A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector
Abstract
:1. Introduction
Motivation, Related Works and Scope
2. Method
- -
- Identification by keywords and titles. The key tool used for identifying relevant literature has been the Scopus database. There were three main criteria during the paper selection process of stage one: journal impact factor, citations and year of publication.
- -
- Inclusion of related work. Additional documents were included based on key references in papers from stage one.
- -
- Selection by abstract. The abstracts of each paper selected during phase one were examined.
- -
- Selection by full text. Each selected paper has been examined. Key methods and focus areas were identified.
3. Research on AI Approaches in the Power Sector
3.1. Forecasting
3.2. Optimisation
3.3. Services
4. AI Applications in the Power Sector
Power Sector’s AI Adoption Rate
- (1)
- Optimisation of assets. According to our research, the majority of AI-based companies in the power sector focus on the application of various optimisation techniques. This field refers to the operational optimisation of particular assets within the system, such as renewable power plants, battery systems, buildings′ energy systems and/or home energy management systems. Companies developing applications in this area rely on business models that offer value propositions to residential and commercial users and power plant operators. It should be noted that this field of application does not only deal with power assets. A number of companies analysed use their solutions to integrate home or to build HVAC systems into their optimisation processes. In such a way, they offer an integrated solution to homeowners and companies.
- (2)
- Optimisation at the system level. This field refers to the management of power flows of the grid and tuning the supply-demand balance by adjusting the production of the generation portfolio, optimally utilising energy storage capacities and applying available demand response schemes. Companies that focus on system-level optimisation generally aim at offering their services to grid operators, utilities and power producers. Grid operators use AI-aided solutions to forecast renewable generation and energy demand and then use this data to optimise their dispatching schedules, and grid power flows. Power generation companies form virtual power plants through which they optimise their production schedules and minimise their exposure to market risk.
- (3)
- Data analytics. Data analysis and forecasts present the third largest field of AI application in the power sector. Naturally, all AI-based solutions require the use of some form of data analysis. However, companies listed as “optimisers” in the above two fields analyse data to form actions that automatically influence power assets. Companies in the segment of "Data analytics" form insights that are then used for further analysis and form a base for the decision-making process but do not autonomously optimise infrastructural assets. Companies focused on data analytics generally offer their services to utilities and the commercial sector via various monitoring platforms and to power generation companies and system operators that use data analytics in forecasting renewable generation and energy demand.
- (4)
- Operation and maintenance. O&M is a very common form of AI application in the power sector. Companies that deal with predictive maintenance generally offer their services to power generation companies and the industrial sector. The majority of use cases regarding this field refer to AI-aided analysis of drone or satellite imagery. This field of application also refers to the robotisation of the maintenance process, where (for instance) robots are used to clean PV panels or inspect wind turbines.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
1 | Absolar | UK | https://www.absolar.co.uk/ | R/C | ||||||||||||||||||
Aids solar power plant design, scans sites to establish solar potential | ||||||||||||||||||||||
DA | ||||||||||||||||||||||
2 | Accenta | France | https://www.accenta.ai/accueil | C | ||||||||||||||||||
Optimizes low carbon heating and cooling needs of buildings | ||||||||||||||||||||||
EE | HVAC | |||||||||||||||||||||
3 | Actility | France | https://www.actility.com/ | R | ||||||||||||||||||
Carrier grade IoT connectivity platform | ||||||||||||||||||||||
EM | AO | IOT | DR | HEMS | ||||||||||||||||||
4 | Adaptricity | Switzerland | https://www.adaptricity.com/en/ | E | ||||||||||||||||||
Cloud-based network analytics platform enables distribution system operators to better understand, operate, and plan their power grid infrastructure using data-driven network analytics | ||||||||||||||||||||||
EM | DA | |||||||||||||||||||||
5 | AIDI.solar | Ukraine | https://www.aidi.solar/ | E | ||||||||||||||||||
Developer and integrator of solutions for PV asset management and O&M | ||||||||||||||||||||||
AO | DA | O&M | ||||||||||||||||||||
6 | Ambyint | Canada | http://ambyint.com/ | C/E | ||||||||||||||||||
Ambyint developed an automation and analytics solution for artificial lift optimization that builds on traditional physics-based techniques | ||||||||||||||||||||||
EE | DA | |||||||||||||||||||||
7 | Amelia | USA | https://amelia.ai/ | E | ||||||||||||||||||
Creates personalized digital experiences for customers | ||||||||||||||||||||||
8 | Amog | Australia | https://amog.consulting/ | E | ||||||||||||||||||
Advanced hydrodynamic analysis, dynamic cable analysis and static cable stability as well as a range of solutions regarding RES | ||||||||||||||||||||||
AO | O&M | |||||||||||||||||||||
9 | Amperon | USA | https://amperon.co/ | E | ||||||||||||||||||
Provides AI-based smart meter analytics for utilities | ||||||||||||||||||||||
DA | ||||||||||||||||||||||
10 | Annea | Germany | https://annea.ai/ | E | ||||||||||||||||||
Provides predictive maintenance solutions for renewable energy assets such as wind turbines, solar farms, and hydropower plants | ||||||||||||||||||||||
O&M | ||||||||||||||||||||||
11 | Argentum | Canada | https://www.argentum.ai/ | C | ||||||||||||||||||
Real-time monitoring and control of buildings | ||||||||||||||||||||||
EE | HVAC | |||||||||||||||||||||
12 | Ari analytics | China | https://www.ari-analytics.com/ | E | ||||||||||||||||||
Solar power plant production forecast and optimization, data-driven EE optimization of buildings | ||||||||||||||||||||||
AO | EE | DA | ||||||||||||||||||||
13 | Arloid Automation | UK | https://arloid.com/ | C | ||||||||||||||||||
Helps cut energy costs with a solution that automatically adjusts HVAC settings in buildings based on changing environmental conditions | ||||||||||||||||||||||
HVAC | ||||||||||||||||||||||
14 | Arundo Analytics | USA | https://www.arundo.com/ | C | ||||||||||||||||||
The company uses data and predictive solutions to reduce maintenance costs, improve revenue, and avoid outages for industrial companies | ||||||||||||||||||||||
O&M | ||||||||||||||||||||||
15 | Aurora Solar | Canada | https://aurorasolar.com/ | R/C | ||||||||||||||||||
Develops cloud-based software that aids solar PV engineering design | ||||||||||||||||||||||
DA | ||||||||||||||||||||||
16 | AutoGrid | USA | https://www.auto-grid.com/ | R | ||||||||||||||||||
AutoGrid integrates all distributed energy resources by the use of flexibility management | ||||||||||||||||||||||
EM | VPP | DR | HEMS | |||||||||||||||||||
17 | BeeBryte | Singapore | https://www.beebryte.com/ | C | ||||||||||||||||||
EE for industrial cooling and HVAC | ||||||||||||||||||||||
AO | EE | DR | HVAC | |||||||||||||||||||
18 | Beijing Rongxing Technology | China | https://www.mixislink.com/ | C/E | ||||||||||||||||||
Develops predictive maintenance solutions, and integrated EMS platforms | ||||||||||||||||||||||
EM | VPP | O&M | ||||||||||||||||||||
19 | Beyond Limits | USA | http://www.beyond.ai/ | C/E | ||||||||||||||||||
Beyond Limits is an Industrial and Enterprise grade AI technology company that covers the full range of Artificial Intelligence capabilities | ||||||||||||||||||||||
EM | EE | VPP | O&M | |||||||||||||||||||
20 | Bidgely | USA | https://www.bidgely.com/ | R/C | ||||||||||||||||||
Customer service platform provider, energy analytics for distribution system management related programs | ||||||||||||||||||||||
EM | AO | EE | DA | DR | HEMS | |||||||||||||||||
21 | Blink Energy Inc. | USA | https://blinkenergy.co/ | E | ||||||||||||||||||
Develops a platform that provides utilities with real-time data collection, fault indication, and helps prevents ice on power lines | ||||||||||||||||||||||
O&M | ||||||||||||||||||||||
22 | BlueWave | USA | https://www.bluewaveailabs.com/ | E | ||||||||||||||||||
Blue Wave AI Labs is using predictive analytics to operate nuclear reactors across the United States and to help them operate as safely and efficiently as possible | ||||||||||||||||||||||
DA | O&M | |||||||||||||||||||||
23 | BluWave-ai | Canada | https://www.bluwave-ai.com/ | E | ||||||||||||||||||
BluWave-ai uses artificial intelligence to improve operations for energy grids and renewable energy sources such as wind and solar farms | ||||||||||||||||||||||
AO | O&M | |||||||||||||||||||||
24 | BluWave-ai | Canada | https://www.bluwave-ai.com/ | C/E | ||||||||||||||||||
Energy optimization for smart grids and fleet electrification | ||||||||||||||||||||||
M | AO | |||||||||||||||||||||
25 | Bolt | India | https://bolt.earth/ | C | ||||||||||||||||||
Offers electric vehicle charging management solutions | ||||||||||||||||||||||
M | ||||||||||||||||||||||
26 | BrainBox AI | Canada | https://brainboxai.com/en | C | ||||||||||||||||||
Developed a fully autonomous commercial HVAC solution, BrainBox AI, that uses predictive and self-adapting AI to optimise a building’s HVAC system for maximum energy reduction | ||||||||||||||||||||||
HVAC | ||||||||||||||||||||||
27 | Bueno | Australia | https://www.buenosystems.com.au/ | C | ||||||||||||||||||
Analytics and optimization solutions for building management | ||||||||||||||||||||||
AO | DA | HVAC | ||||||||||||||||||||
28 | Buzz Solutions | USA | http://buzzsolutions.co/ | E | ||||||||||||||||||
Buzz Solutions is developing artificial intelligence technology to spot and analyze power line flaws so companies can repair them before a fire starts | ||||||||||||||||||||||
O&M | ||||||||||||||||||||||
29 | C3 AI | USA | https://c3.ai/ | C/E | ||||||||||||||||||
