Dibenzofulvene Derivatives as Promising Materials for Photovoltaic and Organic Electronics
Abstract
:1. Introduction
2. Synthesis
3. Thermal Properties
4. DFT Calculations
5. Redox Behavior
6. Optical Properties
7. Device Characteristics
7.1. Dibenzofulvene Derivatives as Dyes for Dye-Sensitized Solar Cells (DSSCs)
7.2. Dibenzofulvene Derivatives as Hole Transport Materials (HTMs) in Perovskite Solar Cells (PSCs)
7.3. Other Uses of Dibenzofulvene Derivatives
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Szlapa-Kula, A.; Kula, S. Progress on Phenanthroimidazole Derivatives for Light-Emitting Electrochemical Cells: An Overview. Energies 2023, 16, 5194. [Google Scholar] [CrossRef]
- Santillán, O.S.; Cedano, K.G. Energy Literacy: A Systematic Review of the Scientific Literature. Energies 2023, 16, 7235. [Google Scholar] [CrossRef]
- Rusănescu, C.O.; Rusănescu, M.; Istrate, I.A.; Constantin, G.A.; Begea, M. The Effect of Dust Deposition on the Performance of Photovoltaic Panels. Energies 2023, 16, 6794. [Google Scholar] [CrossRef]
- Milewska, B.; Milewski, D. The Impact of Energy Consumption Costs on the Profitability of Production Companies in Poland in the Context of the Energy Crisis. Energies 2023, 16, 6519. [Google Scholar] [CrossRef]
- Mohammad, A.K.; Garrod, A.; Ghosh, A. Do Building Integrated Photovoltaic (BIPV) Windows Propose a Promising Solution for the Transition toward Zero Energy Buildings? A Review. J. Build. Eng. 2023, 79, 107950. [Google Scholar] [CrossRef]
- Dada, M.; Popoola, P. Recent Advances in Solar Photovoltaic Materials and Systems for Energy Storage Applications: A Review. Beni-Suef Univ. J. Basic Appl. Sci. 2023, 12, 66. [Google Scholar] [CrossRef]
- Li, X.; Yu, H.; Liu, Z.; Huang, J.; Ma, X.; Liu, Y.; Sun, Q.; Dai, L.; Ahmad, S.; Shen, Y.; et al. Progress and Challenges Toward Effective Flexible Perovskite Solar Cells. Nano-Micro Lett. 2023, 15, 206. [Google Scholar] [CrossRef]
- Kumar, P.; You, S.; Vomiero, A. Recent Progress in Materials and Device Design for Semitransparent Photovoltaic Technologies. Adv. Energy Mater. 2023, 13, 2301555. [Google Scholar] [CrossRef]
- Liu, J.; Ye, T.; Yu, D.; Liu, S.; Yang, D. Recoverable Flexible Perovskite Solar Cells for Next-Generation Portable Power Sources. Angew. Chem. Int. Ed. 2023, 62, e202307225. [Google Scholar] [CrossRef]
- Maalouf, A.; Okoroafor, T.; Jehl, Z.; Babu, V.; Resalati, S. A Comprehensive Review on Life Cycle Assessment of Commercial and Emerging Thin-Film Solar Cell Systems. Renew. Sustain. Energy Rev. 2023, 186, 113652. [Google Scholar] [CrossRef]
- Sugiura, T.; Nakano, N. Review: Numerical Simulation Approaches of crystalline-Si Photovoltaics. Energy Sci. Eng. 2023, 11, 3888–3906. [Google Scholar] [CrossRef]
- Diouf, B.; Muley, A.; Pode, R. Issues, Challenges, and Future Perspectives of Perovskites for Energy Conversion Applications. Energies 2023, 16, 6498. [Google Scholar] [CrossRef]
- Sayed, E.; Olabi, A.; Alami, A.; Radwan, A.; Mdallal, A.; Rezk, A.; Abdelkareem, M. Renewable Energy and Energy Storage Systems. Energies 2023, 16, 1415. [Google Scholar] [CrossRef]
- Bei, Q.; Zhang, B.; Wang, K.; Zhang, S.; Xing, G.; Cabanetos, C. Benzothiadiazole-Based Materials for Organic Solar Cells. Chin. Chem. Lett. 2024, 35, 108438. [Google Scholar] [CrossRef]
- Rafique, S.; Abdullah, S.M.; Sulaiman, K.; Iwamoto, M. Fundamentals of Bulk Heterojunction Organic Solar Cells: An Overview of Stability/Degradation Issues and Strategies for Improvement. Renew. Sustain. Energy Rev. 2018, 84, 43–53. [Google Scholar] [CrossRef]
