Thermal Diffusivity in the Subsoil: A Case Study in the Asturias (Northern Spain)
Abstract
1. Introduction
2. Methodology and Results
2.1. Theoretical Background Section
- The ground surface is horizontal.
- The subsoil is composed of homogenous and isotropic layers.
- Subsoil temperature variations are a consequence of surface air temperature variations. Isotherms are horizontal.
- Heat flow is vertical.
- The air temperature Ta(t) as a function of time, t, can be described by a periodic function. This temperature is defined as a boundary condition to solve the main equation for conduction in the ground.
- Tm represents the average air temperature over period P,
- P denotes the period of the study,
- A0 indicates the amplitude of air temperature during period P,
- ω stands for the angular frequency of the periodic variation, satisfying ,
- signifies the sinusoidal oscillation delay from the surface ground temperature at the beginning of the measurement period.
- An exponential function independent of time, dependent on depth and ground characteristics. This expression defines the maximum amplitude of the temperature in the subsoil.
- A periodic function that considers time in addition to the parameters mentioned above. This function characterizes the delay of the maximum temperature change in the subsurface.
- Tmi is the average temperature at depth zi,
- A0,i is the amplitude at depth zi, which was previously referred to as Amax,i.
2.2. Site
2.3. Results
3. Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids, 2nd ed.; Oxford University Press: Oxford, UK, 1959. [Google Scholar]
- Correia, A.; Vieira, G.; Ramos, M. Thermal conductivity and thermal diffusivity of cores from a 26 m deep borehole drilled in Livingston Island, Maritime Antarctic. Geomorphology 2012, 155–156, 7–11. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, J.; Wang, J.; Huang, G. Estimation of soil and grout thermal properties for ground-coupled heat pump systems: Development and application. Appl. Therm. Eng. 2018, 143, 112–122. [Google Scholar] [CrossRef]
- Yoon, S.; Min-Jun, K. Prediction of ground thermal diffusivity from thermal response tests. Energy Build. 2019, 185, 239–246. [Google Scholar] [CrossRef]
- Karashbayeva, Z.; Berger, J.; Orlande, H.R.; Rysbaiuly, B. Estimation of ground thermal diffusivity using the conjugate gradient method with adjoint problem formulation. Urban Clim. 2023, 52, 101676. [Google Scholar] [CrossRef]
- Márquez, J.M.A.; Bohórquez, M.Á.M.; Melgar, S.G. Ground Thermal Diffusivity Calculation by Direct Soil Temperature Measurement. Application to very Low Enthalpy Geothermal Energy Systems. Sensors 2016, 16, 306. [Google Scholar] [CrossRef]
- Taylor, S.A.; Ashcroft, G.L. Physical Edaphology: The Physics of Irrigated and Nonirrigated Soils; W.H. Freeman and Co.: San Francisco, CA, USA, 1972. [Google Scholar]
- Hillel, D. Introduction to Soil Physics; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- De Vries, D.A.; Peck, A.J. On the Cylindrical Probe Method of Measuring Thermal Conductivity with Special Reference to Soils. II. Analysis of Moisture Effects. Aust. J. Phys. 1958, 11, 409. [Google Scholar] [CrossRef]
- Von Herzen, R.; Maxwell, A.E. The measurement of thermal conductivity of deep-sea sediments by a needle-probe method. J. Geophys. Res. 1959, 64, 1557–1563. [Google Scholar] [CrossRef]
- Beardsmore, G.; Cull, J. Crustal Heat Flow: A Guide to Measurement and Modelling; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Giordano, N.; Chicco, J.; Mandrone, G.; Verdoya, M.; Wheeler, W.H. Comparing transient and steady-state methods for the thermal conductivity characterization of a borehole heat exchanger field in Bergen, Norway. Environ. Earth Sci. 2019, 78, 460. [Google Scholar] [CrossRef]
- ASTM D5334-14; Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure. ASTM International: West Conshohocken, PA, USA, 2008.
