Applicability and Trend of the Artificial Intelligence (AI) on Bioenergy Research between 1991–2021: A Bibliometric Analysis
Abstract
1. Introduction
2. Methodology
2.1. Dataset Collection
2.2. Data Analysis and Visualization
3. Results and Discussion
3.1. Worldwide Publication Analysis
3.2. Output of Publications
3.3. Authors and Institutional Analysis
3.3.1. Co-Authorship Analysis
3.3.2. Institutional Analysis
3.4. Journal Analysis
3.5. Keyword Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tokimatsu, K.; Yasuoka, R.; Nishio, M. Global zero emissions scenarios: The role of biomass energy with carbon capture and storage by forested land use. Appl. Energy 2017, 185, 1899–1906. [Google Scholar] [CrossRef]
- Solaun, K.; Cerdá, E. Climate change impacts on renewable energy generation. A review of quantitative projections. Renew. Sustain. Energy Rev. 2019, 116, 109415. [Google Scholar] [CrossRef]
- Ubando, A.T.; Felix, C.B.; Chen, W.-H. Biorefineries in circular bioeconomy: A comprehensive review. Bioresour. Technol. 2020, 299, 122585. [Google Scholar] [CrossRef]
- Withey, P.; Johnston, C.; Guo, J. Quantifying the global warming potential of carbon dioxide emissions from bioenergy with carbon capture and storage. Renew. Sustain. Energy Rev. 2019, 115, 109408. [Google Scholar] [CrossRef]
- Reid, W.V.; Ali, M.K.; Field, C.B. The future of bioenergy. Glob. Chang. Biol. 2019, 26, 274–286. [Google Scholar] [CrossRef]
- Vinuesa, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Felländer, A.; Langhans, S.D.; Tegmark, M.; Nerini, F.F. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 2020, 11, 233. [Google Scholar] [CrossRef]
- Abdalla, A.N.; Nazir, M.S.; Tao, H.; Cao, S.; Ji, R.; Jiang, M.; Yao, L. Integration of energy storage system and renewable energy sources based on artificial intelligence: An overview. J. Energy Storage 2021, 40, 102811. [Google Scholar] [CrossRef]
- Liao, M.; Yao, Y. Applications of artificial intelligence-based modeling for bioenergy systems: A review. GCB Bioenergy 2021, 13, 774–802. [Google Scholar] [CrossRef]
- Gold, S.; Seuring, S. Supply chain and logistics issues of bio-energy production. J. Clean. Prod. 2011, 19, 32–42. [Google Scholar] [CrossRef]
- Meena, M.; Shubham, S.; Paritosh, K.; Pareek, N.; Vivekanand, V. Production of biofuels from biomass: Predicting the energy employing artificial intelligence modelling. Bioresour. Technol. 2021, 340, 125642. [Google Scholar] [CrossRef]
- Ghugare, S.B.; Tiwary, S.; Elangovan, V.; Tambe, S.S. Prediction of Higher Heating Value of Solid Biomass Fuels Using Artificial Intelligence Formalisms. BioEnergy Res. 2013, 7, 681–692. [Google Scholar] [CrossRef]
- Ozveren, U. An artificial intelligence approach to predict gross heating value of lignocellulosic fuels. J. Energy Inst. 2017, 90, 397–407. [Google Scholar] [CrossRef]
- Ogunkunle, O.; Ahmed, N.A. State of the Art Review on Statistical Modelling and Optimization of Bioenergy Production from Oil Seeds. IOP Conf. Series: Mater. Sci. Eng. 2021, 1107, 12089. [Google Scholar] [CrossRef]
- Kargbo, H.O.; Zhang, J.; Phan, A.N. Optimisation of two-stage biomass gasification for hydrogen production via artificial neural network. Appl. Energy 2021, 302, 117567. [Google Scholar] [CrossRef]
- Khatun, R.; Xiang, H.; Yang, Y.; Wang, J.; Yildiz, G. Bibliometric analysis of research trends on the thermochemical conversion of plastics during 1990–2020. J. Clean. Prod. 2021, 317, 128373. [Google Scholar] [CrossRef]
