Analysis for End-of-Life Solar Panel Generations by Renewable Energy Supply towards Carbon Neutrality in South Korea
Abstract
:1. Introduction
1.1. Literature Review
1.2. Novelty and Contribution
2. Methodology
2.1. Data Acquisition
2.2. Scenario Analysis
2.3. Estimation Model
2.4. Lifespan Prediction Ssing Weibull Distribution
3. Results and Discussion
3.1. Current PV Installation Trend
3.2. Projection of PV Installation Volume Using Scenarios
3.3. Estimation of Retired PV Modules
3.4. Resource Recovery Potentials by Recycling of Retired Solar Panels and Cost Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. Paris Agreement. 2020. Available online: https://www.un.org/sg/en/content/sg/articles/2020-12-11/carbon-neutrality-2050-the-world%E2%80%99s-most-urgent-mission (accessed on 29 August 2023).
- Climate Action Summit. 2019. Available online: https://www.un.org/en/climatechange/2019-climate-action-summit (accessed on 29 April 2023).
- Chatham House. China, EU and US Cooperation on Climate and Energy. 2021. Available online: https://www.chathamhouse.org/2021/03/china-eu-and-us-cooperation-climate-and-energy (accessed on 29 August 2023).
- European Commission. The European Green Deal. 2019. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_19_6691 (accessed on 29 April 2023).
- IMF. A New Vision for the US Climate Agenda. 2021. Available online: https://www.imf.org/en/Blogs/Articles/2021/03/10/blog-a-new-vision-for-the-us-climate-agenda (accessed on 29 April 2023).
- European Council. “Fit for 55”: Council Agrees on Higher Targets for Renewables and Energy Efficiency—Consilium. 2022. Available online: https://www.consilium.europa.eu/en/press/press-releases/2022/06/27/fit-for-55-council-agrees-on-higher-targets-for-renewables-and-energy-efficiency/ (accessed on 29 April 2023).
- US Energy Information Administration. EIA Projects That Renewable Generation Will Supply 44% of U.S. Electricity by 2050. 2022. Available online: https://www.eia.gov/todayinenergy/detail.php?id=51698 (accessed on 29 April 2023).
- SEIA. About Solar Energy. 2023. Available online: https://www.seia.org/initiatives/about-solar-energy (accessed on 29 April 2023).
- Jo, J.-H.; Seo-won, S.; Yu-seon, K. Management Status and Improvement Plans of Waste Solar Panels. Korea Environmental Research Institute. 2018. Available online: https://www.nkis.re.kr/subject_view1.do?otpId=OTP_0000000000000790&otpSeq=0#none (accessed on 6 November 2023).
- MOTIE Ministry of Trade. Industry and Energy, 9th Power Supply and Demand Plan. 2020. Available online: https://www.motie.go.kr/motie/ne/presse/press2/bbs/bbsView.do?bbs_seq_n=163670&bbs_cd_n=81 (accessed on 29 April 2023).
- Kim, J.; Seo, S.; Yoo, S. South Koreans’ willingness to pay price premium for electricity generated using domestic solar power facilities over that from imported ones. Solar Energy 2021, 224, 125–133. [Google Scholar] [CrossRef]
- Korean Law Information Center. Available online: https://www.law.go.kr/%EB%B2%95%EB%A0%B9/%EC%8B%A0%EC%97%90%EB%84%88%EC%A7%80%EB%B0%8F%EC%9E%AC%EC%83%9D%EC%97%90%EB%84%88%EC%A7%80%EA%B0%9C%EB%B0%9C%E3%86%8D%EC%9D%B4%EC%9A%A9%E3%86%8D%EB%B3%B4%EA%B8%89%EC%B4%89%EC%A7%84%EB%B2%95 (accessed on 29 August 2023).
- Lim, S. Waste Solar Panel Generation and Treatment Trend, 2019 Connectic Report; Ministry of Environment: Sejong, Republic of Korea, 2019.
- Kim, M.K.; Cho, H.-M.; Nam, H.J. A Study on End of Life Management of PV Panels for Seoul, the Seoul Institute. 2019. Available online: https://www.si.re.kr/node/64171 (accessed on 30 November 2023).