- Schoden, F.; Dotter, M.; Knefelkamp, D.; Blachowicz, T.; Schwenzfeier Hellkamp, E. Review of State of the Art Recycling Methods in the Context of Dye Sensitized Solar Cells. Energies 2021, 14, 3741. [Google Scholar] [CrossRef]
- Grifoni, F.; Bonomo, M.; Naim, W.; Barbero, N.; Alnasser, T.; Dzeba, I.; Giordano, M.; Tsaturyan, A.; Urbani, M.; Torres, T.; et al. Toward Sustainable, Colorless, and Transparent Photovoltaics: State of the Art and Perspectives for the Development of Selective Near-Infrared Dye-Sensitized Solar Cells. Adv. Energy Mater. 2021, 11, 2101598. [Google Scholar] [CrossRef]
- Bodedla, G.B.; Zhu, X.; Zhou, Z.; Wong, W.-Y. Small Molecules Containing Amphoteric Imidazole Motifs as Sensitizers for Dye-Sensitized Solar Cells: An Overview. Top. Curr. Chem. Z 2022, 380, 49. [Google Scholar] [CrossRef]
- Al-Ahmed, A.; Afzaal, M.; Mahar, N.; Khan, F.; Pandey, S.; Zahir, M.H.; Al-Suliman, F.A. The Synergy of Lead Chalcogenide Nanocrystals in Polymeric Bulk Heterojunction Solar Cells. ACS Omega 2022, 7, 45981–45990. [Google Scholar] [CrossRef]
- Göhler, C.; Deibel, C. The Role of Dynamic and Static Disorder for Charge-Transfer States in Organic Bulk Heterojunction Solar Cells. ACS Energy Lett. 2022, 7, 2156–2164. [Google Scholar] [CrossRef]
- Xie, Y.; Lu, H.; Huang, J.; Xie, H. Natural Materials for Sustainable Organic Solar Cells: Status and Challenge. Adv. Funct. Mater. 2023, 33, 2213910. [Google Scholar] [CrossRef]
- Solak, E.K.; Irmak, E. Advances in Organic Photovoltaic Cells: A Comprehensive Review of Materials, Technologies, and Performance. RSC Adv. 2023, 13, 12244–12269. [Google Scholar] [CrossRef] [PubMed]
- Mohamed El Amine, B.; Zhou, Y.; Li, H.; Wang, Q.; Xi, J.; Zhao, C. Latest Updates of Single-Junction Organic Solar Cells up to 20% Efficiency. Energies 2023, 16, 3895. [Google Scholar] [CrossRef]
- Tarique, W.B.; Uddin, A. A Review of Progress and Challenges in the Research Developments on Organic Solar Cells. Mater. Sci. Semicond. Process. 2023, 163, 107541. [Google Scholar] [CrossRef]
- Ebenezer Anitha, A.; Dotter, M. A Review on Liquid Electrolyte Stability Issues for Commercialization of Dye-Sensitized Solar Cells (DSSC). Energies 2023, 16, 5129. [Google Scholar] [CrossRef]
- Najm, A.S.; Alwash, S.A.; Sulaiman, N.H.; Chowdhury, M.S.; Techato, K. N719 Dye as a Sensitizer for Dye-sensitized Solar Cells (DSSCs): A Review of Its Functions and Certain Rudimentary Principles. Environ. Prog. Sustain. Energy 2023, 42, e13955. [Google Scholar] [CrossRef]
- Baumeler, T.; Saleh, A.A.; Wani, T.A.; Huang, S.; Jia, X.; Bai, X.; Abdi-Jalebi, M.; Arora, N.; Grätzel, M.; Dar, M.I. Champion Device Architectures for Low-Cost and Stable Single-Junction Perovskite Solar Cells. ACS Mater. Lett. 2023, 5, 2408–2421. [Google Scholar] [CrossRef]
- Han, C.; Xiao, X.; Zhang, W.; Gao, Q.; Qi, J.; Liu, J.; Xiang, J.; Cheng, Y.; Du, J.; Qiu, C.; et al. Impact and Role of Epitaxial Growth in Metal Halide Perovskite Solar Cells. ACS Mater. Lett. 2023, 5, 2445–2463. [Google Scholar] [CrossRef]
- Wei, Y.; Lan, C.; Zhou, S.; Li, C. Recent Advances in Photodetectors Based on Two-Dimensional Material/Si Heterojunctions. Appl. Sci. 2023, 13, 11037. [Google Scholar] [CrossRef]
- Moineau-Chane Ching, K.I. Impact of Alkyl-Based Side Chains in Conjugated Materials for Bulk Heterojunction Organic Photovoltaic Cells—A Review. Energies 2023, 16, 6639. [Google Scholar] [CrossRef]
- Beaupré, S.; Boudreault, P.T.; Leclerc, M. Solar-Energy Production and Energy-Efficient Lighting: Photovoltaic Devices and White-Light-Emitting Diodes Using Poly(2,7-fluorene), Poly(2,7-carbazole), and Poly(2,7-dibenzosilole) Derivatives. Adv. Mater. 2010, 22, E6–E27. [Google Scholar] [CrossRef] [PubMed]