Uses machine learning techniques to enable accurate forecasting, benchmarking, building optimization, demand response, and anomaly detection. The company’s digital platform for utilities offers application for performance optimization for gas power plants, efficiency optimization of heating and cooling plants, energy analysis and management for enterprise and consumer customers, and anomaly detection of wind turbines. | ||||||||||||||||||||||
AO | EE | DA | VPP | IOT | DR | HVAC | O&M | |||||||||||||||
30 | Carbon Relay | USA | https://www.carbonrelay.com/ | C | ||||||||||||||||||
Carbon Relay tackles data centre cooling with AI | ||||||||||||||||||||||
EE | HVAC | |||||||||||||||||||||
31 | Centrica | Belgium | https://www.centricabusinesssolutions.com/energy-solutions/products/energy-optimisation-solutions?redirect=restoreeu | C | ||||||||||||||||||
Centrica’s REstore provides cloud-based demand side management. The technology is currently used by more than 150 industrial energy consumers in Europe. | ||||||||||||||||||||||
DR | ||||||||||||||||||||||
32 | ChargePoint | USA | https://www.chargepoint.com/en-gb | C | ||||||||||||||||||
Kisensum develops software to control and optimize energy resources, including photovoltaics, energy storage and charging stations for electric vehicles | ||||||||||||||||||||||
M | AO | |||||||||||||||||||||
33 | CIM | Australia | https://www.cim.io/ | C | ||||||||||||||||||
Data-driven building operations software | ||||||||||||||||||||||
AO | HVAC | |||||||||||||||||||||
34 | Circunomics | Germany | https://www.circunomics.com/ | C/E | ||||||||||||||||||
Optimizing second life and recycling of batteries | ||||||||||||||||||||||
AO | ||||||||||||||||||||||
35 | Cleandrone | Spain | http://www.cleandrone.com/ | E | ||||||||||||||||||
Develops autonomous drones for thermal imaging and cleaning of solar panels and glass surfaces | ||||||||||||||||||||||
O&M | ||||||||||||||||||||||
36 | CLEAResult | USA | https://www.clearesult.com/ | R | ||||||||||||||||||
The largest provider of emission-reducing energy solutions across North America | ||||||||||||||||||||||
EM | EE | DR | HEMS | |||||||||||||||||||
37 | Cleveron | Switzerland | https://cleveron.ch/ | C | ||||||||||||||||||
Building EMS | ||||||||||||||||||||||
IOT | HVAC | |||||||||||||||||||||
38 | ClimaCell | USA | https://www.climacell.co/ | C/E | ||||||||||||||||||
Delivers weather insights helping to manage weather related challenges | ||||||||||||||||||||||
39 | Climatik | Mexico | https://climatik.net/ | C/E | ||||||||||||||||||
Meteorological data analysis | ||||||||||||||||||||||
DA | ||||||||||||||||||||||
40 | Clobotics | China | https://clobotics.com/ | E | ||||||||||||||||||
Provides drone-based wind turbine inspection and monitoring repair and maintenance | ||||||||||||||||||||||
O&M | ||||||||||||||||||||||
41 | COI Energy Services | USA | https://www.coienergyservices.com/ | C/E | ||||||||||||||||||
COI Energy Solutions deals with energy waste issues through its EMS platform improving energy performance of buildings | ||||||||||||||||||||||
EE | HVAC | O&M | ||||||||||||||||||||
42 | Coulomb AI | USA | https://coulomb.ai/ | C/E | ||||||||||||||||||
Optimizes batteries’ operation | ||||||||||||||||||||||
AO | ||||||||||||||||||||||
43 | cove.tool | USA | https://www.cove.tools/ | C | ||||||||||||||||||
Provides data, automation, and collaborative tools to design better buildings | ||||||||||||||||||||||
AO | ||||||||||||||||||||||
44 | Crusoe | USA | https://www.crusoeenergy.com/ | E | ||||||||||||||||||
The company’s behind-the-meter load approach enables alternative revenue streams for renewable and clean energy projects | ||||||||||||||||||||||
AO | ||||||||||||||||||||||
45 | cyberGRID | Austria | https://www.cyber-grid.com/ | C/E | ||||||||||||||||||
cyberGRID offers innovative ICT-based flexibility management technology, integration of renewable energies and storage devices | ||||||||||||||||||||||
EM | AO | VPP | DR | |||||||||||||||||||
46 | Dabbel | Germany | https://www.dabbel.eu | C | ||||||||||||||||||
DABBEL controls the energy system in buildings reducing energy consumption | ||||||||||||||||||||||
EE | HVAC | O&M | ||||||||||||||||||||
47 | dcbel | Canada | https://www.dcbel.energy/ | C | ||||||||||||||||||
Develops AI-driven sustainable technologies which enable people to leverage solar energy to power their cars | ||||||||||||||||||||||
M | ||||||||||||||||||||||
48 | DCbrain | France | https://dcbrain.com/ | C/E | ||||||||||||||||||
Detects anomalies and anticipates incidents, and uses data to predict future requirements | ||||||||||||||||||||||
DA | ||||||||||||||||||||||
49 | DCSix Technologies | Ireland | https://www.dcsixtechnologies.com/ | R/C | ||||||||||||||||||
Provides an energy monitoring platform that help reduce energy consumption | ||||||||||||||||||||||
HEMS | ||||||||||||||||||||||
50 | Deepmind | UK | https://deepmind.com/ | C/E | ||||||||||||||||||
Google’s DeepMind is the world leader in artificial intelligence research and its application in different fields, such as games, medicine, energy efficiency. | ||||||||||||||||||||||
AO | EE | VPP | IOT | HVAC | ||||||||||||||||||
51 | DeepVolt | Tunisia | https://deepvolt.io/ | C | ||||||||||||||||||
AI-powered software for the placement and sizing of electric vehicle charging stations | ||||||||||||||||||||||
M | ||||||||||||||||||||||
52 | Detect Technologies | India | https://detecttechnologies.com/ | C/E | ||||||||||||||||||
Identifies fault differences, workforce safety hazards, monitors process automation and possible risks, generates analytics on data consumption | ||||||||||||||||||||||
EE | IOT | |||||||||||||||||||||
53 | Dexter Energy | Netherlands | https://dexterenergy.nl | C/E | ||||||||||||||||||
Dexter provides forecasting and dispatching solutions based on AI and cloud-based technology that increases efficiency and reduces cost | ||||||||||||||||||||||
EM | DA | |||||||||||||||||||||
54 | Dynamhex | USA | https://dynmhx.io/ | E | ||||||||||||||||||
Customer service platform provider, energy analytics | ||||||||||||||||||||||
DA | ||||||||||||||||||||||
55 | EasyMile | France | https://easymile.com/ | C | ||||||||||||||||||
Develops autonomous driving systems and smart mobility solutions | ||||||||||||||||||||||
M | ||||||||||||||||||||||
56 | Ecolibrium Energy | India | https://www.ecolibrium.io/ | C | ||||||||||||||||||
The company’s platform provides a holistic view of buildings’ energy profile, develops customer engagement systems | ||||||||||||||||||||||
EE | DA | IOT | ||||||||||||||||||||
57 | Ecotropy | France | https://ecotropy.fr/ | C | ||||||||||||||||||
Provides analyses of buildings’ energy performance and optimizes energy retrofit of buildings | ||||||||||||||||||||||
HVAC | ||||||||||||||||||||||
58 | Effenco | Canada | https://www.effenco.com/ | C | ||||||||||||||||||
Develops electric hybrid systems for electrification of transport and electric powertrains | ||||||||||||||||||||||
M | ||||||||||||||||||||||
59 | ei | Portugal | https://www.galpsolar.com/pt/ | E | ||||||||||||||||||
Develops solar energy monitoring solutions | ||||||||||||||||||||||
O&M | ||||||||||||||||||||||
60 | Elevate | North Macedonia | https://elevate-global.biz/index.html | E | ||||||||||||||||||
Develops autonomous energy forecasting solutions for utilities | ||||||||||||||||||||||
DA | ||||||||||||||||||||||
61 | eleXsys | Australia | https://elexsys.com/ | E | ||||||||||||||||||
Develops AI-driven smart grid solutions | ||||||||||||||||||||||
EM | ||||||||||||||||||||||
62 | Emuron | India | https://www.emuron.com/ | C | ||||||||||||||||||
Develops IoT-enabled battery management systems | ||||||||||||||||||||||
M | ||||||||||||||||||||||
63 | Enercast | Germany | https://www.enercast.de/ | E | ||||||||||||||||||
Forecasts energy production | ||||||||||||||||||||||
DA | ||||||||||||||||||||||
64 | Energiency | France | https://www.energiency.com/ | C | ||||||||||||||||||
Provides a platform for enterprises to optimize their EE | ||||||||||||||||||||||
EE | DA | |||||||||||||||||||||
65 | Energy Pool | France | https://www.energy-pool.eu/en/ | C/E | ||||||||||||||||||
Builds and operates demand-side management solutions | ||||||||||||||||||||||
EM | VPP | DR | ||||||||||||||||||||
66 | Energy X | South Korea | http://www.energyx.co.kr/ | C | ||||||||||||||||||
Developed an AI-driven platform that allows corporate and individual users to invest in renewable energy projects worldwide | ||||||||||||||||||||||
67 | Enerlogix | Spain | https://enerlogix.es/ | C | ||||||||||||||||||
Developed a platform offering HVAC management solutions for commercial applications | ||||||||||||||||||||||
HVAC | ||||||||||||||||||||||
68 | Enervalis | Belgium | https://enervalis.com/ | R/C/E | ||||||||||||||||||
Developed a platform optimizes homes, buildings and electric vehicle charging stations | ||||||||||||||||||||||
M | EM | AO | DA | VPP | IOT | DR | HEMS | |||||||||||||||
69 | Eneryield | Sweden | https://www.eneryield.com/ | C/E | ||||||||||||||||||
Develops solutions to help with fault forecasting, identification and localization, life-time estimation, energy loss estimation and grid health assessment | ||||||||||||||||||||||
O&M | ||||||||||||||||||||||
70 | Enfor | Denmark | https://enfor.dk/ | E | ||||||||||||||||||
Develops software solutions for power generation forecasting, optimizes district heating systems | ||||||||||||||||||||||
M | DA | DR | ||||||||||||||||||||
71 | EnPowered | Canada | https://enpowered.com/ | R/C | ||||||||||||||||||
Facilitates companies to invest in energy efficiency solutions | ||||||||||||||||||||||
EM | EE | DA | VPP | DR | ||||||||||||||||||
72 | Entelios | Norway | https://www.entelios.com/ | R/C | ||||||||||||||||||
EMS and trading | ||||||||||||||||||||||
EM | DR | |||||||||||||||||||||
73 | EQuota Energy | China | https://equotaenergy.com/en/ | C | ||||||||||||||||||
AI & Big Data supported EMS Service provider | ||||||||||||||||||||||
AO | DA | |||||||||||||||||||||
74 | Eve | Ireland | https://evE-mob.io/ | C | ||||||||||||||||||
Analytics solutions and emissions reporting to empower corporate fleet electrification | ||||||||||||||||||||||
M | E-M | |||||||||||||||||||||
75 | Evio | Portugal | https://go-evio.com/ | C | ||||||||||||||||||
Develops e-mobility solutions | ||||||||||||||||||||||
M | ||||||||||||||||||||||
76 | Evolve Energy | USA | https://www.evolvemyenergy.com/ | E | ||||||||||||||||||
Developed the Kraken platform for customer management now licensed to E.ON, Npower, Origin Energy and EDF Energy and providing support to millions of customers. The company is also focused on providing flexibility and market access. | ||||||||||||||||||||||
