets Composite Used for Boosting Formic Acid Production from CO2 Electroreduction. J. CO2 Util. 2020, 38, 32–38. [Google Scholar] [CrossRef]
- Ye, K.; Cao, A.; Shao, J.; Wang, G.; Si, R.; Ta, N.; Xiao, J.; Wang, G. Synergy Effects on Sn-Cu Alloy Catalyst for Efficient CO2 Electroreduction to Formate with High Mass Activity. Sci. Bull. 2020, 65, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Xiang, H.; Miller, H.A.; Bellini, M.; Christensen, H.; Scott, K.; Rasul, S.; Yu, E.H. Production of Formate by CO2 Electrochemical Reduction and Its Application in Energy Storage. Sustain. Energy Fuels 2019, 4, 277–284. [Google Scholar] [CrossRef]
- Calvinho, K.U.D.; Laursen, A.B.; Yap, K.M.K.; Goetjen, T.A.; Hwang, S.; Murali, N.; Mejia-Sosa, B.; Lubarski, A.; Teeluck, K.M.; Hall, E.S.; et al. Selective CO2 Reduction to C3 and C4 Oxyhydrocarbons on Nickel Phosphides at Overpotentials as Low as 10 MV. Energy Environ. Sci. 2018, 11, 2550–2559. [Google Scholar] [CrossRef]
- Pathak, A.K.; Kothari, R.; Tyagi, V.; Anand, S. Integrated Approach for Textile Industry Wastewater for Efficient Hydrogen Production and Treatment through Solar PV Electrolysis. Int. J. Hydrogen Energy 2020, 45, 25768–25782. [Google Scholar] [CrossRef]
- Kothari, R.; Tyagi, V.V.; Pathak, A. Waste-to-Energy: A Way from Renewable Energy Sources to Sustainable Development. Renew. Sustain. Energy Rev. 2010, 14, 3164–3170. [Google Scholar] [CrossRef]
- Chen, J.; Xu, W.; Wu, X.; E, J.; Lu, N.; Wang, T.; Zuo, H. System Development and Environmental Performance Analysis of a Pilot Scale Microbial Electrolysis Cell for Hydrogen Production Using Urban Wastewater. Energy Convers. Manag. 2019, 193, 52–63. [Google Scholar] [CrossRef]
- Jayabalan, T.; Matheswaran, M.; Preethi, V.; Mohamed, S.N. Enhancing Biohydrogen Production from Sugar Industry Wastewater Using Metal Oxide/Graphene Nanocomposite Catalysts in Microbial Electrolysis Cell. Int. J. Hydrogen Energy 2020, 45, 7647–7655. [Google Scholar] [CrossRef]
- Sahu, O.; Mazumdar, B.; Chaudhari, P.K. Treatment of Wastewater by Electrocoagulation: A Review. Environ. Sci. Pollut. Res. 2014, 21, 2397–2413. [Google Scholar] [CrossRef]
- Kliaugaite, D.; Yasadi, K.; Euverink, G.J.; Bijmans, M.F.M.; Racys, V. Electrochemical Removal and Recovery of Humic-Like Substances from Wastewater. Sep. Purif. Technol. 2013, 108, 37–44. [Google Scholar] [CrossRef] [Green Version]
Low-Temperature Electrolysis | High-Temperature Electrolysis | |||||
---|---|---|---|---|---|---|
Alkaline (OH−) Electrolysis | Proton Exchange (H+) Electrolysis | Oxygen ion (O2−) Electrolysis | ||||
Liquid | Polymer Electrolyte Membrane | Solid Oxide Electrolysis Cell (SOEC) | ||||
Conventional | Solid Alkaline | H+-PEM | H+-SOEC | O2−-SOEC | Co-Electrolysis | |
Operation principles | ||||||
Charge carrier | OH− | OH− | H+ | H+ | O2− | O2− |
T/°C | 20–80 | 20–200 | 20–200 | 500–1000 | 500–1000 | 750–900 |
Electrolyte | liquid | solid (polymeric) | solid (polymeric) | solid (ceramic) | solid (ceramic) | solid (ceramic) |
Anodic reaction (O2 evolution) | 4OH− → 2H2O + O2 + 4e− | 4OH− → 2H2O + O2 + 4e− | 2H2O → 4 H+ + O2 + 4e− | 2H2O → 4 H+ + O2 + 4e− | O2− → ½ O2 + 2e− | O2− → ½ O2 + 2e− |
Anodes | Ni > Co > Fe (oxides) Perovskites: Ba0.5Sr0.5Co0.8Fe0.2O3−5 LaCoO3 | Ni-based | IrO2, RuO2, IrxRu1−xO2 Supports: TiO2, ITO, TIC | perovskites with protonic-electronic conductivity | LaxSr1−xMnO3 + Y-stabilised ZrO2 (LSM-YSZ) | LaxSr1−xMnO3 + Y-stabilised ZrO2 (LSM-YSZ) |
Cathodic reaction (H2 evolution) | 2H2O + 4e− → 4OH− + 2H2 | 2H2O + 4e− → 4OH− + 2H2 | 4H+ + 4e− → 2H2 | 4H+ + 4e− → 2H2 | H2O + 2e− → H2 + O2− | H2O + 2e− → H2 + O2− CO2 + 2e− → CO + O2− |