- Tigreros, A.; Rivera-Nazario, D.M.; Ortiz, A.; Martin, N.; Insuasty, B.; Echegoyen, L.A. Fluoren-9-ylidene-Based Dyes for Dye-Sensitized Solar Cells. Eur. J. Org. Chem. 2015, 2015, 5537–5545. [Google Scholar] [CrossRef]
- Capodilupo, A.-L.; Giannuzzi, R.; Corrente, G.A.; De Marco, L.; Fabiano, E.; Cardone, A.; Gigli, G.; Ciccarella, G. Synthesis and Photovoltaic Performance of Dibenzofulvene-Based Organic Sensitizers for DSSC. Tetrahedron 2016, 72, 5788–5797. [Google Scholar] [CrossRef]
- Gopikrishna, P.; Iyer, P.K. Monosubstituted Dibenzofulvene-Based Luminogens: Aggregation-Induced Emission Enhancement and Dual-State Emission. J. Phys. Chem. C 2016, 120, 26556–26568. [Google Scholar] [CrossRef]
- Beneduci, A.; Corrente, G.A.; Fabiano, E.; Maltese, V.; Cospito, S.; Ciccarella, G.; Chidichimo, G.; Gigli, G.; Capodilupo, A.-L. Orthogonal Electronic Coupling in Multicentre Arylamine Mixed-Valence Compounds Based on a Dibenzofulvene–Thiophene Conjugated Bridge. Chem. Commun. 2017, 53, 8960–8963. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhang, Q. Recent Progress in Non-Fullerene Small Molecule Acceptors in Organic Solar Cells (OSCs). J. Mater. Chem. C 2017, 5, 1275–1302. [Google Scholar] [CrossRef]
- Kasparavicius, E.; Magomedov, A.; Malinauskas, T.; Getautis, V. Long-Term Stability of the Oxidized Hole-Transporting Materials Used in Perovskite Solar Cells. Chem. A Eur. J. 2018, 24, 9910–9918. [Google Scholar] [CrossRef]
- Corrente, G.A.; Fabiano, E.; Manni, F.; Chidichimo, G.; Gigli, G.; Beneduci, A.; Capodilupo, A.-L. Colorless to All-Black Full-NIR High-Contrast Switching in Solid Electrochromic Films Prepared with Organic Mixed Valence Systems Based on Dibenzofulvene Derivatives. Chem. Mater. 2018, 30, 5610–5620. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Huang, G.-W.; Chang, Y.-J.; Wen, J.-J. Branched Dibenzofulvene-Based Organic Dyes for Dye-Sensitized Solar Cells under One Sun and Dim Light. J. Mater. Sci. Mater. Electron. 2019, 30, 12981–12991. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Li, Y.-H.; Chung, C.-L.; Hsu, H.-L.; Chen, C.-P. Triphenylamine Dibenzofulvene–Derived Dopant-free Hole Transporting Layer Induces Micrometer-sized Perovskite Grains for Highly Efficient near 20% for P-i-n Perovskite Solar Cells. Prog. Photovolt. 2020, 28, 49–59. [Google Scholar] [CrossRef]
- Lin, H.-C.; Chen, L.-Y.; Lu, C.-C.; Lai, J.-Y.; Chen, Y.-C.; Hung, Y.-J. Ambipolar Carrier Transport Properties of Triphenylamine/Dibenzofulvene Derivative and Its Application for Efficient n-i-p Perovskite Solar Cells. Org. Electron. 2021, 95, 106200. [Google Scholar] [CrossRef]
- Sonina, A.A.; Becker, C.S.; Kuimov, A.D.; Shundrina, I.K.; Komarov, V.Y.; Kazantsev, M.S. Alkyl-Substituted Bis(4-((9 H -Fluoren-9-Ylidene)Methyl)Phenyl)Thiophenes: Weakening of Intermolecular Interactions and Additive-Assisted Crystallization. CrystEngComm 2021, 23, 2654–2664. [Google Scholar] [CrossRef]
- Capodilupo, A.-L.; Fabiano, E.; Franco, L.; Gambino, S.; Leoncini, M.; Accorsi, G.; Gigli, G. Control of Electron Transfer Processes in Multidimensional Arylamine-Based Mixed-Valence Compounds by Molecular Backbone Design. J. Phys. Chem. A 2021, 125, 7840–7851. [Google Scholar] [CrossRef] [PubMed]
- Giangregorio, M.M.; Gambino, S.; Fabiano, E.; Leoncini, M.; Cardone, A.; Corrente, G.A.; Beneduci, A.; Accorsi, G.; Gigli, G.; Losurdo, M.; et al. Synthesis and Investigation of Electro-Optical Properties of H-Shape Dibenzofulvene Derivatives. Molecules 2022, 27, 1091. [Google Scholar] [CrossRef]