M | IOT | DR | ||||||||||||||||||||
77 | Exergenics | Australia | https://www.exergenics.com/ | C | ||||||||||||||||||
Analytics solutions for building management | ||||||||||||||||||||||
AO | DA | |||||||||||||||||||||
78 | Flexitricity | UK | https://www.flexitricity.com/ | C/E | ||||||||||||||||||
Largest demand response aggregator in UK | ||||||||||||||||||||||
EM | DR | |||||||||||||||||||||
79 | Flutura | India | http://www.flutura.com/ | E | ||||||||||||||||||
Developed a platform Cerebra focused on improving asset uptime and operational efficiency | ||||||||||||||||||||||
AO | O&M | |||||||||||||||||||||
80 | Foghorn Systems | USA | https://www.foghorn.io/ | C/E | ||||||||||||||||||
FogHorn is an IoT platform that provides a complete edge solution consisting of a highly miniaturized complex event processing engine that derives real-time insights | ||||||||||||||||||||||
DA | IOT | |||||||||||||||||||||
81 | Fresh Energy | Germany | http://getfresh.energy/ | R/C | ||||||||||||||||||
Develops online building EMS solutions | ||||||||||||||||||||||
IOT | HVAC | HEMS | ||||||||||||||||||||
82 | Fulcrum3D | Australia | https://www.fulcrum3d.com/ | E | ||||||||||||||||||
Remote sensing, forecasting, data capture, and reporting for solar and wind power | ||||||||||||||||||||||
DA | ||||||||||||||||||||||
83 | Future Grid | Australia | https://future-grid.com/ | E | ||||||||||||||||||
Real-time smart meter data analytics | ||||||||||||||||||||||
DA | ||||||||||||||||||||||
84 | Gaiascope | USA | https://gaia-scope.com/ | E | ||||||||||||||||||
Provides forecasting software for energy storage systems and empowers customers to achieve bid and trading optimization for their power assets | ||||||||||||||||||||||
AO | DA | |||||||||||||||||||||
85 | Gbatteries | Canada | https://www.gbatteries.com/ | C/E | ||||||||||||||||||
Optimizes battery charging solutions for electric vehicles | ||||||||||||||||||||||
M | ||||||||||||||||||||||
86 | Generac Grid Services | Canada | https://www.generac.com/ | E | ||||||||||||||||||
Manages grid assets and balance supply and demand in real time | ||||||||||||||||||||||
EM | VPP | DR | ||||||||||||||||||||
87 | GetJenny | Finland | https://www.getjenny.com/ | E | ||||||||||||||||||
Develops self-service solutions | ||||||||||||||||||||||
88 | Gilytics AG | Switzerland | https://www.gilytics.com/ | E | ||||||||||||||||||
Automates infrastructure planning, routing, and monitoring | ||||||||||||||||||||||
DA | ||||||||||||||||||||||
89 | Glint Solar | Norway | https://www.glintsolar.ai/ | E | ||||||||||||||||||
Identifies and analyses optimal solar sites using satellite imagery | ||||||||||||||||||||||
DA | ||||||||||||||||||||||
90 | Green Running | UK | https://verv.energy/ | R | ||||||||||||||||||
Predictive maintenance technology for smart, sustainable appliances through Verv, a home energy assistant which monitors energy use in a home to help cut costs and save energy | ||||||||||||||||||||||
91 | Greenbird | Norway | https://www.greenbird.com/ | E | ||||||||||||||||||
Big Data integration for utilities | ||||||||||||||||||||||
DA | ||||||||||||||||||||||
92 | GreenPocket | Germany | https://www.greenpocket.com/ | E | ||||||||||||||||||
Develops an energy management system and visualization software | ||||||||||||||||||||||
93 | GreenWhale | Germany | https://thegreenwhale.com/ | C | ||||||||||||||||||
Operates private and public vehicle-to-grid charging infrastructure | ||||||||||||||||||||||
M | ||||||||||||||||||||||
94 | Grid AI | Japan | https://gridpredict.jp/ | E | ||||||||||||||||||
Grid optimization | ||||||||||||||||||||||
EM | ||||||||||||||||||||||
95 | GridBeyond | UK | https://gridbeyond.com/ | C/E | ||||||||||||||||||
Uses AI-powered technology to optimize system operation to facilitate savings and manage price volatility | ||||||||||||||||||||||
M | EM | VPP | DR | |||||||||||||||||||
96 | GridIMP | UK | https://gridimp.com/ | C | ||||||||||||||||||
AI driven fully automated technology takes care of day-to-day EMS decisions | ||||||||||||||||||||||
EM | AO | VPP | IOT | DR | HEMS | |||||||||||||||||
97 | Gridium | USA | http://www.gridium.com | C | ||||||||||||||||||
The company’s data platform automatically aggregates energy interval data, billing data, weather history data, and weather forecast data to power a rich set of analytic services | ||||||||||||||||||||||
DA | ||||||||||||||||||||||
98 | Hank | USA | https://www.hank.re/ | C | ||||||||||||||||||
Hank is enabling service providers and building owners to proactively manage HVAC costs and improve EE of commercial buildings | ||||||||||||||||||||||
EE | HVAC | |||||||||||||||||||||
99 | Hive Power | Switzerland | https://www.hivepower.tech/ | C/E | ||||||||||||||||||
The company’s platform monitors resource distribution and analyzes the usage behavior of consumers (from energy communities to EV charging), it also provides tools to optimize energy trading and prevent grid overloads | ||||||||||||||||||||||
M | EM | AO | DA | VPP | ||||||||||||||||||
100 | Homeys | France | https://www.homeys.io/ | C | ||||||||||||||||||
Delivers a platform that connects sensors and provides real-time data and performs analysis of heating settings and energy consumption | ||||||||||||||||||||||
HVAC | ||||||||||||||||||||||
101 | Homi | China | https://myhomi.io/ | R/C | ||||||||||||||||||
Provides home automation solutions for residential buildings | ||||||||||||||||||||||
HEMS | ||||||||||||||||||||||
102 | inbenta | Spain | https://www.inbenta.com/en/ | E | ||||||||||||||||||
Automate customer service | ||||||||||||||||||||||
103 | IND Technology | Australia | https://ind-technology.com/ | E | ||||||||||||||||||
IND.T is uses DA and smart sensing to reduce unplanned outages | ||||||||||||||||||||||
DA | O&M | |||||||||||||||||||||
104 | Informetis | Japan | https://www.informetis.com/ | C | ||||||||||||||||||
Develops energy related services using Big Data and machine learning in order to improve EE | ||||||||||||||||||||||
EE | ||||||||||||||||||||||
105 | Infra Solar | Netherlands | https://infrasolar.com.br/ | E | ||||||||||||||||||
Focuses on digitizing electricity consumption, optimising electric mobility, and energy consumption management | ||||||||||||||||||||||
DA | ||||||||||||||||||||||
106 | Innowatts | USA | http://www.innowatts.com/ | E | ||||||||||||||||||
Innowatts’ platform transforms how energy providers understand and serve their customers. It uses AI to unlock meter-level data, provide consumer insights and make business processes automated and smarter for energy retailers, utilities and grid operators. | ||||||||||||||||||||||
DA | ||||||||||||||||||||||
107 | Instylesolar | Australia | https://instylesolar.com/ | R/C | ||||||||||||||||||
Solar power analytics | ||||||||||||||||||||||
DA | ||||||||||||||||||||||
108 | IntelliView | Canada | https://www.intelliviewtech.com/ | C/E | ||||||||||||||||||
Lleak detection and video analytics systems for surveillance | ||||||||||||||||||||||
O&M | ||||||||||||||||||||||
109 | Invenia | Canada | https://www.invenia.ca/ | E | ||||||||||||||||||
Invenia’s Energy Intelligence System is a cloud-based machine learning platform that uses big, high frequency data to solve complex problems in real time. Invenia currently applies its platform to optimize electric utility operations as well as electricity markets themselves. | ||||||||||||||||||||||
EM | ||||||||||||||||||||||
110 | Invenia | Canada | https://invenia.ca/ | E | ||||||||||||||||||
Forecasting and pattern recognition to manage and optimize operations | ||||||||||||||||||||||
EM | AO | DA | ||||||||||||||||||||
111 | Ion Energy Labs | India | https://www.ionenergy.co/ | C/E | ||||||||||||||||||
Develops battery management and mobility systems | ||||||||||||||||||||||
M | AO | |||||||||||||||||||||
112 | IONATE | UK | https://www.ionate.energy/ | E | ||||||||||||||||||
Real-time monitoring and control of the electricity grid-edge | ||||||||||||||||||||||
EM | ||||||||||||||||||||||
113 | Itron | USA | https://www.itron.com/ | C/E | ||||||||||||||||||
Itron’s portfolio of smart networks, software, services, meters and sensors helps our customers better manage energy and water | ||||||||||||||||||||||
EM | AO | DR | ||||||||||||||||||||
114 | Jungle AI | Portugal | https://www.jungle.ai/ | C/E | ||||||||||||||||||
AI-based Canopy aims to increase production and prevent unplanned downtime and has industrial and power generation applications | ||||||||||||||||||||||
O&M | ||||||||||||||||||||||
115 | Kagera AI | Serbia | https://www.kagera.ai/ | E | ||||||||||||||||||
Optimizes production and minimizes downtime | ||||||||||||||||||||||
AO | EE | O&M | ||||||||||||||||||||
116 | Kapacity.io | Finland | https://kapacity.io/ | C | ||||||||||||||||||
The company provides energy optimisation and demand response services for buildings by connecting to buildings through building management systems and adjusting HVAC energy consumption in real time | ||||||||||||||||||||||
EE | DR | HVAC | ||||||||||||||||||||
117 | Kayrros | France | http://www.kayrros.com/ | C/E | ||||||||||||||||||
Kayrros is an advanced DA company that helps global energy market participants make better investment decisions | ||||||||||||||||||||||
DA | ||||||||||||||||||||||
118 | Kiwi Power (Engie) | UK | https://www.kiwipowered.com/ | C/E | ||||||||||||||||||
Provides asset optimisation using flexibility of generation capacity to earn revenue by accessing wholesale market opportunities and participating in grid demand-side services | ||||||||||||||||||||||
EM | AO | VPP | ||||||||||||||||||||
119 | kWIQly | Switzerland | https://kwiqly.com/ | C | ||||||||||||||||||
AI based search and analytics | ||||||||||||||||||||||
DA | ||||||||||||||||||||||
120 | Leanheat | Finland | https://leanheat.com/ | R | ||||||||||||||||||
Leanheat aims to use artificial intelligence to improve climate control in multi-family buildings | ||||||||||||||||||||||
EE | IOT | HVAC | HEMS | |||||||||||||||||||
121 | LEBO ROBOTICS | Japan | https://www.leborobotics.com/en | E | ||||||||||||||||||
Providing smart maintenance for wind power plants | ||||||||||||||||||||||
O&M | ||||||||||||||||||||||
122 | Levelise | UK | https://www.levelise.com/ | R | ||||||||||||||||||
Home EMS system that links high numbers of domestic battery systems to a suite of advanced algorithmic controls. By coordinating the actions of these batteries Levelise can provide balancing services to the electricity transmission operator and to suppliers | ||||||||||||||||||||||