- Bozzoli, F.; Pagliarini, G.; Rainieri, S.; Schiavi, L. Estimation of soil and grout thermal properties through a TSPEP (two-step parameter estimation procedure) applied to TRT (thermal response test) data. Energy 2011, 36, 839–846. [Google Scholar] [CrossRef]
- Spitler, J.D.; Gehlin, S.E. Thermal response testing for ground source heat pump systems—An historical review. Renew. Sustain. Energy Rev. 2015, 50, 1125–1137. [Google Scholar] [CrossRef]
- Li, M.; Lai, A.C. Parameter estimation of in-situ thermal response tests for borehole ground heat exchangers. Int. J. Heat Mass Transf. 2012, 55, 2615–2624. [Google Scholar] [CrossRef]
- Li, M.; Zhang, L.; Liu, G. Estimation of thermal properties of soil and backfilling material from thermal response tests (TRTs) for exploiting shallow geothermal energy: Sensitivity, identifiability, and uncertainty. Renew. Energy 2019, 132, 1263–1270. [Google Scholar] [CrossRef]
- Li, M.; Zhang, L.; Liu, G. Oscillatory thermal response tests to estimate the ground thermal diffusivity. Appl. Energy 2024, 353, 122078. [Google Scholar] [CrossRef]
- Carslaw, H.S.; Jaeger, J.C.; Feshbach, H. Conduction of heat in solids. Phys. Today 1962, 15, 74–76. [Google Scholar] [CrossRef]
- Kusuda, T.; Achenbach, P.R. Earth Temperature and Thermal Diffusivity at Selected Stations in United States. ASHRAE Trans 1965, 71, 61–74. [Google Scholar]
- Adams, W.M.; Watts, G.; Masson, G. Estimation of thermal diffusivity from field observations of temperature as a function of time and deep. Am. Miner. 1976, 61, 560–568. [Google Scholar]
- Horton, R.; Wierenga, P.J.; Nielsen, D.R. Evaluation of methods for determining the apparent thermal diffusivity of soil near the surface. Soil Sci. Soc. Am. J. 1983, 47, 25–32. [Google Scholar] [CrossRef]
- Costello, T.A. Apparent Thermal Diffusivity of Soil Determined by Analysis of Diurnal Temperatures (Fourier Series, Nonlinear Regression). Ph.D. Thesis, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA, USA, 1986. [Google Scholar]
- Nassar, I.N.; Horton, R. Determination of soil apparent thermal diffusivity from multiharmonic temperature analysis for nonuniform soils. Soil. Sci. 1990, 149, 125–130. [Google Scholar] [CrossRef]
- Hurley, S.; Wiltshire, R.J. Computing thermal diffusivity from soil temperature measurements. Comput. Geosci. 1993, 19, 475–477. [Google Scholar] [CrossRef]
- Xing, L.U. Estimations of Undisturbed Ground Temperatures Using Numerical and Analytical Modeling. Ph.D. Thesis, Oklahoma State University, Stillwater, OK, USA, 2014. [Google Scholar]
- Raymond, J.; Ballard, J.-M.; Pambou, K.C.H. Field assessment of a ground heat exchanger performance with a reduced borehole diameter. In Proceedings of the 70th Canadian Geotechnical Conference and the 12th Joint CGS/IAH-CNC Groundwater Conference, Ottawa, ON, Canada, 1–4 October 2017. [Google Scholar]
- Tong, B.; Gao, Z.; Horton, R.; Wang, L. Soil Apparent Thermal Diffusivity Estimated by Conduction and by Conduction–Convection Heat Transfer Models. J. Hydrometeorol. 2017, 18, 109–118. [Google Scholar] [CrossRef]
- Chacko, P.T.; Renuka, G. Temperature mapping, thermal diffusivity and subsoil heat flux at Kariavattom of Kerala. J. Earth Syst. Sci. 2002, 111, 79–85. [Google Scholar] [CrossRef]
- Williams, P.J.; Smith, M.W. The Frozen Earth; Cambridge University Press: Cambridge, UK, 1989; p. 306. [Google Scholar]
- Nerpin, S.V.; Chudnovskii, A.F. Soil Physics; Nauka: Moscow, Russia, 1967. [Google Scholar]
- Arias-Penas, D.; Castro-García, M.; Rey-Ronco, M.; Alonso-Sánchez, T. Determining the thermal diffusivity of the ground based on subsoil temperatures. Preliminary results of an experimental geothermal borehole study Q-THERMIE-UNIOVI. Geothermics 2015, 51, 35–42. [Google Scholar] [CrossRef]
- Rajeev, P.; Kodikara, J. Estimating apparent thermal diffusivity of soil using field temperature time series. Geomech. Geoengin. 2014, 11, 28–46. [Google Scholar] [CrossRef]
- Rey-Ronco, M.A.; Castro-García, M.P.; Marcos-Robredo, G.; Alonso-Sánchez, T. Study of shallow subsoil temperature and 490 its relationship to thermal diffusivity. Geothermics 2020, 86, 101821. [Google Scholar] [CrossRef]
- Rau, G.C.; Andersen, M.S.; McCallum, A.M.; Roshan, H.; Acworth, R.I. Heat as a tracer to quantify water flow in near-surface sediments. Earth-Sci. Rev. 2014, 129, 40–58. [Google Scholar] [CrossRef]
- SIGPAC. Visor SigPac V 4.13 (mapa.es). 2023. Available online: https://sigpac.mapa.es/fega/visor (accessed on 5 December 2023).