- Nagar, M.R.; Choudhury, A.; Tavgeniene, D.; Beresneviciute, R.; Blazevicius, D.; Jankauskas, V.; Kumar, K.; Banik, S.; Ghosh, S.; Grigalevicius, S.; et al. Solution-Processable Phenothiazine and Phenoxazine Substituted Fluorene Cored Nanotextured Hole Transporting Materials for Achieving High-Efficiency OLEDs. J. Mater. Chem. C 2022, 10, 3593–3608. [Google Scholar] [CrossRef]
- Lin, S.-C.; Cheng, T.-H.; Chen, C.-P.; Chen, Y.-C. Structural Effect on Triphenylamine Dibenzofulvene Based Interfacial Hole Transporting Materials for High-Performance Inverted Perovskite Solar Cells. Mater. Chem. Phys. 2022, 288, 126385. [Google Scholar] [CrossRef]
- Das, A.S.; Nair, A.R.; Sreekumar, A.; Sivan, A. Approaches to Obtaining Fluorenes: An Alternate Perspective. ChemistrySelect 2022, 7, e202201097. [Google Scholar] [CrossRef]
- Mandati, S.; Juneja, N.; Katerski, A.; Jegorovė, A.; Grzibovskis, R.; Vembris, A.; Dedova, T.; Spalatu, N.; Magomedov, A.; Karazhanov, S.; et al. 4.9% Efficient Sb2S3 Solar Cells from Semitransparent Absorbers with Fluorene-Based Thiophene-Terminated Hole Conductors. ACS Appl. Energy Mater. 2023, 6, 3822–3833. [Google Scholar] [CrossRef]
- Sholihah, N.; Cheng, H.-C.; Wang, J.-C.; Ni, J.-S.; Yu, Y.-Y.; Chen, C.-P.; Chen, Y.-C. Passivation of Inverted Perovskite Solar Cells by Trifluoromethyl-Group-Modified Triphenylamine Dibenzofulvene Hole Transporting Interfacial Layers. J. Phys. Chem. C 2023, 127, 6167–6178. [Google Scholar] [CrossRef]
- Kotowicz, S.; Tavgeniene, D.; Beresneviciute, R.; Zaleckas, E.; Krucaite, G.; Katarzyna Pająk, A.; Korzec, M.; Grzegorz Małecki, J.; Lipiński, M.; Grigalevicius, S.; et al. Effect of Substituent Structure in Fluorene Based Compounds: Experimental and Theoretical Study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 300, 122832. [Google Scholar] [CrossRef]
- Wu, K.; Zheng, Y.; Chen, R.; Zhou, Z.; Liu, S.; Shen, Y.; Zhang, Y. Advances in Electrochemiluminescence Luminophores Based on Small Organic Molecules for Biosensing. Biosens. Bioelectron. 2023, 223, 115031. [Google Scholar] [CrossRef] [PubMed]
- Suman; Kovvuri, J.; Islavath, N. Molecular Modifications in Fluorene Core for Efficient Organic Photovoltaic Cells. J. Photochem. Photobiol. A Chem. 2024, 446, 115162. [Google Scholar] [CrossRef]
- He, X.; Yin, L.; Li, Y. Efficient Design and Structural Modifications for Tuning the Photoelectric Properties of Small-Molecule Acceptors in Organic Solar Cells. New J. Chem. 2019, 43, 6577–6586. [Google Scholar] [CrossRef]
- Göbel, D.; Clamor, N.; Nachtsheim, B.J. Regioselective Ortho-Functionalization of Bromofluorenecarbaldehydes Using TMPMgCl·LiCl. Org. Biomol. Chem. 2018, 16, 4071–4075. [Google Scholar] [CrossRef] [PubMed]
- Reger, D.; Haines, P.; Amsharov, K.Y.; Schmidt, J.A.; Ullrich, T.; Bönisch, S.; Hampel, F.; Görling, A.; Nelson, J.; Jelfs, K.E.; et al. A Family of Superhelicenes: Easily Tunable, Chiral Nanographenes by Merging Helicity with Planar π Systems. Angew. Chem. Int. Ed 2021, 60, 18073–18081. [Google Scholar] [CrossRef]
- Lemasson, F.; Berton, N.; Tittmann, J.; Hennrich, F.; Kappes, M.M.; Mayor, M. Polymer Library Comprising Fluorene and Carbazole Homo- and Copolymers for Selective Single-Walled Carbon Nanotubes Extraction. Macromolecules 2012, 45, 713–722. [Google Scholar] [CrossRef]
- Zhang, G.-F.; Aldred, M.P.; Chen, Z.-Q.; Chen, T.; Meng, X.; Zhu, M.-Q. Efficient green-red piezofluorochromism of bisanthracene-modified dibenzofulvene. RSC Adv. 2015, 5, 1079–1082. [Google Scholar] [CrossRef]
- Cunha, C.; Peixoto, M.S.; Santos, J.; Abreu, P.E.; Paixão, J.A.; Pineiro, M.; Seixas de Melo, J.S. Practical Design of 3,6-Di-tert-butyldiphenyldibenzofulvene Derivatives with Enhanced Aggregation-Induced Emission. ACS Appl. Opt. Mater. 2023, 1, 340–353. [Google Scholar] [CrossRef]
