Numerical Study on the Heat Transfer Characteristics of Cu-Water and TiO2-Water Nanofluid in a Circular Horizontal Tube
Abstract
:1. Introduction
2. Thermo-Physical Properties of Nanofluids
3. Governing Equations
3.1. Single-Phase Model
- Continuity Equation
- 2.
- Momentum Equation
- 3.
- Energy Equation
3.2. Numerical Solution
3.3. Grid Independence Study
4. Results and Discussion
4.1. Effect of Re on Wall Temperature with Cu-Water Nanofluid
4.2. Effect of Re on Wall Temperature with TiO2-Water Nanofluid
4.3. Effect of Re on Heat Transfer Coefficient with Cu-Water Nanofluid
4.4. Effect of Re on Heat Transfer Coefficient with TiO2–Water Nanofluid
4.5. Effect of Re on Nusselt Number for Laminar Flow Conditions
5. Conclusions
- Reduction in wall temperature is observed for both the nanofluids when compared to DI water. However, the lowest temperature is observed for the Cu-water nanofluid rather than the TiO2-water nanofluid and the value is noted to be 293.3 K and 293.1 K for the laminar and turbulent regimes, respectively. The increase in thermal conductivity of conduction electrons results in higher heat absorption leading to reduction in wall temperature.
- Significant enhancement in hconv is observed for both the nanofluids and the enhancement percentage increases with increases in ɸ and Re. Average enhancements of 10.4% and 14.6% are observed for Cu-water nanofluids under laminar and turbulent regimes, respectively.
- The Nu value for both Cu-water and TiO2-water nanofluids is found to be higher when compared to that of base fluid and the highest Nu value of 105 is noted for Cu-water nanofluid. Brownian motion of nanoparticles results in the uniform distribution of temperature in the nanofluid which leads to reductions in wall temperature and increases in Nu.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
H | Heat transfer coefficient (W/m2 K) |
k | Thermal conductivity (W/m K) |
Re | Reynolds number |
ɸ | Volume fraction |
q | Heat flux (W/m2) |
Nu | Nusselt number (h.D/K) |
Q | Volumetric flow rate (m3/s) |
Cp | Specific heat capacity (J/kg K) |
Pr | Prandtl number |
x | Distance from tube inlet |
tin | Temperature at inlet (K) |
tout | Temperature at outlet (K) |
f | Darcy’s friction factor |
L | Tube length (m) |
Ρ | Density (kg/m3) |
µ | Dynamic viscosity (Pa) |
β | Correction factor = 0.1 |
v | Radial velocity (m/s) |
tiwx | Inner wall temperature, (K) |
tfx | Fluid temperature (K) |
towx | Outer Wall temperature, (K) |
References
- Jayarami Reddy, K.; Madhusudhana Reddy, N.P.; Konijeti, R.; Dasore, A. Effect of Non-Uniform Heat Source/Sink on MHD Boundary Layer Flow and Melting Heat Transfer of Williamson Nanofluid in Porous Medium. Multidiscip. Model. Mater. Struct. 2019, 15, 452–472. [Google Scholar]
- Manova, S.; Asirvatham, L.G.; Nimmagadda, R.; Bose, J.R.; Wongwises, S. Feasibility of Using Multiport Minichannel as Thermosyphon for Cooling of Miniaturized Electronic Devices. Heat Transf. 2020, 49, 4834–4856. [Google Scholar] [CrossRef]
- Nimmagadda, R.; Reuven, R.; Asirvatham, L.G.; Wongwises, S. Thermal Management of Electronic Devices Using Gold and Carbon Nanofluids in a Lid-Driven Square Cavity under the Effect of Variety of Magnetic Fields. IEEE Trans. Compon. Packag. Manuf. Technol. 2020, 10, 1868–1878. [Google Scholar] [CrossRef]
- Almeida, C.; Paul, S.; Asirvatham, L.G.; Manova, S.; Nimmagadda, R.; Bose, J.R.; Wongwises, S. Experimental Studies on Thermophysical and Electrical Properties of Graphene-Transformer Oil Nanofluid. Fluids 2020, 5, 172. [Google Scholar] [CrossRef]
- Manova, S.; Asirvatham, L.G.; Nimmagadda, R.; Bose, J.R.; Wongwises, S. Cooling of High Heat Flux Electronic Devices Using Ultra-Thin Multiport Minichannel Thermosyphon. Appl. Therm. Eng. 2020, 169, 114669. [Google Scholar] [CrossRef]
- Returi, M.C.; Konijeti, R.; Dasore, A. Heat Transfer Enhancement Using Hybrid Nanofluids in Spiral Plate Heat Exchangers. Heat Transf.—Asian Res. 2019, 48, 3128–3143. [Google Scholar] [CrossRef]
- Ahammed, N.; Asirvatham, L.G.; Wongwises, S. Entropy generation analysis of graphene–alumina hybrid nanofluid in multiport minichannel heat exchanger coupled with thermoelectric cooler. Int. J. Heat Mass Transf. 2016, 103, 1084–1097. [Google Scholar] [CrossRef]