Cathodes | Ni alloys | Ni, Ni-Fe, NiFeO4 | Pt/C, MoS2 | Ni-cements | Ni-YSZ Subst. LaCrO3 | Ni-YSZ perovskites |
Efficiency/% | 59–70 | - | 65–82 | up to 100 | up to 100 | - |
Applicability | commercial | laboratory scale | near-term commercialisation | laboratory scale | demonstration | laboratory scale |
TRL | TRL 9 | TRL 3–4 | TRL 8–9 | TRL 3–4 | TRL 5–6 | TRL 3–4 |
Advantages | low capital cost, relatively stable, mature technology | combination of alkaline and H+-PEM electrolysis | compact design, fast response/start-up, high-purity H2 | enhanced kinetics, thermodynamics: lower energy demands, low capital cost | + direct production of syngas | |
Disadvantages | corrosive electrolyte, gas permeation, slow dynamics | low OH− conductivity in polymeric membranes | high-cost polymeric membranes; acidic: noble metals | mechanically unstable electrodes (cracking), safety issues: improper sealing | ||
Challenges | improve durability/reliability; and O2 evolution | improve electrolyte | reduce noble-metal utilisation | microstructural changes in the electrodes: delamination, blocking of TPBs, passivation | C deposition, microstructural change electrodes |
Operating Conditions | Electrolyte | Electrodes | H2 Production | Source |
---|---|---|---|---|
- | 1 M NaOH | GC 73 composite anode, Pt cathode | 8117 mL min−1 m−2 | [33] |
Zirfon membrane | KOH | nickel electrodes | 210 mL min−1 | [34] |
3.4 V 25 °C | 5 M NaOH | 304 stainless steel electrodes | 2 L (in 4 h) | [20] |
BPM membrane | 1 M H2SO4 (cathode), 1 M NaOH (anode) | graphite bipolar plate anode, perforated 304 stainless steel cathode | 4.3 mL min−1 | [35] |
polyester fibre membrane, 30 A | 40 wt.% KOH | 316L stainless steel sheet electrodes | 433 mL min−1 | [22] |
Operating Conditions | Electrolyte | Syngas Produced | Source |
---|---|---|---|
35 °C 5 V | 0.4 M NaOH | 2.67 L h−1 | [5] |
60 °C 22.2 V | Alkaline electrolyte | 6–8 L h−1 | [37] |
4–5 bar 3.5 V/cell 70–80 °C | 0.4 M NaOH | 702 L h−1 m−2 | [9] |
Operating Conditions | Electrolyte | Electrodes and Catalyst | H2 Production | Source |
---|---|---|---|---|
Fumapem FAA-3–50 membrane 80 °C | Lignin alkaline aqueous solution (1 M NaOH) anolyte, 1 M NaOH catholyte | Carbon electrodes, bimetallic Pt-Ru anode catalyst, Pt/C cathode catalyst | 0.54 mL min−1 | [6] |
100–200 °C N/D membrane | Lignin with 85% H3PO4 | Pt/C anode, Pt/C cathode | 0.34 mL min−1 | [38] |
Fumapem FAA-3–50 membrane 65 °C, 0.5 A | aqueous solution of 1 M MeOH in 1 M KOH | Vulcan XC-72 cathode, Carbon black anode, Pd cathode catalyst, Pt anode catalyst | 3.5 × 10−6 mol s−1 | [39] |
Nafion 115 membrane 50, 100, 200 mA cm−2, 90 °C | biomass solution (starch, cellulose, glucose) and ferric chloride (FeCl3) anolyte, 1 M H3PO4 catholyte | 5-layer GDE (FuelcellsEtc, USA) cathode, graphite anode, Fe3+/Fe2+ redox couple catalyst | 24 mL | [40] |
Operating Conditions | Electrolyte | Electrodes | Syngas Production | Source |
---|---|---|---|---|
70 °C 1 bar 0.10A cm−2 | 1.2 M NaOH with 20 vol.% liquefied cork biomass | Steel electrodes | 138.5 mL min−1 | [1] |
Parameter | Value |
---|---|
Electrolyser current density | 200–500 mA cm−2 |
Catalyst activity | >100 A g−1 |
Faradaic efficiency | >95% |
Voltage increase at constant current | <10 μV h−1 |
Turnovers demonstrated | >70,000,000 |
Turnover target | >500,000,000 |
Parameter | Value |
---|---|
Electrolyser current density | >200 mA cm−2 |
Catalyst activity | >50 A g−1 |
Initial faradaic efficiency in an electrolyser producing 2 M of HCOOH | >80% |
Faradaic efficiency loss at constant current of 200 mA cm−2 in an electrolyser producing 2 M HCOOH | ~10−4 h−1 |
Initial faradaic efficiency in an electrolyser producing <0.5 M of HCOOH | >90% |
Turnovers demonstrated | >15,000,000 |