- Mao, G.; Zou, H.; Chen, G.; Du, H.; Zuo, J. Past, current and future of biomass energy research: A bibliometric analysis. Renew. Sustain. Energy Rev. 2015, 52, 1823–1833. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Niu, J.; Tang, W.; Xu, F.; Zhou, X.; Song, Y. Global Research on Artificial Intelligence from 1990–2014: Spatially-Explicit Bibliometric Analysis. ISPRS Int. J. Geo-Information 2016, 5, 66. [Google Scholar] [CrossRef]
- Ferrari, G.; Pezzuolo, A.; Nizami, A.-S.; Marinello, F. Bibliometric Analysis of Trends in Biomass for Bioenergy Research. Energies 2020, 13, 3714. [Google Scholar] [CrossRef]
- Ampese, L.C.; Sganzerla, W.G.; Ziero, H.D.D.; Mudhoo, A.; Martins, G.; Forster-Carneiro, T. Research progress, trends, and updates on anaerobic digestion technology: A bibliometric analysis. J. Clean. Prod. 2021, 331, 130004. [Google Scholar] [CrossRef]
- Obileke, K.; Onyeaka, H.; Omoregbe, O.; Makaka, G.; Nwokolo, N.; Mukumba, P. Bioenergy from bio-waste: A bibliometric analysis of the trend in scientific research from 1998–2018. Biomass Convers. Biorefinery 2020, 12, 1077–1092. [Google Scholar] [CrossRef]
- Lamers, W.; van Eck, N.J.; Waltman, L.; Hoos, H. Patterns in Citation Context: The Case of the Field of Scientometrics. In Proceedings of the STI 2018 Conference Proceedings, Leiden, the Netherlands, 12–14 September 2018; pp. 1114–1122. [Google Scholar]
- Gibney, E. Game-playing software holds lessons for neuroscience. Nature 2015, 518, 465–466. [Google Scholar] [CrossRef] [PubMed]
- Oh, C.; Lee, T.; Kim, Y.; Park, S.H.; Kwon, S.; Suh, B. Us vs. Them: Understanding artificial intelligence technophobia over the Google DeepMind Challenge Match. Conf. Hum. Factors Comput. Syst. Proc. 2017, 2017, 2523–2534. [Google Scholar] [CrossRef]
- Venkata, B.K. WBA Global Bioenergy Statistics 2014; World Bioenergy Association: Stockholm, Sweden, 2014. [Google Scholar]
- Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al. Mastering the game of Go without human knowledge. Nature 2017, 550, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Ma, X.; Chen, B.; Shang, Y.; Song, M. Challenges toward carbon neutrality in China: Strategies and countermeasures. Resour. Conserv. Recycl. 2021, 176, 105959. [Google Scholar] [CrossRef]
- Rosa, L.; Sanchez, D.L.; Mazzotti, M. Assessment of carbon dioxide removal potential via BECCS in a carbon-neutral Europe. Energy Environ. Sci. 2021, 14, 3086–3097. [Google Scholar] [CrossRef]
- Yuan, X.; Su, C.-W.; Umar, M.; Shao, X.; Lobonţ, O.-R. The race to zero emissions: Can renewable energy be the path to carbon neutrality? J. Environ. Manag. 2022, 308, 114648. [Google Scholar] [CrossRef]
- Wamba, S.F.; Bawack, R.E.; Guthrie, C.; Queiroz, M.M.; Carillo, K.D.A. Are we preparing for a good AI society? A bibliometric review and research agenda. Technol. Forecast. Soc. Chang. 2020, 164, 120482. [Google Scholar] [CrossRef]
- Emenike, S.N.; Falcone, G. A review on energy supply chain resilience through optimization. Renew. Sustain. Energy Rev. 2020, 134, 110088. [Google Scholar] [CrossRef]
- Rizvi, A.T.; Haleem, A.; Bahl, S.; Javaid, M. Artificial Intelligence (AI) and Its Applications in Indian Manufacturing: A Review. Curr. Adv. Mech. Eng. 2021, 825–835. [Google Scholar] [CrossRef]
- Li, D.; Tong, T.W.; Xiao, Y. Is China Emerging as the Global Leader in AI? 2021. Available online: https://hbr.org/2021/02/is-china-emerging-as-the-global-leader-in-ai (accessed on 29 December 2022).
- Webster, G.; Creemers, R.; Triolo, P.; Kania, E. Full Translation: China’s ‘New Generation Artificial Intelligence Development Plan’(2017). 2017. Available online: https://digichina.stanford.edu/work/full-translation-chinas-new-generation-artificial-intelligence-development-plan-2017/ (accessed on 29 December 2022).