IOT | DR | HEMS | ||||||||||||||||||||
123 | LifeSmart | China | https://cn.ilifesmart.com/ | R/C | ||||||||||||||||||
The company’s platform offers home automation services | ||||||||||||||||||||||
HEMS | ||||||||||||||||||||||
124 | Limejump | UK | https://www.limejump.com/ | C/E | ||||||||||||||||||
Platform that delivers flexible energy in real time by an aggregation of flexible energy generation and storage assets. | ||||||||||||||||||||||
EM | DR | |||||||||||||||||||||
125 | Lition | Sweden | https://lition.io/ | R | ||||||||||||||||||
Lition and Watty provide a power usage monitoring system for commercial or personal purposes. | ||||||||||||||||||||||
AO | IOT | HEMS | ||||||||||||||||||||
126 | LiveEO | Germany | https://live-eo.com/ | E | ||||||||||||||||||
Provider of satellite-based power grid monitoring services | ||||||||||||||||||||||
O&M | ||||||||||||||||||||||
127 | Loggma | Turkey | https://loggma.com.tr/en/ | E | ||||||||||||||||||
Data monitoring and analysis for solar power plants | ||||||||||||||||||||||
DA | ||||||||||||||||||||||
128 | LogicLadder | India | https://www.logicladder.com/ | C | ||||||||||||||||||
Develops an EMS and monitoring platform | ||||||||||||||||||||||
EM | DA | |||||||||||||||||||||
129 | MAC | Ireland | http://www.mac.ie/Utilities/EarthFault.aspx | E | ||||||||||||||||||
MAC created GridWatch - low-cost earth fault monitoring product solutions based on cloud back-end solution IOT | ||||||||||||||||||||||
O&M | ||||||||||||||||||||||
130 | Mandulis Energy | Uganda | https://www.mandulisenergy.com/ | E | ||||||||||||||||||
Develops and operates renewable energy projects focused on the sustainable biomass sector | ||||||||||||||||||||||
AO | IOT | HEMS | O&M | |||||||||||||||||||
131 | Meteo-Logic | Israel | http://meteo-logic.com/ | E | ||||||||||||||||||
They are a DA company focusing on weather prediction and how it impacts the energy commodity market. The company uses machine learning and big data to create self-learning algorithms that produce accurate predictions when it comes to weather and its impact on energy supply. The algorithm adapts and adjusts to the data that comes in to predict future behaviour as well. | ||||||||||||||||||||||
O&M | ||||||||||||||||||||||
132 | METRON | France | https://www.metronlab.com/ | C | ||||||||||||||||||
Metron’s platform provides insight into energy usage and provides data on energy intelligence strategies | ||||||||||||||||||||||
DA | ||||||||||||||||||||||
133 | Mindtitan | Estonia | https://mindtitan.com/ | E | ||||||||||||||||||
Customer service, demand forecast, optimization of energy production and scheduling, defect detection | ||||||||||||||||||||||
EM | AO | O&M | ||||||||||||||||||||
134 | Mobilyze | Slovakia | https://mobilyze.it/#/ | C | ||||||||||||||||||
Provides a location intelligence platform to identify EV charging hotspots | ||||||||||||||||||||||
M | ||||||||||||||||||||||
135 | Moduly | Canada | https://moduly.io/ | R/C | ||||||||||||||||||
Moduly helps residential and commercial electricity users optimize their EE by allowing them to shift consumption peak hours, and reduce energy consumption | ||||||||||||||||||||||
IOT | HVAC | HEMS | ||||||||||||||||||||
136 | moixa | UK | https://moixa.com/ | C | ||||||||||||||||||
Focuses on smart battery systems and smart charging, and platform that allows households to minimize energy bills by optimizing battery and electric vehicle performance | ||||||||||||||||||||||
M | AO | HEMS | ||||||||||||||||||||
137 | Morgan Solar Inc. | Canada | https://morgansolar.com/ | R/C | ||||||||||||||||||
Solar power plant production forecast and optimization, data-driven EE optimization of buildings | ||||||||||||||||||||||
AO | DA | HVAC | ||||||||||||||||||||
138 | Myst AI | USA | https://www.myst.ai/ | E | ||||||||||||||||||
Myst AI is a developer of the AI-based data analysis platform intended for electricity demand and supply forecasting | ||||||||||||||||||||||
DA | ||||||||||||||||||||||
139 | NanoLock Security | USA | https://nanolocksecurity.com/ | C/E | ||||||||||||||||||
NanoLock device-level protection and management secures IoT and connected devices | ||||||||||||||||||||||
140 | NEC | Japan | https://www.nec.com/ | C/E | ||||||||||||||||||
Focuses on plant failure prediction systems and building EMS systems | ||||||||||||||||||||||
HVAC | O&M | |||||||||||||||||||||
141 | Nest Labs | USA | https://nest.com/ | R | ||||||||||||||||||
Nest Labs is a home automation company manufacturing sensor-driven, Wi-Fi-enabled, self-learning thermostats and smoke detectors | ||||||||||||||||||||||
EE | IOT | HVAC | HEMS | |||||||||||||||||||
142 | Neurons Lab | Ukraine | https://www.neurons-lab.com | C | ||||||||||||||||||
Neurons Lab specializes in designing AI-based solutions to maximize energy outputs for small businesses and start-ups by forecasting renewable energy production (PV, Wind) and predicting energy consumption | ||||||||||||||||||||||
AO | DA | |||||||||||||||||||||
143 | Nnergix | Spain | https://www.nnergix.com/ | C/E | ||||||||||||||||||
Manages renewable energy and optimizes spinning reserves by AI-based algorithms and analytic models. Incorporates artificial intelligence to improve the accuracy of renewable energy forecasting | ||||||||||||||||||||||
AO | DA | VPP | ||||||||||||||||||||
144 | Notilo Plus | France | https://notiloplus.com/ | E | ||||||||||||||||||
Provides underwater analysis | ||||||||||||||||||||||
O&M | ||||||||||||||||||||||
145 | NRGI.ai | Ireland | https://www.nrgi.ai/ | C | ||||||||||||||||||
Nrgi is developing an AI-based B2B energy marketplace with energy price benchmarks, using an AI-based forecasting engine | ||||||||||||||||||||||
DA | ||||||||||||||||||||||
146 | Octopus Energy | UK | https://octopus.energy/ | R/C | ||||||||||||||||||
Developed a cloud-based smart grid platform that balances loads around the grid | ||||||||||||||||||||||
M | EM | VPP | DR | |||||||||||||||||||
147 | Ogre AI | Romania | https://www.ogre.ai/ | C/E | ||||||||||||||||||
Ogre AI develops automated B2B platform which uses machine learning to offer financial and operational decision-making support to energy and utilities companies | ||||||||||||||||||||||
DA | ||||||||||||||||||||||
148 | Open Energi | UK | https://openenergi.com/ | R/C/E | ||||||||||||||||||
The company’s platform, Dynamic Demand 2.0, automatically optimizes and trades power from low carbon technologies such as battery storage, EVs, demand-side response, hydrogen electrolysers and smart buildings | ||||||||||||||||||||||
M | EM | AO | DR | HEMS | ||||||||||||||||||
149 | Origami Energy | UK | https://www.origamienergy.com/ | E | ||||||||||||||||||
Origami’s independent energy data platform enables real-time market access, physical control, scheduling & dispatch, contract & position management, and price & volume forecasting | ||||||||||||||||||||||
EM | DA | |||||||||||||||||||||
150 | Orison | USA | https://orison.com/ | R/C | ||||||||||||||||||
Orison offers residential and commercial self-installable energy storage systems paired with flexible fleet control tools that enable electric utilities and energy retailers to improve grid resilience and manage peak loads | ||||||||||||||||||||||
EM | IOT | DR | ||||||||||||||||||||
151 | Osperity | USA | https://osperity.com/ | C | ||||||||||||||||||
Osperity’s technology provides AI-driven intelligent visual monitoring for industrial operations that can result in improved safety, reduced carbon footprints, etc. | ||||||||||||||||||||||
EE | DA | O&M | ||||||||||||||||||||
152 | Palmetto Clean Technology | USA | https://palmetto.com/ | R | ||||||||||||||||||
Insights and design for rooftop solar installation, monitoring and predictive maintenance | ||||||||||||||||||||||
DA | O&M | |||||||||||||||||||||
153 | Piclo | UK | https://www.piclo.energy/ | R/C | ||||||||||||||||||
Operates a cloud-based platform and integrated service that supports the end-to-end process of procuring and operating flexibility | ||||||||||||||||||||||
EM | AO | DR | ||||||||||||||||||||
154 | Ping Services | Australia | https://ping.services/ | E | ||||||||||||||||||
Ping records changes in this signature to continuously monitor the health of wind turbine blades and use advanced acoustic analysis to detect damage | ||||||||||||||||||||||
O&M | ||||||||||||||||||||||
155 | Ping Things | USA | https://www.pingthings.io/ | E | ||||||||||||||||||
The company uses big data software and science to detect events on the power grid. The platform records data from internal and external sources to utilities. This helps predict if an event, such as asset failure, will occur and alert the control room so they can avoid any outages. | ||||||||||||||||||||||
AO | O&M | |||||||||||||||||||||
156 | Plexflo | USA | https://www.plexflo.com/ | C | ||||||||||||||||||
Provides operational steps for EV charging station development, and simulates the electric grid to provide energy DA | ||||||||||||||||||||||
M | ||||||||||||||||||||||
157 | PowerPeers | Netherlands | https://www.powerpeers.nl/ | R/C | ||||||||||||||||||
Aggregates smaller producers and consumers | ||||||||||||||||||||||
AO | DR | |||||||||||||||||||||
158 | Prescinto | India | https://prescinto.ai/ | E | ||||||||||||||||||
The company’s platform offers advanced DA, enhances the performance of renewable energy or energy storage assets, streamlines operations and maintenance | ||||||||||||||||||||||
EE | DA | O&M | ||||||||||||||||||||
159 | Proasistech | Spain | http://bd4bs.com/ | E | ||||||||||||||||||
Optimizes operation of generation assets | ||||||||||||||||||||||
AO | ||||||||||||||||||||||
160 | Quadrical.Ai | Canada | https://www.quadrical.ai/ | C/E | ||||||||||||||||||
Quadrical develops AI-based solar plant monitoring and forecasting platform | ||||||||||||||||||||||
DA | O&M | |||||||||||||||||||||
161 | Quodus | Spain | https://quodus.ai/ | E | ||||||||||||||||||
Developed a platform for infrastructure monitoring, optimization of energy consumption, and analytics | ||||||||||||||||||||||
AO | DA | |||||||||||||||||||||
162 | R8tech | Estonia | https://r8tech.io/ | C | ||||||||||||||||||
R8 Digital Operator developed add-on software for existing building automation systems | ||||||||||||||||||||||
EE | HVAC | O&M | ||||||||||||||||||||
163 | Ramanujan | India | http://ramanujaninc.com/ | R/C/E | ||||||||||||||||||
Designs, develops and operates service-oriented solutions that enhance utility performance and consumer EMS | ||||||||||||||||||||||
EMS | IOT | DR | HEMS | |||||||||||||||||||