- Nakano, T.; Takewaki, K.; Yade, T.; Okamoto, Y. Dibenzofulvene, a 1,1-Diphenylethylene Analogue, Gives a π-Stacked Polymer by Anionic, Free-Radical, and Cationic Catalysts. J. Am. Chem. Soc. 2001, 123, 9182–9183. [Google Scholar] [CrossRef]
- Nakano, T.; Yade, T.; Fukuda, Y.; Yamaguchi, T.; Okumura, S. Free-Radical Polymerization of Dibenzofulvene Leading to a π-Stacked Polymer: Structure and Properties of the Polymer and Proposed Reaction Mechanism. Macromolecules 2005, 38, 8140–8148. [Google Scholar] [CrossRef]
- Nakano, T.; Yade, T. Synthesis, Structure, and Photophysical and Electrochemical Properties of a π-Stacked Polymer. J. Am. Chem. Soc. 2003, 125, 15474–15484. [Google Scholar] [CrossRef]
- Nakano, T. Synthesis and Properties of π-Stacked Vinyl Polymers. In π-Stacked Polymers and Molecules; Springer: Japan, Tokyo, 2014; pp. 1–49. [Google Scholar]
- Nakano, T.; Nakagawa, O.; Yade, T.; Okamoto, Y. Solid-State Polymerization of Dibenzofulvene Leading to a Copolymer with Oxygen. Macromolecules 2003, 36, 1433–1435. [Google Scholar] [CrossRef]
- Wong, M.Y.; Leung, L.M. A Comprehensive Study of Substituent Effects on Poly(Dibenzofulvene)s. New J. Chem. 2017, 41, 512–520. [Google Scholar] [CrossRef]
- Luo, J.; Wang, Y.; Nakano, T. Free-Radical Copolymerization of Dibenzofulvene with (Meth)Acrylates Leading to π-Stacked Copolymers. Polymers 2018, 10, 654. [Google Scholar] [CrossRef]
- Eakins, G.L.; Cooper, M.W.; Gerasimchuk, N.N.; Phillips, T.J.; Breyfogle, B.E.; Stearman, C.J. Structural Influences Impacting the Role of the 9-Ylidene Bond in the Electronic Tuning of Structures Built upon 9-Fluorenylidene Scaffolds. Can. J. Chem. 2013, 91, 1059–1071. [Google Scholar] [CrossRef]
- Rault-Berthelot, J.; Le Deit, H.; Massaoudi, M.; Simonet, J. Anodic Oxidation of 9,9′-Bifluorenylidene: Electrochemical Behaviour and Physicochemical Properties of Relevant Polymers. J. Electroanal. Chem. 1995, 380, 237–247. [Google Scholar] [CrossRef]
- Rault-Berthelot, J.; Rozé, C.; Granger, M.M. Anodic Oxidation of 2(9H-Fluoren-9-Ylidene) Malononitrile and 2(9H-Fluoren-9-Ylidene)-2-Phenylacetonitrile. Electrochemical Behavior and Physicochemical Properties of the Derived Polymers. J. Electroanal. Chem. 1997, 436, 85–101. [Google Scholar] [CrossRef]
- Hubert, C.; Tran, K.; Hauquier, F.; Cougnon, C.; Pilard, J.-F.; Gosselin, P.; Rault-Berthelot, J.; Raoult, E. Anodic Behaviour of Methylidene-Cyclopentadiaryl Derivatives: Cyclic Voltammetry and Theoretical Study. New J. Chem. 2007, 31, 1730–1737. [Google Scholar] [CrossRef]
- Capodilupo, A.L.; Marco, L.D.; Fabiano, E.; Giannuzzi, R.; Scrascia, A.; Carlucci, C.; Corrente, G.A.; Cipolla, M.P.; Gigli, G.; Ciccarella, G. New Organic Dyes Based on a Dibenzofulvene Bridge for Highly Efficient Dye-Sensitized Solar Cells. J. Mater. Chem. A 2014, 2, 14181–14188. [Google Scholar] [CrossRef]
- Corrente, G.A.; Fabiano, E.; De Marco, L.; Accorsi, G.; Giannuzzi, R.; Cardone, A.; Gigli, G.; Ciccarella, G.; Capodilupo, A.-L. Effects of Donor Position on Dibenzofulvene-Based Organic Dyes for Photovoltaics. J. Mater. Sci. Mater. Electron. 2017, 28, 8694–8707. [Google Scholar] [CrossRef]
- Sánchez, J.G.; Aktas, E.; Martínez-Ferrero, E.; Capodilupo, A.L.; Corrente, G.A.; Beneduci, A.; Palomares, E. Increasing the stability of perovskite solar cells with dibenzofulvene-based hole transporting materials. Electrochim. Acta 2022, 432, 141190. [Google Scholar] [CrossRef]
Code | Tm (°C) (Melting Point) | Tg (°C) (Glass Transition Temperature) | Td (°C) (5% Weight Loss) | Ref. |
---|---|---|---|---|
1 | - | - | - | [32] |
2 | - | - | - | [32] |