Single-pass HCOOH concentration | 2–5 M |
Parameter | Value | Electrolyte |
---|---|---|
Total faradaic efficiency to all C2 products at current densities < 20 mA cm−2 | 80% | KBr, KCl |
Total faradaic efficiency to all C2 products at current densities > 100 mA cm−2 | 83% | KOH |
Faradaic efficiency to ethanol at current densities < 20 mA cm−2 | 63% | KCl |
Faradaic efficiency to ethanol at current densities > 100 mA cm−2 | 52% | KOH |
41% | KHCO3 | |
Faradaic efficiency to ethylene at current densities < 20 mA cm−2 | 80% | KBr |
Faradaic efficiency to ethylene at current densities > 100 mA cm−2 | 80% | KOH |
Highest cell current observed | 1 A cm−2 | KOH |
Operating Conditions | Electrolyte | Electrodes and Catalyst | HCOOH Production | Source |
---|---|---|---|---|
Sustainion™ anionic membrane (cathode side); Nafion membrane (anode side); 3.5 V | — | GDE cathode, Ti anode, IrO2-based anode catalyst, Sn nanoparticles cathode catalyst | 9.4 wt.% | [47] |
4 V 22 °C 40 bar | 1 M KOH catholyte, 0.5 M KHCO3 anolyte | Ir-MMO anode, Sn cathode | 2 wt.% | [48] |
−1.3 V vs. SCE | 0.5 M KHCO3 | ED-Bi dendrites/BP NSs WE, Pt CE | 22.7 μmol dm−3 h−1 | [49] |
Nafion 115 membrane, −1.14 V vs. Ag/AgCl | KCl catholyte, K2SO4 anolyte | Sn-Cu alloy WE, Pt wire CE | n.a. | [50] |
F-950 Fumapem membrane, −1.43 V vs. RE-61AP | 1 M KOH catholyte, 5 M KOH anolyte | GDE WE with SnO2/C catalyst, Pt wire CE | 3 mg min−1 cmWE−2 | [53] |
Nafion membrane | 0.5 M KHCO3 | Pt black@Pt foil anode, nickel phosphide cathode | n.a. | [52] |
Operating Conditions | Electrolyte | Electrodes, Catalyst | H2 Production | COD/BOD and Colour Removal | Source |
---|---|---|---|---|---|
Nafion 117 membrane 1 V | Sugar industrial wastewater with 50 mM phosphate buffer | Graphite anode Nickel cathode Copper wire current collector nanocomposite cathode catalyst (NiO.rGO and Co3O4.rGO) | 4.83 mmol L−1 D−1 | - | [56] |
Nafion 117 membrane | Wastewater anolyte 50 mM K2HPO4 and 50 mM of KH2PO4 catholyte | Carbon anode Pt cathode | 30.12 mL | 75.6% | [15] |
12 V | textile dyeing industry wastewater | Steel electrodes | 16.4 mL h−1 | 73–96% | [53] |
Membrane (MFM or AEM) | paper and food industry wastewater | Titanium anode Stainless steel cathode 0.5 mg.cm−2 Pt/Ir mixed metal oxide anode catalyst | - | Membrane electrolysis: 20–30% COD 70% colour Electrocoagulation: 30% COD 65% colour | [58] |
10 V | Mixed wastewater | Ti/Pt anodes Graphite cathodes Fe2+ catalyst | - | 40% | [13] |
Troom Electrocoagulation: 1.5V Indirect electrochemical oxidation: 4 V | - | Electrocoagulation: Aluminium Electrodes Indirect electrochemical oxidation: Graphite electrodes | - | Electrocoagulation 55% COD 56% colour Indirect electrochemical oxidation: 55% COD 99.8% colour | [14] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, A.P.R.A.; Oliveira, R.C.P.; Mateus, M.M.; Santos, D.M.F. A Review of the Use of Electrolytic Cells for Energy and Environmental Applications. Energies 2023, 16, 1593. https://doi.org/10.3390/en16041593
Ferreira APRA, Oliveira RCP, Mateus MM, Santos DMF. A Review of the Use of Electrolytic Cells for Energy and Environmental Applications. Energies. 2023; 16(4):1593. https://doi.org/10.3390/en16041593
Chicago/Turabian StyleFerreira, Ana P. R. A., Raisa C. P. Oliveira, Maria Margarida Mateus, and Diogo M. F. Santos. 2023. "A Review of the Use of Electrolytic Cells for Energy and Environmental Applications" Energies 16, no. 4: 1593. https://doi.org/10.3390/en16041593
APA StyleFerreira, A. P. R. A., Oliveira, R. C. P., Mateus, M. M., & Santos, D. M. F. (2023). A Review of the Use of Electrolytic Cells for Energy and Environmental Applications. Energies, 16(4), 1593. https://doi.org/10.3390/en16041593