164 | Raptor Maps | USA | https://raptormaps.com/ | E | ||||||||||||||||||
Advanced analytics and aerial thermal inspections for solar power plants | ||||||||||||||||||||||
DA | O&M | |||||||||||||||||||||
165 | Rated Power | Spain | https://ratedpower.com/ | E | ||||||||||||||||||
Their technology finds the smartest way to maximize the value of photovoltaic plants, scanning millions of iterations, finding the best configuration and immediately generating hundreds of pages of engineering documents | ||||||||||||||||||||||
AO | DA | |||||||||||||||||||||
166 | Raycatch | Israel | https://www.raycatch.com/ | C/E | ||||||||||||||||||
Raycatch developed DeepSolar, a digital asset management system that automates and optimizes solar PV assets | ||||||||||||||||||||||
DA | O&M | |||||||||||||||||||||
167 | Regalgrid | Italy | https://www.regalgrid.com/en/ | R | ||||||||||||||||||
Works as an aggregator connecting homes to one community where clean energy is produced, stored and distributed among a network of people | ||||||||||||||||||||||
DR | HEMS | |||||||||||||||||||||
168 | Relectrify | Australia | https://www.relectrify.com/ | R/C | ||||||||||||||||||
Increases longevity of batteries | ||||||||||||||||||||||
O&M | ||||||||||||||||||||||
169 | Rhythmos | USA | https://rhythmos.io/ | C/E | ||||||||||||||||||
Rhythmos assembles critical information from legacy systems to automatically identify, characterize, quantify and forecast EV charging needs and host utility grid constraints | ||||||||||||||||||||||
M | AO | |||||||||||||||||||||
170 | Sawatch Labs | USA | https://www.sawatchlabs.com/ | C | ||||||||||||||||||
EV analytics including tailpipe emissions calculations, vehicle specific EV recommendations, site specific supply equipment, energy demand projections, and operational analysis of EV | ||||||||||||||||||||||
M | DA | |||||||||||||||||||||
171 | Schneider Electric | USA | http://www.auto-grid.com/ | C/E | ||||||||||||||||||
AutoGrid Systems by Schneider Electric organizes energy data and employs big DA to generate real-time predictions, and offers flexibility solutions | ||||||||||||||||||||||
EM | DA | VPP | ||||||||||||||||||||
172 | Scopito | Denmark | http://scopito.com/ | E | ||||||||||||||||||
Predictive maintenance for power lines, and solar and wind power plants | ||||||||||||||||||||||
DA | O&M | |||||||||||||||||||||
173 | Senfal (Vattenfall) | Netherlands | https://group.vattenfall.com/ | C/E | ||||||||||||||||||
Senfal is a Dutch start-up that offers innovative software services to large industrial customers, wind and solar farms, as well as battery owners for unlocking value from flexibility | ||||||||||||||||||||||
EM | AO | |||||||||||||||||||||
174 | Sensgreen | Turkey | https://www.sensgreen.com/ | C | ||||||||||||||||||
Optimizes building management | ||||||||||||||||||||||
AO | HVAC | O&M | ||||||||||||||||||||
175 | Simerse AI | UK | https://www.simerse.com/ | E | ||||||||||||||||||
Helping electric utilities find defects on critical utility equipment | ||||||||||||||||||||||
O&M | ||||||||||||||||||||||
176 | Skyqraft | Sweden | http://skyqraft.com/ | E | ||||||||||||||||||
Skyqraft conducts aerial inspection of power lines through unmanned airplanes and machine learning | ||||||||||||||||||||||
O&M | ||||||||||||||||||||||
177 | SkyX | Canada | https://skyx.com/ | E | ||||||||||||||||||
Drone-aided predictive maintenance | ||||||||||||||||||||||
DA | O&M | |||||||||||||||||||||
178 | SmartCat | Serbia | https://smartcat.io | C | ||||||||||||||||||
SmartCat develops software used to optimize heating and cooling devices, and to reduce electricity consumption | ||||||||||||||||||||||
EE | HVAC | |||||||||||||||||||||
179 | SmartHelio | Switzerland | https://smarthelio.com/ | E | ||||||||||||||||||
An end-to-end real-time analytics platform for solar plants | ||||||||||||||||||||||
O&M | ||||||||||||||||||||||
180 | Smartive | Spain | https://smartive.eu/ | E | ||||||||||||||||||
Provides a cloud-based monitoring solution for wind farm assets | ||||||||||||||||||||||
O&M | ||||||||||||||||||||||
181 | Sobolt | Netherlands | https://www.sobolt.com | C | ||||||||||||||||||
Sobolt operates an AI solution HeatPuls that maps heat losses in buildings | ||||||||||||||||||||||
HVAC | ||||||||||||||||||||||
182 | Social Energy | UK | https://social.energy/ | R/C | ||||||||||||||||||
Creates solutions flexibility and demand response for homeowners and businesses | ||||||||||||||||||||||
AO | DR | HVAC | HEMS | |||||||||||||||||||
183 | Solar AI | Singapore | https://getsolar.ai/ | C | ||||||||||||||||||
Aids solar power plant desing, scans sites to establish solar potential | ||||||||||||||||||||||
DA | ||||||||||||||||||||||
184 | Solar Captus | Australia | https://www.solarcaptus.com/ | R/C | ||||||||||||||||||
Their platforms aid designing rooftop solar units, and facilitate digital marketing | ||||||||||||||||||||||
DA | ||||||||||||||||||||||
185 | Solar Inspectron AI | Greece | https://solarinspectron.ai/ | E | ||||||||||||||||||
Drone thermal inspections of PV assets | ||||||||||||||||||||||
O&M | ||||||||||||||||||||||
186 | Solavio | India | https://www.solavio.com/ | E | ||||||||||||||||||
Autonomous solar panel cleaning | ||||||||||||||||||||||
O&M | ||||||||||||||||||||||
187 | SOLshare | Bangladesh | https://solshare.com/ | R | ||||||||||||||||||
SOLshare created a peer-to-peer energy exchange network of rural households and small businesses with rooftop solar home systems | ||||||||||||||||||||||
AO | VPP | IOT | ||||||||||||||||||||
188 | Solstice | USA | http://solstice.us | R/C | ||||||||||||||||||
The company operates a platform that helps integrate community-based solar power | ||||||||||||||||||||||
VPP | ||||||||||||||||||||||
189 | Solytic | Germany | https://www.solytic.com/ | E | ||||||||||||||||||
Provides monitoring solutions of large-scale rooftop and outdoor systems and develops comprehensive databases for the provision of device benchmarks and analysis | ||||||||||||||||||||||
DA | O&M | |||||||||||||||||||||
190 | SparkCognition | USA | https://www.sparkcognition.com/ | C/E | ||||||||||||||||||
Developed cyber-physical software for the safety, security, and reliability | ||||||||||||||||||||||
191 | Stem | USA | https://www.stem.com/ | C/E | ||||||||||||||||||
The company’s platform Athena forms virtual power plants to maximize the value of energy resources through a combination of machine learning and predictive analytics | ||||||||||||||||||||||
M | AO | DA | VPP | |||||||||||||||||||
192 | Sterblue | France | https://www.sterblue.com/ | C | ||||||||||||||||||
Designed a platform that manages infrastructure inspections through image recognition | ||||||||||||||||||||||
AO | VPP | |||||||||||||||||||||
193 | suena | Germany | https://suena.energy/ | E | ||||||||||||||||||
Optimizes battery storage | ||||||||||||||||||||||
AO | ||||||||||||||||||||||
194 | sun2wheel | Germany | https://sun2wheel.com/en/home/ | R | ||||||||||||||||||
Develops V2H and V2B charging systems that ensure the availability of energy in EVs during the day and feeds back the excess to households at night | ||||||||||||||||||||||
M | ||||||||||||||||||||||
195 | Sunai | Chile | https://sunai.cl/en/ | E | ||||||||||||||||||
The company developed a platform NEURAL that gives operational guidelines to O&M teams | ||||||||||||||||||||||
DA | O&M | |||||||||||||||||||||
196 | Suncast | Chile | https://www.suncast.cl/ | E | ||||||||||||||||||
Develops models that perform energy forecasts in photovoltaic power plants and applies AI and ML to estimate soiling in photovoltaic modules | ||||||||||||||||||||||
DA | O&M | |||||||||||||||||||||
197 | Sync Energy | USA | https://www.sync.energy/ | E | ||||||||||||||||||
Sync develops no-code AI-based predictive simulations and analytics, that streamline planning and operations for electrical utilities. | ||||||||||||||||||||||
DA | ||||||||||||||||||||||
198 | The Solar Labs | India | http://thesolarlabs.com | C/E | ||||||||||||||||||
Develops software that aids solar PV engineering design | ||||||||||||||||||||||
DA | ||||||||||||||||||||||
199 | Thermelgy | India | https://www.thermelgy.ai/ | C/E | ||||||||||||||||||
Enables end users to manage their energy assets more efficiently | ||||||||||||||||||||||
AO | EE | IOT | HVAC | |||||||||||||||||||
200 | ThermoVault | Belgium | https://www.thermovault.com/ | R | ||||||||||||||||||
Provides an all-in retrofit solution that transforms electrical space and water heaters into energy-efficient storage devices | ||||||||||||||||||||||
EE | DR | HVAC | ||||||||||||||||||||
201 | Tibber | Sweden | http://tibber.com | R | ||||||||||||||||||
Tibber is a digital electricity supplier that uses AI to regulate power for houses based on their predicted levels of consumption | ||||||||||||||||||||||
AO | IOT | HEMS | ||||||||||||||||||||
202 | tiko | Switzerland | https://tiko.energy/ | R/C | ||||||||||||||||||
tiko’s Virtual Power Plant is designed to stabilize the grid and reduce these fluctuations | ||||||||||||||||||||||
EM | VPP | |||||||||||||||||||||
203 | TokWise | Bulgaria | https://www.tokwise.com/ | E | ||||||||||||||||||
Develops algorithms for energy forecasting | ||||||||||||||||||||||
DA | ||||||||||||||||||||||
204 | Trendometric | Romania | https://trendometrics.com// | E | ||||||||||||||||||
Develops energy forecast models | ||||||||||||||||||||||
DA | ||||||||||||||||||||||
205 | Twaice | Germany | https://www.twaice.com/ | C/E | ||||||||||||||||||
Provider of digital twin-based battery DA and management platform | ||||||||||||||||||||||
AO | DA | O&M | ||||||||||||||||||||
206 | Unleash live | Australia | https://unleashlive.com/ | E | ||||||||||||||||||
Video analytics for predictive maintenance | ||||||||||||||||||||||
O&M | ||||||||||||||||||||||
207 | Upside Energy | UK | https://www.krakenflex.com/ | E | ||||||||||||||||||
Software platform for managing, controlling and optimising all distributed energy resources | ||||||||||||||||||||||
EM | DA | VPP | ||||||||||||||||||||
208 | Urbint | USA | https://www.urbint.com | C/E | ||||||||||||||||||
Urbint predicts threats to workers and critical infrastructure to stop incidents before they happen | ||||||||||||||||||||||
O&M | ||||||||||||||||||||||
209 | Verdigris Technologies | USA | https://verdigris.co/ | C | ||||||||||||||||||
Verdigris Technologies is a SaaS-based platform that develops artificial intelligence in order to optimize energy consumption | ||||||||||||||||||||||
AO | DR | |||||||||||||||||||||
210 | VIA | USA | https://www.solvewithvia.com/ | E | ||||||||||||||||||