3 | - | - | - | [32] |
TK7 | - | - | - | [33] |
TK8 | - | - | - | [33] |
TK9 | - | - | - | [33] |
DT1 | - | - | - | [34] |
DT2 | - | - | - | [34] |
DP1 | - | - | - | [34] |
DP2 | - | - | - | [34] |
H1, V862 | - | 138 | 423 | [35,37] |
H2 | - | - | - | [35] |
T1 | - | - | - | [35] |
T2 | - | - | - | [35] |
AN2 | - | - | - | [38] |
PN2 | - | - | - | [38] |
PN3 | - | - | - | [38] |
TN3 | - | - | - | [38,43] |
OMS4 | - | 134 | - | [39] |
OMS5 | - | 147 | - | [39] |
OMS6 | - | 168 | - | [39] |
OMS7 | - | 181 | - | [39] |
YC-1 | - | 124 | 446 | [40] |
YC-2 | - | 103 | 413 | [40] |
YC-3 | - | 87 | 206 | [40] |
C2-BFMPT | 226 | - | - | [42] |
C8-BFMPT | 83 | - | - | [42] |
T2N3 | - | - | - | [43] |
mT2N3 | - | - | - | [43] |
mTN3 | - | - | - | [43] |
TN1 | - | - | - | [43] |
H3 | - | - | - | [44] |
H4 | - | - | - | [44] |
H5 | - | - | - | [44] |
H6 | - | - | - | [44] |
DNFPhe | - | 91 | 357 | [45] |
DDPFPhe | 184 | 93 | 353 | [45] |
DFPFPhe | 158 | 64 | 382 | [45] |
DPFPhe | 144 | 53 | 384 | [45] |
DDPPFPh | 231 | 107 | 391 | [45] |
DNFPh | - | 93 | 373 | [45] |
SC-1 | - | 136 | 374 | [46] |
SC-2 | - | 159 | 464 | [46] |
SC-3 | - | 153 | 425 | [46] |
SC-4 | - | 128 | 249 | [46] |
V808 | - | 92 | 391 | [48] |
V1385 | - | 97 | 403 | [48] |
V1386 | - | 99 | 398 | [48] |
CC-1 | - | 89 | 390 | [49] |
CC-2 | - | 117 | 420 | [49] |
CC-3 | - | 57 | 204 | [49] |
1a | 176 | 53 | 317 | [50] |
1b | 211 | - | 312 | [50] |
1c | - | 99 | 311 | [50] |
1d | 229 | 125 | 413 | [50] |
2c | - | 129 | 352 | [50] |
2d | - | 133 | 432 | [50] |
F-DN1 | - | - | - | [57] |
F-DN2 | - | - | - | [57] |
F-DAn | - | - | - | [57] |
3,6-dtb-DPBF | - | - | - | [58] |
3,6-dtb-DPBFMe | - | - | - | [58] |
3,6-dtb-DPBF(Me)2 | - | - | - | [58] |
Code | HOMO [eV] | LUMO [eV] | Dihedral Angle [°] | Eg [eV] (Energy Gap) | λabs [nm] (Maximum Absorption) | Es/Et [eV] (Triplet (Et) and Singlet (Es) Energy) | Ref. |
---|---|---|---|---|---|---|---|
1 | −5.33 | −1.86 | 34 | 3.47 | 414 | - | [32] |
2 | −5.46 | −2.42 | 36 | 3.04 | 423 | - | [32] |
3 | −5.17 | −3.10 | 1.6; 1.5 | 2.07 | 452 | - | [32] |
TK7 | - | - | - | - | - | - | [33] |
TK8 | - | - | - | - | - | - | [33] |
TK9 | - | - | - | - | - | - | [33] |
DT1 | −5.18 | −2.95 | 118.05 | 2.23 | 500 | - | [34] |
DT2 | −5.41 | −3.09 | 118.01 | 2.32 | 512 | - | [34] |
DP1 | −5.16 | −2.89 | 119.17 | 2.27 | 495 | - | [34] |
DP2 | −5.29 | −2.97 | 119.05 | 2.32 | 499 | - | [34] |
H1, V862 | - | - | - | - | 529, 434 | - | [35,37,44] |
H2 | - | - | - | - | 611, 489 | - | [35,44] |
T1 | - | - | - | - | 611 | - | [35] |
T2 | - | - | - | - | 596 | - | [35] |
AN2 | - | - | - | - | 442 | - | [38] |
PN2 | - | - | - | - | 493 | - | [38] |
PN3 | - | - | - | - | 430 | - | [38] |
TN3 | −5.16 | - | - | - | 466 | - | [38,43] |
OMS4 | −4.83 | −2.89 | 31 | - | - | - | [39] |
OMS5 | −4.82 | −2.87 | 31 | - | - | - | [39] |
OMS6 | −4.88 | −3.45 | 9 | - | - | - | [39] |
OMS7 | −4.85 | −3.44 | 9 | - | - | - | [39] |
YC-1 | - | - | - | - | - | - | [40] |
YC-2 | - | - | - | - | - | - | [40] |
YC-3 | - | - | - | - | - | - | [40] |
C2-BFMPT | - | - | - | - | - | - | [42] |
C8-BFMPT | - | - | - | - | - | - | [42] |
T2N3 | −5.19 | - | - | - | 486 | - | [43] |
mT2N3 | −4.87 | - | - | - | 515 | - | [43] |
mTN3 | −4.87 | - | - | - | 487 | - | [43] |
TN1 | - | - | - | - | 448 | - | [43] |
H3 | - | - | - | - | 441 | - | [44] |
H4 | - | - | - | - | 428 | - | [44] |
H5 | - | - | - | - | 472 | - | [44] |
H6 | - | - | - | - | 444 | - | [44] |
DNFPhe | −5.03 | −2.16 | - | 2.87 | 493 | −2.51/−1.97 | [45] |
DDPFPhe | −5.02 | −2.14 | - | 2.88 | 491 | −2.52/−1.98 | [45] |
DFPFPhe | −5.05 | −2.19 | - | 2.86 | 494 | −2.50/−1.97 | [45] |