- Tan, V.; Dias, P.R.; Chang, N.; Deng, R. Estimating the Lifetime of Solar Photovoltaic Modules in Australia. Sustainability 2022, 14, 5336. [Google Scholar] [CrossRef]
- Peeters, J.R.; Altamirano, D.; Dewulf, W.; Duflou, J.R. Forecasting the composition of emerging waste streams with sensitivity analysis: A case study for photovoltaic (PV) panels in Flanders. Resour. Conserv. Recycl. 2017, 120, 14–26. [Google Scholar] [CrossRef]
- Zhang, L.; Chang, S.; Wang, Q.; Zho, D. Projection of Waste Photovoltaic Modules in China Considering Multiple Scenarios. Sustain. Prod. Consum. 2022, 33, 412–424. [Google Scholar] [CrossRef]
- Wang, C.; Feng, K.; Liu, X.; Wang, P.; Chen, W.-Q.; Li, J. Looming challenge of photovoltaic waste under China’s solar ambition: A spatial–temporal assessment. Appl. Energy 2022, 307, 118186. [Google Scholar] [CrossRef]
- Korea Institute of Energy Research. A Research on Photovoltaic Module Recycling System Development; Korea Institute of Energy Research: Daejeon, Republic of Korea, 2015; pp. 118–144. [Google Scholar]
- Mo, J.Y.; Kim, M.J. Renewable Energy Promotion Plans Using Waste Management System Establishment; KIET Research Report 2017-825; KIET: Sejong City, Republic of Korea, 2017; pp. 1–181. [Google Scholar]
- Korea Photovoltaic Industry Association. Research on Laying the Foundation for the Solar Panel Recovery and Recycling System; Korea Photovoltaic Industry Association: Seoul, Republic of Korea, 2020. [Google Scholar]
- Korea Environment Corporation. Establishment of Future Waste Resource Recovery and Recycling System—Part 2; Korea Environment Corporation: Incheon, Republic of Korea, 2021. [Google Scholar]
- Padoan, F.C.S.M.; Altimari, P.; Pagnanelli, F. Recycling of End of Life Photovoltaic Panels: A Chemical Prospective on Process Development. Sol. Energy 2019, 177, 746–761. [Google Scholar] [CrossRef]
- Strachala, D.; Hylský, J.; Vanĕk, J.; Fafilek, G.; Jandová, K. Methods for Recycling Photovoltaic Modules and Their Impact on Environment and Raw Material Extraction. Acta Montan. Slovaca 2017, 22, 257–269. Available online: https://actamont.tuke.sk/pdf/2017/n3/4strachala.pdf (accessed on 29 April 2023).
- Murakami, S.; Yamamoto, H.; Toyota, T. Potential Impact of Consumer Intention on Generation of Waste Photovoltaic Panels: A Case Study for Tokyo. Sustainability 2021, 13, 10507. [Google Scholar] [CrossRef]
- Nehme, B.; M’Sirdi, N.K.; Akiki, T.; Naamane, A.; Zeghondy, B. Chapter 2—Photovoltaic panels life span increase by control. Predictive Modelling for Energy Management and Power Systems Engineering; Elsevier: Amsterdam, The Netherlands, 2021; pp. 27–62. [Google Scholar] [CrossRef]
- Weibull.com. Available online: https://www.weibull.com/basics/lifedata.htm (accessed on 30 March 2023).
- Weckend, S.; Wade, A.; Heath, G.A. End-of-Life Management. Solar Photovoltaic Panels; International Renewable Energy Agency and (IEA-PVPS) International Energy Agency Photovoltaic Power Systems: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Q.; Liu, L. Estimation of photovoltaic waste spatial-temporal distribution by 2060 in the context of carbon neutrality. Environ. Sci. Pollut. Res. 2023, 30, 34840–34855. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Fu, L. Research on photovoltaic modules waste prediction in China. Environ Eng 2020, 38, 214–220. [Google Scholar]
- Mahmoudi, S.; Huda, N.; Behnia, M. Photovoltaic waste assessment: Forecasting and screening of emerging waste in Australia. Resour. Conserv. Recycl. 2019, 146, 192–205. [Google Scholar] [CrossRef]
- Santos, J.; Alonso-García, M. Projection of the photovoltaic waste in Spain until 2050. J. Clean. Prod. 2018, 196, 1613–1628. [Google Scholar] [CrossRef]
- Kim, H.; Park, H. PV Waste Management at the Crossroads of Circular Economy and Energy Transition: The Case of South Korea. Sustainability 2018, 10, 3565. [Google Scholar] [CrossRef]
- Distribution Statistical Power Generation. Korea Energy Agency New and Renewable Energy Center. Available online: https://www.knrec.or.kr/biz/statistics/supply/supply02_01_list.do (accessed on 6 November 2023).
- Kim, S.; Oguchi, M.; Yoshida, A.; Terazono, A. Estimating the amount of WEEE generated in South Korea by using the population balance model. Waste Manag. 2013, 33, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Kuitsche, J. Statistical Lifetime Predictions for PV Modules, Presentation. 2010. Available online: www1.eere.energy.gov/solar/pdfs/pvrw2010_kuitche.pdf (accessed on 29 April 2023).
- Kumar, S.; Sarkar, B. Design for Reliability with Weibull Analysis for Photovoltaic Modules. Int. J. Curr. Eng. Technol. 2013, 3, 129–134. Available online: https://inpressco.com/wp-content/uploads/2013/02/Paper18129-134.pdf (accessed on 29 April 2023).
- Marwede, M.; Berger, W.; Schlummer, M.; Mäurer, A.; Reller, A. Recycling paths for thin-film chalcogenide photovoltaic waste—Current feasible processes. Renew. Energy 2013, 55, 220–229. [Google Scholar] [CrossRef]
- Zimmermann, T. Dynamic Material Flow Analysis of Critical Metals Embodied in Thin-film Photovoltaic Cells Artec Forschungszentrum Nachhaltigkeit (Sustainability Research Centre), Artec-paper Nr. 194, Bremen. 2013. Available online: https://nbn-resolving.org/urn:nbn:de:0168-ssoar-58717-1 (accessed on 29 April 2023).