Predicts energy demand, grid power flows, possible outages, and renewable energy production by analysing data collected by smart meters, drones, and sensors | ||||||||||||||||||||||
DA | IOT | |||||||||||||||||||||
211 | Virtual Power Solutions | UK | https://www.vps-energy.com/ | R/C/E | ||||||||||||||||||
The company’s platforms focus on smart homes and smart cities. EMS system that combines demand management with building automation technology targeted for the business sector | ||||||||||||||||||||||
EM | AO | VPP | DR | HEMS | ||||||||||||||||||
212 | Visor | Portugal | https://www.visor.ai/ | E | ||||||||||||||||||
Customer service automation with AI bots | ||||||||||||||||||||||
213 | visualAI | India | https://futr.energy/ | C/E | ||||||||||||||||||
Technology integrates data from drones, IoT sensors, and offline sources in predictive maintenance and asset management | ||||||||||||||||||||||
AO | O&M | |||||||||||||||||||||
214 | Voltalis | France | https://www.voltalis.com/ | R | ||||||||||||||||||
Demand response for home heating | ||||||||||||||||||||||
DR | HVAC | |||||||||||||||||||||
215 | VoltPost | USA | https://www.voltpost.com/ | C | ||||||||||||||||||
Offers hardware-as-a-service that transforms lampposts into smart electric vehicle charging stations | ||||||||||||||||||||||
M | ||||||||||||||||||||||
216 | Wärtsilä | Finland | https://www.wartsila.com/ | C/E | ||||||||||||||||||
Greensmith Energy (Wärtsilä) uses software-based intelligence and machine learning to enhance grid systems and networks | ||||||||||||||||||||||
EM | VPP | DR | ||||||||||||||||||||
217 | wibeee | Spain | https://wibeee.com/ | R | ||||||||||||||||||
Offers a home EMS platform | ||||||||||||||||||||||
HEMS | ||||||||||||||||||||||
218 | Willow | Australia | https://www.willowinc.com/ | C | ||||||||||||||||||
Willow empowers asset owners and operators to make proactive, data-led decisions in real time | ||||||||||||||||||||||
AO | ||||||||||||||||||||||
219 | Wirewatt | Mexico | https://www.wirewatt.com/ | R/C | ||||||||||||||||||
The company provides solar leases to customers of any business that installs or sells solar panels | ||||||||||||||||||||||
220 | Worlds | USA | https://worlds.io/ | C/E | ||||||||||||||||||
Worlds’ technology combines deep learning and IoT inside of a 4D environment to give organizations the ability to observe their organization’s physical space and then, analyze and learn from their physical surroundings | ||||||||||||||||||||||
DA |
References
- Vial, G. Understanding digital transformation: A review and a research agenda. J. Strateg. Inf. Syst. 2019, 28, 118–144. [Google Scholar] [CrossRef]
- Balsmeier, B.; Woerter, M. Is this time different? How digitalization influences job creation and destruction. Res. Policy 2019, 48, 103765. [Google Scholar] [CrossRef]
- Saarikko, T.; Westergren, U.H.; Blomquist, T. Digital transformation: Five recommendations for the digitally conscious firm. Bus. Horiz. 2020, 63, 825–839. [Google Scholar] [CrossRef]
- Bomparda, E.; Botterud, A.; Corgnatia, S.; Huanga, T.; Jafaric, M.; Leone, P.; Mauro, S.; Montesano, G.; Papa, C.; Profumo, F. An electricity triangle for energy transition: Application to Italy. Appl. Energy 2020, 227, 115525. [Google Scholar] [CrossRef]
- Joskow, P.L. Lessons Learned from Electricity Market Liberalization. Energy J. 2008, 29, 9–42. [Google Scholar] [CrossRef]
- Višković, A.; Šimunić, D.; Franki, V. Innovation platfirm—A novel energy service utility. In Proceedings of the 43rd International Convention on Information, Communication and Electronic Technology, MIPRO 2020, Opatija, Croatia, 28 September–2 October 2020; pp. 425–430. [Google Scholar]
- Višković, A.; Franki, V. Evaluating and forecasting direct carbon emissions of electricity production: A case study for South East Europe. Energy Sources Part B Econ. Plan. Policy 2022, 17, 2037028. [Google Scholar] [CrossRef]
- Verhoef, P.C.; Broekhuizen, T.; Bart, Y.; Bhattacharya, A.; Qi Dong, J.; Fabian, N.; Haenlein, M. Digital transformation: A multidisciplinary reflection and research agenda. J. Bus. Res. 2021, 122, 889–901. [Google Scholar] [CrossRef]
- Loock, M. Unlocking the value of digitalization for the European energy transition: A typology of innovative business models. Energy Res. Soc. Sci. 2020, 69, 101740. [Google Scholar] [CrossRef]
- Di Silvestre, M.L.; Favuzza, S.; Riva Sanseverino, E.; Zizzo, G. How Decarbonization, Digitalization and Decentralization are changing key power infrastructures. Renew. Sustain. Energy Rev. 2018, 93, 483–498. [Google Scholar] [CrossRef]
- Višković, A.; Franki, V.; Damiano, A. Integrated strategic action for facilitating the electrification process. In Proceedings of the 44th International Convention on Information, Communication and Electronic Technology, MIPRO 2021, Opatija, Croatia, 27 September–1 October 2021; pp. 551–557. [Google Scholar]
- Boza, P.; Evgeniou, T. Artificial intelligence to support the integration of variable renewable energy sources to the power system. Appl. Energy 2021, 290, 116754. [Google Scholar] [CrossRef]
- Duan, Y.; Edwards, J.S.; Dwivedi, Y.K. Artificial intelligence for decision making in the era of Big Data—Evolution, challenges and research agenda. Int. J. Inf. Manag. 2019, 48, 63–71. [Google Scholar] [CrossRef]
- Višković, A.; Franki, V.; Bašić-šiško, A. City-Level Transition to Low-Carbon Economy. Energies 2022, 15, 1737. [Google Scholar] [CrossRef]
- Ramos, C.; Liu, C. AI in Power Systems and Energy Markets. IEEE Intell. Syst. 2011, 26, 5–8. [Google Scholar] [CrossRef]
- Ali, S.S.; Choi, B.J. State-of-the-Art Artificial Intelligence Techniques for Distributed Smart Grids: A Review. Electronics 2020, 9, 1030. [Google Scholar] [CrossRef]
- Višković, A.; Franki, V.; Jevtić, D. Artificial intelligence as a facilitator of the energy transition. In Proceedings of the 45th Jubilee International Convention on Information, Communication and Electronic Technology, MIPRO 2022, Opatija, Croatia, 23–27 May 2022; pp. 494–499. [Google Scholar]
- Ahmad, T.; Zhu, H.; Zhang, D.; Tariq, R.; Bassam, A.; Ullah, F.; Ghamdi, A.S.; Alshamrani, S.S. Energetics Systems and artificial intelligence: Applications of industry 4.0. Energy Rep. 2022, 8, 334–361. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhang, D.; Huang, C.; Zhang, H.; Dai, N.; Song, Y.; Chen, H. Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities. J. Clean. Prod. 2021, 289, 125834. [Google Scholar] [CrossRef]
- Kumbhar, A.; Dhawale, P.G.; Kumbhar, S.; Patil, U.; Magdum, P. A comprehensive review: Machine learning and its application in integrated power system. Energy Rep. 2021, 7, 5467–5474. [Google Scholar] [CrossRef]
- Antonopoulos, I.; Robu, V.; Couraud, B.; Kirli, D.; Norbu, S.; Kiprakis, A.; Flynn, D.; Elizondo-Gonzalez, S.; Wattam, S. Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review. Renew. Sustain. Energy Rev. 2020, 130, 109899. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, X.; Zhang, H.; Cao, H.; Terzija, V. Review on deep learning applications in frequency analysis and control of modern power system. Int. J. Electr. Power Energy Syst. 2022, 136, 107744. [Google Scholar] [CrossRef]
- Hou, H.; Liu, C.; Wang, Q.; Wu, X.; Tang, J.; Shi, Y.; Xie, C. Review of load forecasting based on artificial intelligence methodologies, models, and challenges. Electr. Power Syst. Res. 2022, 210, 108067. [Google Scholar] [CrossRef]
- Yazici, I.; Beyca, O.F.; Delen, D. Deep-learning-based short-term electricity load forecasting: A real case application. Eng. Appl. Artif. Intell. 2022, 109, 104645. [Google Scholar] [CrossRef]
- Mazzeo, D.; Herdem, M.S.; Matera, N.; Bonini, M.; Wen, J.Z.; Nathwani, J.; Oliveti, G. Artificial intelligence application for the performance prediction of a clean energy community. Energy 2021, 232, 120999. [Google Scholar] [CrossRef]
- Weng Kow, K.; Wan Wong, Y.; Kumar Rajkumar, R.; Kumar Rajkumar, R. A review on performance of artificial intelligence and conventional method in mitigating PV grid-tied related power quality events. Renew. Sustain. Energy Rev. 2016, 56, 334–346. [Google Scholar]
- Mellit, A.; Kalogirou, S.A. Artificial intelligence techniques for photovoltaic applications: A review. Prog. Energy Combust. Sci. 2008, 34, 574–632. [Google Scholar] [CrossRef]
- Jha, S.K.; Bilalovic, J.; Jha, A.; Patel, N.; Zhang, H. Renewable energy: Present research and future scope of Artificial Intelligence. Renew. Sustain. Energy Rev. 2017, 77, 297–317. [Google Scholar] [CrossRef]
- Richter, L.; Lehna, M.; Marchand, S.; Scholz, C.; Dreher, A.; Klaiber, S.; Lenk, S. Artificial Intelligence for Electricity Supply Chain automation. Renew. Sustain. Energy Rev. 2022, 163, 112459. [Google Scholar] [CrossRef]
- Aguilar, J.; Garces-Jimenez, A.; R.-Moreno, M.D.; García, R. A systematic literature review on the use of artificial intelligence in energy self-management in smart buildings. Renew. Sustain. Energy Rev. 2021, 151, 111530. [Google Scholar] [CrossRef]
- Aziz, A.F.A.; Khalid, S.N.; Mustafa, M.W.; Shareef, H.; Aliyu, G. Artificial Intelligent Meter development based on Advanced Metering Infrastructure technology. Renew. Sustain. Energy Rev. 2013, 27, 191–197. [Google Scholar] [CrossRef]
- Clarke, R. Regulatory alternatives for AI. Comput. Law Secur. Rev. 2019, 35, 398–409. [Google Scholar] [CrossRef]
- Roh, Y.; Heo, G.; Whang, S.E. A Survey on Data Collection for Machine Learning: A Big Data—AI Integration Perspective. IEEE Trans. Knowl. Data Eng. 2021, 33, 1328–1347. [Google Scholar] [CrossRef] [Green Version]
- Alimi, O.A.; Ouahada, K.; Abu-Mahfouz, A.M. A Review of Machine Learning Approaches to Power System Security and Stability. IEEE Access 2020, 8, 113512–113531. [Google Scholar] [CrossRef]
- Lu, Z.; Lu, X.; Wang, W.; Wang, C. Review and evaluation of security threats on the communication networks in the smart grid. In Proceedings of the IEEE Military Communication Conference, San Jose, CA, USA, 31 October–3 November 2010. [Google Scholar]
- Küfeoğlu, S.; Liu, G.; Anaya, K.; Pollitt, M.G. Digitalisation and New Business Models in Energy Sector; Energy Policy Research Group, University of Cambridge: Cambridge, UK, 2019. [Google Scholar]
- Available online: https://www.ai-startups.org/ (accessed on 5 January 2023).
- Available online: https://tracxn.com/ (accessed on 5 January 2023).
- Available online: https://omdena.com/ (accessed on 5 January 2023).
- Available online: https://www.startus-insights.com/ (accessed on 5 January 2023).
- Available online: https://www.crunchbase.com/ (accessed on 5 January 2023).
- Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 4th ed.; Pearson: Boston, MA, USA, 2020. [Google Scholar]
- Haenlein, M.; Kaplan, H. A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. Calif. Manag. Rev. 2019, 61, 5–14. [Google Scholar] [CrossRef]
- Turing, A.M. Computing machinery and intelligence. Mind 1950, 59, 433–460. [Google Scholar] [CrossRef]
- Garnelo, M.; Shanahan, M. Reconciling deep learning with symbolic artificial intelligence: Representing objects and relations. Curr. Opin. Behav. Sci. 2019, 29, 17–23. [Google Scholar] [CrossRef]
- Newell, A.; Simon, H.A. Computer science as empirical inquiry: Symbols and search. Commun. ACM 1976, 19, 113–126. [Google Scholar] [CrossRef] [Green Version]
- Milić, S.D.; Đurović, V.; Stojanović, M.D. Data science and machine learning in the IIoT concepts of power plants. Int. J. Electr. Power Energy Syst. 2023, 145, 108711. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning Data Mining, Inference, and Prediction, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Jin, X.-B.; Zheng, W.-Z.; Kong, J.-L.; Wang, X.-Y.; Bai, Y.-T.; Su, T.-L.; Lin, S. Deep-Learning Forecasting Method for Electric Power Load via Attention-Based Encoder-Decoder with Bayesian Optimization. Energies 2021, 14, 1596. [Google Scholar] [CrossRef]
- Nikolaidis, P.; Chatzis, S. Gaussian process-based Bayesian optimization for data-driven unit commitment. Int. J. Electr. Power Energy Syst. 2021, 130, 106930. [Google Scholar] [CrossRef]
- Chen, Q.; Folly, K.A. Application of Artificial Intelligence for EV Charging and Discharging Scheduling and Dynamic Pricing: A Review. Energies 2023, 16, 146. [Google Scholar] [CrossRef]
- Hassan, M.M.; Hassan, M.R.; de Albuquerque, V.H.C.; Pedrycz, W. Soft Computing for Intelligent Edge Computing. Appl. Soft Comput. 2022, 128, 109628. [Google Scholar] [CrossRef]
- Ibrahim, D. An Overview of Soft Computing. Procedia Comput. Sci. 2016, 102, 34–38. [Google Scholar] [CrossRef]
- Amit, K. Artificial Intelligence and Soft Computing—Behavioral and Cognitive Modeling of the Human Brain; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Mehdi, H.M.; Azeem, M.K.; Ahmad, I. Artificial intelligence based nonlinear control of hybrid DC microgrid for dynamic stability and bidirectional power flow. J. Energy Storage 2023, 58, 106333. [Google Scholar] [CrossRef]
- Minker, J. (Ed.) Logic-Based Artificial Intelligence; The Springer International Series in Engineering and Computer Science; Springer: Boston, MA, USA, 2000. [Google Scholar]
- Liu, Z.; Gao, Y.; Liu, B. An artificial intelligence-based electric multiple units using a smart power grid system. Energy Rep. 2022, 8, 13376–13388. [Google Scholar] [CrossRef]
- Schmoldt, D.L.; Rausche, H.M. Knowledge-Based Systems in Artificial Intelligence; McGraw-Hill Series in Forest Resources; McGraw-Hill: New York, NY, USA, 1989. [Google Scholar]
- Jain, P.; Saxena, A. A Multi-Agent based simulator for strategic bidding in day-ahead energy market. Sustain. Energy Grids Netw. 2023, 33, 100979. [Google Scholar] [CrossRef]
- McArthur, S.D.; Davidson, E.M.; Catterson, V.M.; Dimeas, A.L.; Hatziargyriou, N.D.; Ponci, F.; Funabashi, T. Multi-Agent Systems for Power Engineering Applications—Part II: Technologies, Standards, and Tools for Building Multi-agent Systems. IEEE Trans. Power Syst. 2007, 22, 1753–1759. [Google Scholar] [CrossRef] [Green Version]
- Khan, Z.A.; Khalid, A.; Javaid, N.; Haseeb, A.; Saba, T.; Shafiq, M. Exploiting Nature-Inspired-Based Artificial Intelligence Techniques for Coordinated Day-Ahead Scheduling to Efficiently Manage Energy in Smart Grid. IEEE Access 2019, 7, 140102–140125. [Google Scholar] [CrossRef]
- Kuo, P.-H.; Huang, C.-J. A High Precision Artificial Neural Networks Model for Short-Term Energy Load Forecasting. Energies 2018, 11, 213. [Google Scholar] [CrossRef] [Green Version]
- Park, D.C.; El-Sharkawi, M.A.; Marks, R.J.; Atlas, L.E.; Damborg, M.J. Electric load forecasting using an artificial neural network. IEEE Trans. Power Syst. 1991, 6, 442–449. [Google Scholar] [CrossRef] [Green Version]
- Sulaiman, S.M.; Jeyanthy, P.A.; Devaraj, D. Artificial neural network based day ahead load forecasting using Smart Meter data. In Proceedings of the Biennial International Conference on Power and Energy Systems: Towards Sustainable Energy (PESTSE), Bengaluru, India, 21–23 January 2016; pp. 1–6. [Google Scholar]
- Lee, M. An analysis of the effects of artificial intelligence on electric vehicle technology innovation using patent data. World Pat. Inf. 2020, 63, 102002. [Google Scholar] [CrossRef]
- Matijašević, T.; Antić, T.; Capuder, T. A systematic review of machine learning applications in the operation of smart distribution systems. Energy Rep. 2022, 8, 12379–12407. [Google Scholar] [CrossRef]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Marsland, S. Machine Learning—An Algorithmic Perspective, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2009. [Google Scholar]
- Wang, H.; Lei, Z.; Zhang, X.; Zhou, B.; Peng, J. A review of deep learning for renewable energy forecasting. Energy Convers. Manag. 2019, 198, 111799. [Google Scholar] [CrossRef]
- Forootan, M.M.; Larki, I.; Zahedi, R.; Ahmadi, A. Machine Learning and Deep Learning in Energy Systems: A Review. Sustainability 2022, 14, 4832. [Google Scholar] [CrossRef]
- Jan, B.; Farman, H.; Khan, M.; Imran, M.; Ul Islam, M.; Ahmad, A.; Ali, S.; Jeon, G. Deep learning in big data Analytics: A comparative study. Comput. Electr. Eng. 2019, 75, 275–287. [Google Scholar] [CrossRef]
- Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron. Mark. 2021, 31, 685–695. [Google Scholar] [CrossRef]
- Gerbaulet, C.; von Hirschhausen, C.; Kemfert, C.; Lorenz, C.; Oeia, P.-Y. European electricity sector decarbonization under different levels of foresight. Renew. Energy 2019, 141, 973–987. [Google Scholar] [CrossRef]
- Teece, D.J. Profiting from innovation in the digital economy: Enabling technologies, standards, and licensing models in the wireless world. Res. Policy 2018, 47, 1367–1387. [Google Scholar] [CrossRef]
- Dwivedi, Y.K. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manag. 2021, 57, 101994. [Google Scholar] [CrossRef]
- Jacobson, D.; Dickerman, L. Distributed Intelligence: A Critical Piece of the Microgrid Puzzle. Electr. J. 2019, 32, 10–13. [Google Scholar] [CrossRef]
- Aguilar Madrid, E.; Antonio, N. Short-Term Electricity Load Forecasting with Machine Learning. Information 2021, 12, 50. [Google Scholar] [CrossRef]
- Metaxiotis, K.; Kagiannas, A.; Askounis, D.; Psarras, J. Artificial intelligence in short term electric load forecasting: A state-of-the-art survey for the researcher. Energy Convers. Manag. 2003, 44, 1525–1534. [Google Scholar] [CrossRef]
- Raza, Q.M.; Khosravi, A. A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renew. Sustain. Energy Rev. 2015, 50, 1352–1372. [Google Scholar] [CrossRef]
- Ali, D.; Yohanna, M.; Puwu, M.I.; Garkida, B.M. Long-term load forecast modelling using a fuzzy logic approach. Pac. Sci. Rev. A Nat. Sci. Eng. 2016, 18, 123–127. [Google Scholar] [CrossRef] [Green Version]
- Nalcaci, G.; Özmen, A.; Weber, G.W. Long-term load forecasting: Models based on MARS, ANN and LR methods. Cent. Eur. J. Oper. Res. 2019, 27, 1033–1049. [Google Scholar] [CrossRef]
- Ranjith Kumar, K.; Surya Kalavathi, M. Artificial intelligence based forecast models for predicting solar power generation. Mater. Today Proc. 2018, 5, 796–802. [Google Scholar] [CrossRef]
- Abubakar, M.; Che, Y.; Ivascu, L.; Almasoudi, F.M.; Jamil, I. Performance Analysis of Energy Production of Large-Scale Solar Plants Based on Artificial Intelligence (Machine Learning) Technique. Processes 2022, 10, 1843. [Google Scholar] [CrossRef]
- Kuzlu, M.; Cali, U.; Sharma, V.; Güler, Ö. Gaining Insight into Solar Photovoltaic Power Generation Forecasting Utilizing Explainable Artificial Intelligence Tools. IEEE Access 2020, 8, 187814–187823. [Google Scholar] [CrossRef]
- Dumitru, C.-D.; Gligor, A. Daily Average Wind Energy Forecasting Using Artificial Neural Networks. Procedia Eng. 2017, 181, 829–836. [Google Scholar] [CrossRef]
- Jørgensen, K.L.; Shaker, H.L. Wind Power Forecasting Using Machine Learning: State of the Art, Trends and Challenges. In Proceedings of the IEEE 2020, 8th International Conference on Smart Energy Grid Engineering (SEGE), Oshawa, ON, Canada, 12–14 August 2020; pp. 44–50. [Google Scholar]
- Ahmadi, A.; Nabipour, M.; Mohammadi-Ivatloo, B.; Amani, A.M.; Rho, S.; Piran, M.J. Long-Term Wind Power Forecasting Using Tree-Based Learning Algorithms. IEEE Access 2020, 8, 151511–151522. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Shen, X.; Zhang, J. A comprehensive wind speed prediction system based on Monte Carlo and artificial intelligence algorithms. Appl. Energy 2022, 305, 117815. [Google Scholar] [CrossRef]
- Möllerström, E.; Gregory, S.; Sugathan, A. Improvement of AEP Predictions with Time for Swedish Wind Farms. Energies 2021, 14, 3475. [Google Scholar] [CrossRef]
- Khan, W.; Walker, S.; Zeiler, W. Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach. Energy 2022, 240, 122812. [Google Scholar] [CrossRef]
- Kolsi, L.; Al-Dahidi, S.; Kamel, S.; Aich, W.; Boubaker, S.; Ben Khedher, N. Prediction of Solar Energy Yield Based on Artificial Intelligence Techniques for the Ha’il Region, Saudi Arabia. Sustainability 2023, 15, 774. [Google Scholar] [CrossRef]
- Bouteska, A.; Hajek, P.; Fisher, B.; Zoynul Abedin, M. Nonlinearity in forecasting energy commodity prices: Evidence from a focused time-delayed neural network. Res. Int. Bus. Financ. 2023, 64, 101863. [Google Scholar] [CrossRef]
- Lago, J.; de Ridder, F.; de Schutter, B. Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms. Appl. Energy 2018, 221, 386–405. [Google Scholar] [CrossRef]
- Lago, J.; Marcjasz, G.; de Schutter, B.; Weron, R. Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark. Appl. Energy 2021, 293, 116983. [Google Scholar] [CrossRef]
- Contreras, J.; Espinola, R.; Nogales, F.J.; Conejo, A.J. ARIMA models to predict next-day electricity price. IEEE Trans. Power Syst. 2003, 18, 1014–1020. [Google Scholar] [CrossRef]
- Van Gompel, J.; Spina, D.; Develder, C. Cost-effective fault diagnosis of nearby photovoltaic systems using graph neural networks. Energy 2023, 266, 126444. [Google Scholar] [CrossRef]
- Barrera, J.M.; Reina, A.; Maté, A.; Trujillo, J.C. Solar Energy Prediction Model Based on Artificial Neural Networks and Open Data. Sustainability 2020, 12, 6915. [Google Scholar] [CrossRef]
- Yessef, M.; Bossoufi, B.; Taoussi, M.; Motahhir, S.; Lagrioui, A.; Chojaa, H.; Lee, S.; Kang, B.-G.; Abouhawwash, M. Improving the Maximum Power Extraction from Wind Turbines Using a Second-Generation CRONE Controller. Energies 2022, 15, 3644. [Google Scholar] [CrossRef]
- Majidi Nezhad, M.; Heydari, A.; Pirshayan, E.; Groppi, D.; Astiaso Garcia, D. A novel forecasting model for wind speed assessment using sentinel family satellites images and machine learning method. Renew. Energy 2021, 179, 2198–2211. [Google Scholar] [CrossRef]
- Muhammad Ashraf, W.; Moeen Uddin, G.; Afroze Ahmad, H.; Ahmad Jamil, M.; Tariq, R.; Wakil Shahzad, M.; Dua, V. Artificial intelligence enabled efficient power generation and emissions reduction underpinning net-zero goal from the coal-based power plants. Energy Convers. Manag. 2022, 268, 116025. [Google Scholar] [CrossRef]