DPFPhe | −5.04 | −2.15 | - | 2.89 | 491 | −2.52/−2.00 | [45] |
DDPPFPh | −5.15 | −2.15 | - | 3.00 | 477 | −2.59/−2.25 | [45] |
DNFPh | −5.21 | −2.18 | - | 3.03 | 470 | −2.63/−2.10 | [45] |
SC-1 | - | - | - | - | - | - | [46] |
SC-2 | - | - | - | - | - | - | [46] |
SC-3 | - | - | - | - | - | - | [46] |
SC-4 | - | - | - | - | - | - | [46] |
V808 | - | - | - | - | - | - | [48] |
V1385 | - | - | - | - | - | - | [48] |
V1386 | - | - | - | - | - | - | [48] |
CC-1 | -4.68 | -1.86 | 36.14 | 2.82 | - | - | [49] |
CC-2 | -4.95 | -1.91 | 36.39 | 3.04 | - | - | [49] |
CC-3 | -5.02 | -2.04 | 36.67 | 2.98 | - | - | [49] |
1a | –5.96 | –2.28 | - | 3.68 | - | - | [50] |
1b | –5.93 | –2.19 | - | 3.74 | - | - | [50] |
1c | –5.91 | –2.28 | - | 3.63 | - | - | [50] |
1d | –5.26 | –2.26 | - | 3.00 | - | - | [50] |
2c | –5.64 | –2.18 | - | 3.46 | - | - | [50] |
2d | –5.25 | –2.17 | - | 3.08 | - | - | [50] |
F-DN1 | - | - | - | - | - | [57] | |
F-DN2 | - | - | - | - | - | [57] | |
F-DAn | - | - | - | - | - | [57] | |
3,6-dtb-DPBF | - | - | - | - | - | [58] | |
3,6-dtb-DPBFMe | - | - | - | - | - | [58] | |
3,6-dtb-DPBF(Me)2 | - | - | - | - | - | [58] |
Code | EHOMO [eV] | ELUMO [eV] | Eg [eV] (Energy Gap) | Ref. |
---|---|---|---|---|
1 | 1.26 a | −1.21 b | - | [32] |
2 | 1.32 a | −1.09 b | - | [32] |
3 | 1.20 a | −1.07 b | - | [32] |
TK7 | 0.98 a | −1.04 b | - | [33] |
TK8 | 0.94 a | −1.04 b | - | [33] |
TK9 | 0.93 a | −1.07 b | - | [33] |
DT1 | −5.25 | −2.95 | 2.30 | [34] |
DT2 | −5.30 | −2.95 | 2.35 | [34] |
DP1 | −5.19 | −2.74 | 2.45 | [34] |
DP2 | −5.27 | −2.75 | 2.52 | [34] |
H1, V862 | −4.84, −5.20 | −2.61, −2.97 | 2.23 * | [35,37,44] |
H2 | −4.87, −5.23 | −2.94, −3.30 | 1.93 * | [35,44] |
T1 | −4.75 | −2.77 | 1.98 * | [35] |
T2 | −4.63 | −2.89 | 1.74 * | [35] |
AN2 | −5.13 | −2.79 | 2.34 * | [38] |
PN2 | −5.12 | −3.01 | 2.11 * | [38] |
PN3 | −5.14 | −2.67 | 2.47 * | [38] |
TN3 | −5.08, −5.17 | −2.80, −2.92 | 2.28 *, 2.25 * | [38,43] |
OMS4 | −5.50 | −2.98 | 2.52 * | [39] |
OMS5 | −5.48 | −2.97 | 2.51 * | [39] |
OMS6 | −5.49 | −3.01 | 2.48 * | [39] |
OMS7 | −5.48 | −3.04 | 2.44 * | [39] |
YC-1 | −5.28 | −2.71 | 2.57 * | [40] |
YC-2 | −5.37 | −2.81 | 2.56 * | [40] |
YC-3 | −5.40 | −2.97 | 2.43 * | [40] |
C2-BFMPT | - | - | - | [42] |
C8-BFMPT | - | - | - | [42] |
T2N3 | −5.16 | −3.03 | 2.13 * | [43] |
mT2N3 | −5.16 | −3.07 | 2.09 * | [43] |
mTN3 | −5.10 | −2.90 | 2.20 * | [43] |
TN1 | −5.24 | −2.91 | 2.33 * | [43] |
H3 | −5.28 | −2.98 | 2.30 * | [44] |
H4 | −5.11 | −2.90 | 2.21 * | [44] |
H5 | −5.22 | −3.26 | 1.96 * | [44] |
H6 | −5.30 | −3.10 | 2.20 * | [44] |
DNFPhe | −5.32 | −2.27 | 3.05 * | [45] |
DDPFPhe | −5.33 | −2.25 | 3.08 * | [45] |
DFPFPhe | −5.38 | −2.30 | 3.08 * | [45] |
DPFPhe | −5.35 | −2.26 | 3.09 * | [45] |
DDPPFPh | −5.84 | −2.16 | 3.68 * | [45] |
DNFPh | −5.57 | −2.19 | 3.38 * | [45] |
SC-1 | −5.27 | −2.69 | 2.58 * | [46] |
SC-2 | −5.26 | −2.64 | 2.62 * | [46] |
SC-3 | −5.29 | −2.83 | 2.46 * | [46] |
SC-4 | −5.31 | −2.89 | 2.42 * | [46] |
V808 | - | - | - | [48] |
V1385 | - | - | - | [48] |
V1386 | - | - | - | [48] |
CC-1 | −5.01 | −2.28 | 2.73 * | [49] |
CC-2 | −5.19 | −2.28 | 2.91 * | [49] |
CC-3 | −5.21 | −2.26 | 2.95 * | [49] |
1a | −5.98 | −3.06 | 2.92 * | [50] |
1b | −5.99 | −3.05 | 2.94 * | [50] |
1c | −6.01 | −3.05 | 2.96 * | [50] |
1d | −5.37 | −3.11 | 2.26 * | [50] |
2c | −5.65 | −3.08 | 2.57 * | [50] |
2d | −5.35 | −3.20 | 2.15 * | [50] |
F-DN1 | - | - | - | [57] |
F-DN2 | - | - | - | [57] |
F-DAn | - | - | - | [57] |
3,6-dtb-DPBF | - | - | - | [58] |
3,6-dtb-DPBFMe | - | - | - | [58] |
3,6-dtb-DPBF(Me)2 | - | - | - | [58] |
Code | Solvent/Solid State | λabs [nm] | (ε [m−1cm−1]) | λPL [nm] | Ф [%] | Ref. |