- Tharayil, T.; Asirvatham, L.G.; Cassie, C.F.M.; Wongwises, S. Performance of Cylindrical and Flattened Heat Pipes at Various Inclinations Including Repeatability in Anti-Gravity—A Comparative Study. Appl. Therm. Eng. 2017, 122, 685–696. [Google Scholar] [CrossRef]
- Godson, L.; Raja, B.; Lal, D.M.; Wongwises, S. Enhancement of Heat Transfer Using Nanofluids—An Overview. Renew. Sustain. Energy Rev. 2010, 14, 629–641. [Google Scholar] [CrossRef]
- Asirvatham, G.; Nimmagadda, R.; Wongwises, S. Heat Transfer Performance of Screen Mesh Wick Heat Pipes Using Silver-Water Nanofluid. Int. J. Heat Mass Transf. 2013, 60, 201–209. [Google Scholar] [CrossRef]
- Tharayil, T.; Asirvatham, L.G.; Ravindran, V.; Wongwises, S. Effect of Filling Ratio on the Performance of a Novel Miniature Loop Heat Pipe Having Different Diameter Transport Lines. Appl. Therm. Eng. 2016, 106, 588–600. [Google Scholar] [CrossRef]
- Angeline, A.A. Power Generation from Combusted ‘Syngas’ Using Hybrid Thermoelectric Generator and Forecasting the Performance with ANN Technique. J. Therm. Eng. 2018, 4, 2149–2168. [Google Scholar] [CrossRef]
- Sundari, K.G.; Asirvatham, L.G.; Kumar, T.M.N.; Ahammed, N. Measurement of Thermophysical Properties of Al2O3/Glycerin (G13) Nanofluid for Automotive Radiator Cooling Applications. Res. J. Chem. Environ. 2017, 21, 17–24. [Google Scholar]
- Rakhsha, M.; Akbaridoust, F.; Abbassi, A.; Majid, S.A. Experimental and Numerical Investigations of Turbulent Forced Convection Flow of Nano-Fluid in Helical Coiled Tubes at Constant Surface Temperature. Powder Technol. 2015, 283, 178–189. [Google Scholar] [CrossRef]
- Hussein, A.M.; Sharma, K.; Bakar, R.; Kadirgama, K. The Effect of Cross Sectional Area of Tube on Friction Factor and Heat Transfer Nanofluid Turbulent Flow. Int. Commun. Heat Mass Transf. 2013, 47, 49–55. [Google Scholar] [CrossRef]
- Ebrahimnia-Bajestan, E.; Niazmand, H.; Duangthongsuk, W.; Wongwises, S. Numerical Investigation of Effective Parameters in Convective Heat Transfer of Nanofluids Flowing under a Laminar Flow Regime. Int. J. Heat Mass Transf. 2011, 54, 4376–4388. [Google Scholar] [CrossRef]
- Akbari, M.; Galanis, N.; Behzadmehr, A. Comparative Assessment of Single and Two-Phase Models for Numerical Studies of Nanofluid Turbulent Forced Convection. Int. J. Heat Fluid Flow 2012, 37, 136–146. [Google Scholar] [CrossRef]
- Bahiraei, M.; Hosseinalipour, S.M.; Hangi, M. Prediction of Convective Heat Transfer of Al2O3-Water Nanofluid Considering Particle Migration Using Neural Network. Eng. Comput. 2014, 31, 843–863. [Google Scholar] [CrossRef]
- Haddad, Z.; Abu-Nada, E.; Oztop, H.F.; Mataoui, A. Natural Convection in Nanofluids: Are the Thermophoresis and Brownian Motion Effects Significant in Nanofluid Heat Transfer Enhancement. Int. J. Therm. Sci. 2012, 57, 152–162. [Google Scholar] [CrossRef]
- Bahremand, H.; Abbassi, A.; Saffar-Avval, M. Experimental and Numerical Investigation of Turbulent Nanofluid Flow in Helically Coiled Tubes under Constant Wall Heat Flux Using Eulerian-Lagrangian Approach. Powder Technol. 2015, 269, 93–100. [Google Scholar] [CrossRef]
- Shariat, M.; Akbarinia, A.; Nezhad, A.H.; Behzadmehr, A.; Laur, R. Numerical Study of Two Phase Laminar Mixed Convection Nanofluid in Elliptic Ducts. Appl. Therm. Eng. 2011, 31, 2348–2359. [Google Scholar] [CrossRef]
- Akbaridoust, F.; Rakhsha, M.; Abbassi, A.; Saffar-Avval, M. Experimental and Numerical Investigation of Nanofluid Heat Transfer in Helically Coiled Tubes at Constant Wall Temperature Using Dispersion Model. Int. J. Heat Mass Transf. 2013, 58, 480–491. [Google Scholar] [CrossRef]
- Mahian, O.; Kolsi, L.; Amani, M.; Estellé, P.; Ahmadi, G.; Kleinstreuer, C.; Marshall, J.S.; Taylor, R.A.; Abu-Nada, E.; Rashidi, S.; et al. Recent Advances in Modeling and Simulation of Nanofluid Flows—Part II: Applications. Phys. Rep. 2019, 791, 1–59. [Google Scholar] [CrossRef]
- Nimmagadda, R.; Haustein, H.D.; Asirvatham, L.G.; Wongwises, S. Effect of Uniform/Non-Uniform Magnetic Field and Jet Impingement on the Hydrodynamic and Heat Transfer Performance of Nanofluids. J. Magn. Magn. Mater. 2019, 479, 268–281. [Google Scholar] [CrossRef]
- Patankar, S.V. Numerical Heat Transfer and Fluid Flow; CRC Press: Boca Raton, FL, USA, 1980; Available online: https://catatanstudi.files.wordpress.com/2010/02/numerical-heat-transfer-and-fluid-flow.pdf (accessed on 14 August 2022).