- Escudero, C.; Llamas, B.; Ordóñez, A.; Loredo, J.; Álvarez, R. Characterization of Proposed Reservoir and Seal Rocks for CO2 Geological Storage in the Asturian Mesozoic Sedimentary Basin (NW Spain). Energy Procedia 2014, 63, 4987–4998. [Google Scholar] [CrossRef][Green Version]
- Marcos-Robredo, G.; Rey-Ronco, M.Á.; Castro-García, M.P.; Alonso-Sánchez, T. A Device to Register Temperature in Boreholes in Northwest Spain for Geothermal Research. Sensors 2022, 22, 4945. [Google Scholar] [CrossRef]
- AEMET. Agencia Estatal de Meteorología. Gobierno de España. 2015. Available online: https://www.aemet.es/es/portada (accessed on 5 December 2023).
- Waples, D.W.; Waples, J.S. A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Part 1: Minerals and nonporous rocks. Nat. Resour. Res. 2004, 13, 97–122. [Google Scholar] [CrossRef]
Drilling | Method | Diameter | Depth |
Rotation with continuous drilling core | 125 mm | 52 m | |
Geothermal pipes | Type | Diameter outside tube | Diameter inner tube |
Coaxial | 50 mm | 25 mm | |
Geothermal backfill | Type | Trademarck | Model |
Grout composition: silica sand and sulfate-resistant cement enhanced with additives | Energrout | Energrout HD 2.3 |
SSE | RMSE | ||||
---|---|---|---|---|---|
5.224 | 4.84 | 0.4623 | 0.4623 | 0.4623 | 3.8560 |
3.86 (3.85, 3.85) | ||||||
2.19 (2.19, 2.18) | ||||||
1.32 (1.32, 1.32) | ||||||
0.81 (0.81, 0.81) | ||||||
0.53 (0.53, 0.53 | ||||||
0.33 (0.33, 0.33) | ||||||
0.14 (0.14, 0.14) |
1.67–3.86 | 1.056 | 1.037 | 0.9939 |
3.86–6.08 | 1.119 | 1.179 | 0.9934 |
6.08–8.23 | 1.148 | 1.103 | 0.9904 |
8.23–10.31 | 0.9317 | 1.152 | 0.9893 |
10.31–12.44 | 1.306 | 1.072 | 0.9764 |
12.44–14.55 | 1.281 | 1.285 | 0.9157 |
14.55–16.72 | 0.6234 | 1.031 | 0.4793 |
16.72–18.01 | 0.2542 | 0.5492 | 0.1553 |
RMSE | |||||
---|---|---|---|---|---|
1.67−3.86 | 1.51 × 10−6 (1.51 × 10−6, 1.52 × 10−6) | 1211 | 0.9938 | 0.9938 | 0.1147 |
3.86−6.08 | 1.81 × 10−6 (1.80 × 10−6, 1.81 × 10−6) | 513.7 | 0.993 | 0.993 | 0.07436 |
6.08−8.23 | 2.03 × 10−6 (2.03 × 10−6, 2.04 × 10−6) | 299.6 | 0.9902 | 0.9902 | 0.05679 |
12.44–14.55 | 0.64 × 10−6 (0.64 × 10−6, 0.64 × 10−6) | 76.49 | 0.9223 | 0.9223 | 0.029 |
RMSE | |||||
---|---|---|---|---|---|
8.23−10.31 | 1.51 × 10−06 (1.51 × 10−06, 1.52 × 10−6) | 152.7 | 0.9893 | 0.9938 | 0.1147 |
10.31−12.44 | 3.13 × 10−06 (3.11 × 10−06, 3.14 × 10−06) | 137.2 | 0.9764 | 0.993 | 0.07436 |
Sensor Depths (m) | SSE | R2 | Adjusted R2 | RMSE | |
---|---|---|---|---|---|
0.20 × 10−07 (0.19 × 10−07, 0.20 × 10−07) | 137.9 | 0.9763 | 0.9763 | 0.03853 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcos-Robredo, G.; Castro-García, M.P.; Rey-Ronco, M.Á.; Alonso-Sánchez, T. Thermal Diffusivity in the Subsoil: A Case Study in the Asturias (Northern Spain). Energies 2023, 16, 8108. https://doi.org/10.3390/en16248108
Marcos-Robredo G, Castro-García MP, Rey-Ronco MÁ, Alonso-Sánchez T. Thermal Diffusivity in the Subsoil: A Case Study in the Asturias (Northern Spain). Energies. 2023; 16(24):8108. https://doi.org/10.3390/en16248108
Chicago/Turabian StyleMarcos-Robredo, Germán, María Pilar Castro-García, Miguel Ángel Rey-Ronco, and Teresa Alonso-Sánchez. 2023. "Thermal Diffusivity in the Subsoil: A Case Study in the Asturias (Northern Spain)" Energies 16, no. 24: 8108. https://doi.org/10.3390/en16248108
APA StyleMarcos-Robredo, G., Castro-García, M. P., Rey-Ronco, M. Á., & Alonso-Sánchez, T. (2023). Thermal Diffusivity in the Subsoil: A Case Study in the Asturias (Northern Spain). Energies, 16(24), 8108. https://doi.org/10.3390/en16248108