- Wen, Y.; Cai, B.; Yang, X.; Xue, Y. Quantitative analysis of China’s Low-Carbon energy transition. Int. J. Electr. Power Energy Syst. 2020, 119, 105854. [Google Scholar] [CrossRef]
- Baer-Nawrocka, A.; Sadowski, A. Food security and food self-sufficiency around the world: A typology of countries. PLOS ONE 2019, 14, e0213448. [Google Scholar] [CrossRef]
- Cursi, D.E.; Hoffmann, H.P.; Barbosa, G.V.S.; Bressiani, J.A.; Gazaffi, R.; Chapola, R.G.; Junior, A.R.F.; Balsalobre, T.W.A.; Diniz, C.A.; Santos, J.M.; et al. History and Current Status of Sugarcane Breeding, Germplasm Development and Molecular Genetics in Brazil. Sugar Tech 2021, 24, 112–133. [Google Scholar] [CrossRef]
- Naidu, L.; Moorthy, R. A Review of Key Sustainability Issues in Malaysian Palm Oil Industry. Sustainability 2021, 13, 10839. [Google Scholar] [CrossRef]
- De Meyer, A.; Cattrysse, D.; Rasinmäki, J.; Van Orshoven, J. Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review. Renew. Sustain. Energy Rev. 2014, 31, 657–670. [Google Scholar] [CrossRef]
- Terrapon-Pfaff, J.; Dienst, C.; König, J.; Ortiz, W. A cross-sectional review: Impacts and sustainability of small-scale renewable energy projects in developing countries. Renew. Sustain. Energy Rev. 2014, 40, 1–10. [Google Scholar] [CrossRef]
- Mainali, B.; Pachauri, S.; Rao, N.D.; Silveira, S. Assessing rural energy sustainability in developing countries. Energy Sustain. Dev. 2014, 19, 15–28. [Google Scholar] [CrossRef]
- Lan, K.; Park, S.; Kelley, S.S.; English, B.C.; Yu, T.E.; Larson, J.; Yao, Y. Impacts of uncertain feedstock quality on the economic feasibility of fast pyrolysis biorefineries with blended feedstocks and decentralized preprocessing sites in the Southeastern United States. GCB Bioenergy 2020, 12, 1014–1029. [Google Scholar] [CrossRef]
- Mohammadnejad, M.; Ghazvini, M.; Mahlia, T.M.I.; Andriyana, A. A review on energy scenario and sustainable energy in Iran. Renew. Sustain. Energy Rev. 2011, 15, 4652–4658. [Google Scholar] [CrossRef]
- Solaymani, S. A Review on Energy and Renewable Energy Policies in Iran. Sustainability 2021, 13, 7328. [Google Scholar] [CrossRef]
- Abramo, G.; D’Angelo, C.A.; Felici, G. Predicting publication long-term impact through a combination of early citations and journal impact factor. J. Inf. 2018, 13, 32–49. [Google Scholar] [CrossRef]
- Maamoun, N. The Kyoto protocol: Empirical evidence of a hidden success. J. Environ. Econ. Manag. 2019, 95, 227–256. [Google Scholar] [CrossRef]
- Miyamoto, M.; Takeuchi, K. Climate agreement and technology diffusion: Impact of the Kyoto Protocol on international patent applications for renewable energy technologies. Energy Policy 2019, 129, 1331–1338. [Google Scholar] [CrossRef]
- Gupta, S.; Patel, P.; Mondal, P. Biofuels production from pine needles via pyrolysis: Process parameters modeling and optimization through combined RSM and ANN based approach. Fuel 2021, 310, 122230. [Google Scholar] [CrossRef]











Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Zhao, C.; Neupane, P.; Benjamin, B.; Wang, J.; Zhang, T. Applicability and Trend of the Artificial Intelligence (AI) on Bioenergy Research between 1991–2021: A Bibliometric Analysis. Energies 2023, 16, 1235. https://doi.org/10.3390/en16031235
Cheng Y, Zhao C, Neupane P, Benjamin B, Wang J, Zhang T. Applicability and Trend of the Artificial Intelligence (AI) on Bioenergy Research between 1991–2021: A Bibliometric Analysis. Energies. 2023; 16(3):1235. https://doi.org/10.3390/en16031235
Chicago/Turabian StyleCheng, Yi, Chuzhi Zhao, Pradeep Neupane, Bradley Benjamin, Jiawei Wang, and Tongsheng Zhang. 2023. "Applicability and Trend of the Artificial Intelligence (AI) on Bioenergy Research between 1991–2021: A Bibliometric Analysis" Energies 16, no. 3: 1235. https://doi.org/10.3390/en16031235
APA StyleCheng, Y., Zhao, C., Neupane, P., Benjamin, B., Wang, J., & Zhang, T. (2023). Applicability and Trend of the Artificial Intelligence (AI) on Bioenergy Research between 1991–2021: A Bibliometric Analysis. Energies, 16(3), 1235. https://doi.org/10.3390/en16031235