- Atashafrooz, M.; Sajjadi, H.; Delouei, A.A. Interacting influences of Lorentz force and bleeding on the hydrothermal behaviors of nanofluid flow in a trapezoidal recess with the second law of thermodynamics analysis. Int. Commun. Heat Mass Transf. 2020, 110, 104411. [Google Scholar] [CrossRef]
- Khoshvaght-Aliabadi, M.; Pazdar, S.; Sartipzadeh, O. Experimental investigation of water based nanofluid containing copper nanoparticles across helical microtubes. Int. Commun. Heat Mass Transf. 2016, 70, 84–92. [Google Scholar] [CrossRef]
- Yang, C.-Y.; Lin, T.-Y. Heat transfer characteristics of water flow in micro tubes. Exp. Therm. Fluid Sci. 2007, 32, 432–439. [Google Scholar] [CrossRef]
Mesh Sizes (Quadrilateral Mesh) | Tw (Wall Temperature) | Tf (Fluid Temperature) | h (Convective Heat Transfer Coefficient) |
---|---|---|---|
40 × 800 | 299.59 | 296.59 | 665.1999 |
50 × 1000 | 300.12 | 300.08 | 681.3538 |
60 × 1200 | 300.12 | 300.09 | 680.6259 |
Nanofluid | Volume Concentration | Dynamic Viscosity (Ns/m2) | Specific Heat (J/kgK) | Thermal Conductivity (W/mK) | Density (kg/m3) |
---|---|---|---|---|---|
Cu/Water | 0.5 | 0.000953 | 4014.45 | 0.6196 | 1038.86 |
1.0 | 0.000964 | 3862.97 | 0.6363 | 1078.64 | |
1.5 | 0.000976 | 3722.26 | 0.6534 | 1118.41 | |
2.0 | 0.000988 | 3591.21 | 0.6709 | 1158.19 | |
TiO2/Water | 0.5 | 0.00095 | 4105.48 | 0.6117 | 1015.24 |
1.0 | 0.00096 | 4035.24 | 0.6259 | 1031.40 | |
1.5 | 0.00098 | 3967.16 | 0.6404 | 1047.55 | |
2.0 | 0.00099 | 3901.44 | 0.6553 | 1063.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bose, J.R.; Manova, S.; Angeline, A.A.; Asirvatham, L.G.; Gautam, S. Numerical Study on the Heat Transfer Characteristics of Cu-Water and TiO2-Water Nanofluid in a Circular Horizontal Tube. Energies 2023, 16, 1449. https://doi.org/10.3390/en16031449
Bose JR, Manova S, Angeline AA, Asirvatham LG, Gautam S. Numerical Study on the Heat Transfer Characteristics of Cu-Water and TiO2-Water Nanofluid in a Circular Horizontal Tube. Energies. 2023; 16(3):1449. https://doi.org/10.3390/en16031449
Chicago/Turabian StyleBose, Jefferson Raja, Stephen Manova, Appadurai Anitha Angeline, Lazarus Godson Asirvatham, and Sneha Gautam. 2023. "Numerical Study on the Heat Transfer Characteristics of Cu-Water and TiO2-Water Nanofluid in a Circular Horizontal Tube" Energies 16, no. 3: 1449. https://doi.org/10.3390/en16031449
APA StyleBose, J. R., Manova, S., Angeline, A. A., Asirvatham, L. G., & Gautam, S. (2023). Numerical Study on the Heat Transfer Characteristics of Cu-Water and TiO2-Water Nanofluid in a Circular Horizontal Tube. Energies, 16(3), 1449. https://doi.org/10.3390/en16031449