- Stefanidou-Voziki, P.; Cardoner-Valbuena, D.; Villafafila-Robles, R.; Dominguez-Garcia, J.L. Data analysis and management for optimal application of an advanced ML-based fault location algorithm for low voltage grids. Int. J. Electr. Power Energy Syst. 2022, 142 Pt A, 108303. [Google Scholar] [CrossRef]
- Korjani, S.; Facchini, A.; Mureddu, M.; Rubino, A.; Damiano, A. Battery management for energy communities—Economic evaluation of an artificial intelligence-led system. J. Clean. Prod. 2021, 314, 128017. [Google Scholar] [CrossRef]
- Lee, D.; Chen, L. Sustainable Air-Conditioning Systems Enabled by Artificial Intelligence: Research Status, Enterprise Patent Analysis, and Future Prospects. Sustainability 2022, 14, 7514. [Google Scholar] [CrossRef]
- Qin, H.; Yu, Y.; Li, T.; Liu, X.; Li, L. Energy-efficient heating control for nearly zero energy residential buildings with deep reinforcement learning. Energy 2023, 264, 126209. [Google Scholar] [CrossRef]
- Nutakki, M.; Mandava, S. Review on optimization techniques and role of Artificial Intelligence in home energy management systems. Eng. Appl. Artif. Intell. 2023, 119, 105721. [Google Scholar] [CrossRef]
- Di Santo, K.G.; Di Santo, S.G.; Machado Monaro, R.; Saidel, M.A. Active demand side management for households in smart grids using optimization and artificial intelligence. Measurement 2018, 115, 152–161. [Google Scholar] [CrossRef]
- Vázquez-Canteli, J.R.; Nagy, Z. Reinforcement learning for demand response: A review of algorithms and modeling techniques. Appl. Energy 2019, 235, 1072–1089. [Google Scholar] [CrossRef]
- Huang, X.; Hong, S.H.; Yu, M.; Ding, Y.; Jiang, J. Demand Response Management for Industrial Facilities: A Deep Reinforcement Learning Approach. IEEE Access 2019, 7, 82194–82205. [Google Scholar] [CrossRef]
- Aguilar, J.; Bordons, C.; Arce, A. Chance Constraints and Machine Learning integration for uncertainty management in Virtual Power Plants operating in simultaneous energy markets. Int. J. Electr. Power Energy Syst. 2021, 133, 107304. [Google Scholar] [CrossRef]
- Krishna, G.; Singh, R.; Gehlot, A.; Akram, S.V.; Priyadarshi, N.; Twala, B. Digital Technology Implementation in Battery-Management Systems for Sustainable Energy Storage: Review, Challenges, and Recommendations. Electronics 2022, 11, 2695. [Google Scholar] [CrossRef]
- Wagner, F.; Milojevic-Dupont, N.; Franken, L.; Zekar, A.; Thies, B.; Koch, N.; Creutzig, F. Using explainable machine learning to understand how urban form shapes sustainable mobility. Transp. Res. Part D Transp. Environ. 2022, 111, 103442. [Google Scholar] [CrossRef]
- Bhuiyan, E.A.; Hossain, M.Z.; Muyeen, S.M.; Fahim, S.R.; Sarker, S.K.; Das, S.K. Towards next generation virtual power plant: Technology review and frameworks. Renew. Sustain. Energy Rev. 2021, 150, 111358. [Google Scholar] [CrossRef]
- Xiao, J.; Kong, X.; Jin, Q.; You, H.; Cui, K.; Zhang, Y. Demand-Responsive Virtual Power Plant Optimization Scheduling Method Based on Competitive Bidding Equilibrium. Energy Procedia 2018, 152, 1158–1163. [Google Scholar] [CrossRef]
- MacDougall, P.; Kosek, A.M.; Bindner, M.; Deconinck, G. Applying machine learning techniques for forecasting flexibility of virtual power plants. In Proceedings of the IEEE Electrical Power and Energy Conference (EPEC), Ottawa, ON, Canada, 12–14 October 2016; pp. 1–6. [Google Scholar]
- Kruse, J.; Schäfer, B.; Witthaut, D. Secondary control activation analysed and predicted with explainable AI. Electr. Power Syst. Res. 2022, 212, f108489. [Google Scholar] [CrossRef]
- Wu, B.; Dhammika Widanage, W.; Yang, S.; Liu, X. Battery digital twins: Perspectives on the fusion of models, data and artificial intelligence for smart battery management systems. Energy AI 2020, 1, 100016. [Google Scholar] [CrossRef]
- Barrett, D.H.; Haruna, A. Artificial intelligence and machine learning for targeted energy storage solutions. Curr. Opin. Electrochem. 2020, 21, 160–166. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, B.; Zou, X.; Li, Y.; Shi, S. Machine learning assisted materials design and discovery for rechargeable batteries. Energy Storage Mater. 2020, 31, 434–450. [Google Scholar] [CrossRef]
- Ahmed, M.; Zheng, Y.; Amine, A.; Fathiannasab, H.; Chen, Z. The role of artificial intelligence in the mass adoption of electric vehicles. Joule 2021, 5, 2296–2322. [Google Scholar] [CrossRef]
- Frendo, O.; Graf, J.; Gaertner, N.; Stuckenschmidt, H. Data-driven smart charging for heterogeneous electric vehicle fleets. Energy AI 2020, 1, 100007. [Google Scholar] [CrossRef]
- Qureshi, K.N.; Alhudhaif, A.; Jeon, G. Electric-vehicle energy management and charging scheduling system in sustainable cities and society. Sustain. Cities Soc. 2021, 71, 102990. [Google Scholar] [CrossRef]
- Bangert, P. (Ed.) Machine Learning and Data Science in the Power Generation Industry—Best Practices, Tools, and Case Studies; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Zhang, Y.; Huang, T.; Bompard, E.F. Big data analytics in smart grids: A review. Energy Inform. 2018, 1, 8. [Google Scholar] [CrossRef]
- Shin, W.; Han, J.; Rhee, W. AI-assistance for predictive maintenance of renewable energy systems. Energy 2021, 221, 119775. [Google Scholar] [CrossRef]
- De Benedetti, M.; Leonardi, F.; Messina, F.; Santoro, C.; Vasilakos, A. Anomaly detection and predictive maintenance for photovoltaic systems. Neurocomputing 2018, 310, 59–68. [Google Scholar] [CrossRef]
- Tian, Z.; Zhang, H. Wind farm predictive maintenance considering component level repairs and economic dependency. Renew. Energy 2022, 192, 495–506. [Google Scholar] [CrossRef]
- Cruz Garcia, M.; Sanz-Bobi, M.A.; Pico, J. SIMAP: Intelligent System for Predictive Maintenance: Application to the health condition monitoring of a windturbine gearbox. Comput. Ind. 2006, 57, 552–568. [Google Scholar] [CrossRef]
- Alsheryani, R.M.; Alkaabi, S.S.; Aldhaheri, A.M.; Khouri, F.I.; Alharmoodi, S.I.; Shadid, T.T.; Alhajeri, A.S. Applying Artificial Intelligence (AI) for Predictive Maintenance of Power Distribution Networks: A Case Study of Al Ain Distribution Company. In Proceedings of the 2019 International Conference on Electrical and Computing Technologies and Applications (ICECTA), Ras Al Khaimah, United Arab Emirates, 19–21 November 2019; pp. 1–5. [Google Scholar]
- Mellit, A.; Kalogirou, S.A.; Hontoria, L.; Shaari, S. Artificial intelligence techniques for sizing photovoltaic systems: A review. Renew. Sustain. Energy Rev. 2009, 13, 406–419. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, T.; Zhang, X.; Zhang, C. Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future. Renew. Sustain. Energy Rev. 2019, 109, 85–101. [Google Scholar] [CrossRef]
- Fahim, S.R.; Sarker, S.K.; Muyeen, S.M.; Das, S.K.; Kamwa, I. A deep learning based intelligent approach in detection and classification of transmission line faults. Int. J. Electr. Power Energy Syst. 2021, 133, 107102. [Google Scholar] [CrossRef]
- Boretti, A. Integration of solar thermal and photovoltaic, wind, and battery energy storage through AI in NEOM city. Energy AI 2021, 3, 100038. [Google Scholar] [CrossRef]
- Zekić-Sušac, M.; Mitrović, S.; Has, A. Machine learning based system for managing energy efficiency of public sector as an approach towards smart cities. Int. J. Inf. Manag. 2021, 58, 102074. [Google Scholar] [CrossRef]
- Frankenberger, K.; Weiblen, T.; Gassmann, O. Network configuration, customer centricity, and performance of open business models: A solution provider perspective. Ind. Mark. Manag. 2013, 42, 671–682. [Google Scholar] [CrossRef]
- Višković, A.; Franki, V. Value co-creation through a digital platform business model in the power sector. In Proceedings of the 44th International Convention on Information, Communication and Electronic Technology, MIPRO 2021, Opatija, Croatia, 27 September–1 October 2021; pp. 425–430. [Google Scholar]
- Sung, E.C.; Bae, S.; Han, D.-I.D.; Kwon, O. Consumer engagement via interactive artificial intelligence and mixed reality. Int. J. Inf. Manag. 2021, 60, 102382. [Google Scholar] [CrossRef]
- Servion Global Soutions. Artificial Intelligence Report. In Proceedings of the Smart Grid Conference (SGC), Tehran, Iran, 20–21 December 2017. [Google Scholar]
- Heinen, S.; Richards, P. Towards customer-centric energy utilities—A granular data-driven bottom-up approach to understanding energy customer trends. Electr. J. 2020, 33, 106836. [Google Scholar] [CrossRef]
- Libai, B.; Bart, Y.; Gensler, S.; Hofacker, C.F.; Kaplan, A.; Kötterheinrich, K.; Kroll, E.B. Brave New World? On AI and the Management of Customer Relationships. J. Interact. Mark. 2020, 51, 44–56. [Google Scholar] [CrossRef]
- Schweiger, G.; Eckerstorfer, L.V.; Hafner, I.; Fleischhacker, A.; Radl, J.; Glock, B.; Wastian, M.; Rößler, M.; Lettner, G.; Popper, N.; et al. Active consumer participation in smart energy systems. Energy Build. 2020, 227, 110359. [Google Scholar] [CrossRef]
- Jou, Y.-T.; Saflor, C.S.; Mariñas, K.A.; Young, M.N.; Prasetyo, Y.T.; Persada, S.F. Assessing Service Quality and Customer Satisfaction of Electric Utility Provider’s Online Payment System during the COVID-19 Pandemic: A Structural Modeling Approach. Electronics 2022, 11, 3646. [Google Scholar] [CrossRef]
- Nicolescu, L.; Tudorache, M.T. Human-Computer Interaction in Customer Service: The Experience with AI Chatbots—A Systematic Literature Review. Electronics 2022, 11, 1579. [Google Scholar] [CrossRef]
- Cisco. Internet of Things (IoT) Data Continues to Explode Exponentially. Who is Using that Data and How? 2018. Available online: https://blogs.cisco.com/datacenter/internet-of-things-iot-data-continues-to-explode-exponentially-who-is-using-that-data-and-how (accessed on 26 October 2021).
- Desjardins, J. How much data is generated in a day? World Economic Forum. 2019. Available online: https://www.weforum.org/agenda/2019/04/how-much-data-is-generated-each-day-cf4bddf29f (accessed on 26 October 2021).
- Statista. Internet of Things (IoT) Connected Devices Installed Base Worldwide from 2015 to 2025 (in Billions). Statista. 2018. Available online: https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/ (accessed on 26 October 2021).
- McKinsey. The State of AI in 2021; McKinsey: Chicago, IL, USA, 2021. [Google Scholar]
- Franki, V.; Višković, A. Multi-criteria decision support: A case study of Southeast Europe power systems. Util. Policy 2021, 73, 101286. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franki, V.; Majnarić, D.; Višković, A. A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector. Energies 2023, 16, 1077. https://doi.org/10.3390/en16031077
Franki V, Majnarić D, Višković A. A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector. Energies. 2023; 16(3):1077. https://doi.org/10.3390/en16031077
Chicago/Turabian StyleFranki, Vladimir, Darin Majnarić, and Alfredo Višković. 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector" Energies 16, no. 3: 1077. https://doi.org/10.3390/en16031077
APA StyleFranki, V., Majnarić, D., & Višković, A. (2023). A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector. Energies, 16(3), 1077. https://doi.org/10.3390/en16031077