- REN21. Renewables Global Status Report 2021. 2021. Available online: https://www.ren21.net/wp-content/uploads/2019/05/GSR2021_Full_Report.pdf (accessed on 29 April 2023).
- IRENA STAT. Available online: https://www.irena.org/Data/Downloads/IRENASTAT (accessed on 6 November 2023).
- China Briefing. Available online: https://www.china-briefing.com/news/chinas-demographic-shift-how-population-decline-will-impact-doing-business-in-the-country/#:~:text=The%20UN’s%20demographic%20modeling%20reveals,below%20800%20million%20by%202100 (accessed on 6 November 2023).
- U.S. Population and Projection (1790–2050) Infographic. Available online: https://populationeducation.org/resource/u-s-population-and-projection-1790-2050-infographic/#:~:text=The%20population%20of%20the%20United%20States%20in%202020%20is%20332,from%20the%20U.S.%20Census%20Bureau (accessed on 6 November 2023).
- World Population of Japan. Available online: https://www.theworldcounts.com/populations/countries/japan (accessed on 6 November 2023).
- India News. Available online: https://www.ndtv.com/india-news/indias-population-expected-to-rise-till-2050-and-then-decline-un-3961880 (accessed on 6 November 2023).
- Total Population of the EU Member States in 2022 and 2050. Available online: https://www.statista.com/statistics/253383/total-population-of-the-eu-member-states-by-country/#:~:text=In%202050%2C%20approximately%2079.8%20million,population%20figures%20for%20more%20information (accessed on 6 November 2023).
- Song, G.; Lu, Y.; Liu, B.; Duan, H.; Feng, H.; Liu, G. Photovoltaic panel waste assessment and embodied material flows in China, 2000–2050. J. Environ. Manag. 2023, 338, 117675. [Google Scholar] [CrossRef] [PubMed]
- Calì, M.; Hajji, B.; Nitto, G.; Acri, A. The Design Value for Recycling End-of-Life Photovoltaic Panels. Appl. Sci. 2022, 12, 9092. [Google Scholar] [CrossRef]
- Abdo, D.M.; El-Shazly, A.N.; Medici, F. Recovery of valuable materials from end-of-life photovoltaic solar panels. Materials 2023, 16, 2840. [Google Scholar] [CrossRef] [PubMed]
References | Year | kg/kW |
---|---|---|
Jo et al. [9] | 100 | |
Korea Institute of Energy Technology [19] | 100 | |
Jung Youn Mo & Min Ji Kim [20] | 74.4 | |
Korea Photovoltaic Industry Association [21] | ~2000 | 114.6 |
2001~2010 | 88.7 | |
2011~ | 73.3 | |
Korea Environment Corporation [22] | ~2000 | 114.6 |
2001~2010 | 88.7 | |
2011~2020 | 73.3 | |
2021~ | 55.4 | |
Song-taek Lim [13] | 2003~2010 | 100 |
2010~2015 | 80 | |
2016~2020 | 65 | |
2020~ | 50 |
Country | 2030 | 2035 | 2040 | 2045 | 2050 | |
---|---|---|---|---|---|---|
China [25] | 1500 | - | 7000 | - | 19,900 | |
USA [25] | 1000 | - | 4000 | - | 10,000 | |
Japan [25] | 1000 | - | 3500 | - | 7600 | |
India [25] | 325 | - | 2300 | - | 7500 | |
Germany [25] | 1000 | - | 2600 | - | 4300 | |
Korea [25] | 150 | - | 820 | - | 2300 | |
Korea Environment Corporation [22] | 63 | 140 | 470 | - | - | |
Lim [13] | 77 | 228 | 448 | 814 | 2300 | |
This study | S1 | 158 | 358 | 670 | 1095 | 1636 |
S2 | 168 | 408 | 820 | 1444 | 2331 | |
S3 | 172 | 438 | 932 | 1768 | 3146 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-H.; Jang, Y.-C. Analysis for End-of-Life Solar Panel Generations by Renewable Energy Supply towards Carbon Neutrality in South Korea. Energies 2023, 16, 8039. https://doi.org/10.3390/en16248039
Lee S-H, Jang Y-C. Analysis for End-of-Life Solar Panel Generations by Renewable Energy Supply towards Carbon Neutrality in South Korea. Energies. 2023; 16(24):8039. https://doi.org/10.3390/en16248039
Chicago/Turabian StyleLee, Su-Hee, and Yong-Chul Jang. 2023. "Analysis for End-of-Life Solar Panel Generations by Renewable Energy Supply towards Carbon Neutrality in South Korea" Energies 16, no. 24: 8039. https://doi.org/10.3390/en16248039
APA StyleLee, S. -H., & Jang, Y. -C. (2023). Analysis for End-of-Life Solar Panel Generations by Renewable Energy Supply towards Carbon Neutrality in South Korea. Energies, 16(24), 8039. https://doi.org/10.3390/en16248039