---|---|---|---|---|---|---|
1 | THF | 288 422 | 20660 23280 | 518 | 1.1 | [32] |
2 | THF | 289 322 338 435 | 35876 36880 46744 29940 | 536 | 1.0 | [32] |
3 | THF | 300 326 340 460 | 38876 71011 50012 67969 | 549 | 0.2 | [32] |
TK7 | Dichloromethane | 422 | 33900 | - | - | [33] |
TK8 | Dichloromethane | 416 | 30600 | - | - | [33] |
TK9 | Dichloromethane | 428 | 17500 | - | - | [33] |
DT1 | Hexane | 387, 463 | - | 566 | - | [34] |
Toluene | 394, 469 | - | 583 | - | [34] | |
THF | 397, 468 | - | 595 | 0.9 | [34] | |
Dichloromethane | 395, 465 | - | 598 | - | [34] | |
DMF | 400, 473 | - | 608 | - | [34] | |
DMSO | 403, 476 | - | 616 | - | [34] | |
solid | 411, 486 | - | 640 | 2.6 | [34] | |
DT2 | Hexane | 413, 454 | - | 524 | - | [34] |
Toluene | 415, 457 | - | 541 | - | [34] | |
THF | 421, 470 | - | 562 | 0.6 | [34] | |
Dichloromethane | 420, 460 | - | 550 | - | [34] | |
DMF | 423, 470 | - | 573 | - | [34] | |
DMSO | 426, 474 | - | 582 | - | [34] | |
solid | 420, 510 | - | 656 | 2.0 | [34] | |
DP1 | Hexane | 360, 438 | - | 555 | - | [34] |
Toluene | 366, 445 | - | 574 | - | [34] | |
THF | 366, 445 | - | 578 | 26.3 | [34] | |
Dichloromethane | 366, 442 | - | 580 | - | [34] | |
DMF | 366, 448 | - | 595 | - | [34] | |
DMSO | 374, 454 | - | 603 | - | [34] | |
Solid | 400, 478 | - | 580 | 24.2 | [34] | |
DP2 | Hexane | 376, 434 | - | 540 | - | [34] |
Toluene | 381, 436 | - | 563 | - | [34] | |
THF | 380, 445 | - | 580 | 22.1 | [34] | |
Dichloromethane | 380, 442 | - | 578 | - | [34] | |
DMF | 382, 448 | - | 593 | - | [34] | |
DMSO | 385, 453 | - | 602 | - | [34] | |
solid | 406, 486 | - | 596 | 19.5 | [34] | |
H1,V862 | Dichloromethane | 303 381 448 | 63061 71308 22465 | - | - | [35,37] |
H2 | Dichloromethane | 291 521 | 63190 35811 | - | - | [35] |
T1,TN2 | Dichloromethane | 303 381 487 | 37292 54695 2115 | - | - | [35] |
Solid in film from spin coating | - | - | - | - | [35] | |
T2 | - | - | - | - | - | [35] |
AN2 | Dichloromethane | 377 460 | 65900 3200 | - | - | [38] |
PN2 | Dichloromethane | 380 502 | 34400 1800 | - | - | [38] |
PN3 | Dichloromethane | 384 426 | 39700 1700 | - | - | [38] |
TN3 | Dichloromethane | 382 475 | 41500 2000 | - | - | [38] |
Dichloromethane | 295 384 474 | 40019 33945 20861 | - | - | [43] | |
Solid in film from spin coating | 297 386 480 | - | - | - | [43] | |
OMS4 | THF | 298 364 | 24900 39700 | - | - | [39] |
OMS5 | THF | 370 | 42700 | - | - | [39] |
OMS6 | THF | 302 406 | 31300 25300 | - | - | [39] |
OMS7 | THF | 303 367 424 | 30300 32800 38000 | - | - | [39] |
YC-1 | Dichloromethane | 299 376 419 | 27100 26700 12800 | - | - | [40] |
YC-2 | Dichloromethane | 297 386 424 | 28800 30200 9500 | - | - | [40] |
YC-3 | Dichloromethane | 292 386 424 | 44000 36000 16300 | - | - | [40] |
C2-BFMPT | THF | 402 | - | 542 | <0.1 | [42] |
Crystal | - | - | 562 | 5 | [42] | |
Crystal in liquid nitrogen (∼77 K) | - | - | 547, 562 | 5 | [42] | |
C8-BFMPT | THF | 404 | - | 528 | <0.1 | [42] |
Crystal form II | - | - | 562 | 2 | [42] | |
Crystal form II in liquid nitrogen (∼77 K) | - | - | 553, 578 | 19 | [42] | |
T2N3 | Dichloromethane | 298 382 486 | 60957 58569 32865 | - | - | [43] |
Solid in film from spin coating | 296 384 492 | - | - | - | [43] | |
mT2N3 | Dichloromethane | 264 300 492 | 42139 47448 36608 | - | - | [43] |
Solid in film from spin coating | 270 286 496 | - | - | - | [43] | |
mTN3 | Dichloromethane | 266 306 483 | 36653 38347 29754 | - | - | [43] |
Solid in film from spin coating | 270 290 489 | - | - | - | [43] | |
TN1 | Dichloromethane | 253 302 468 | 38823 12915 28232 | - | - | [43] |
Solid in film from spin coating | - | - | - | - | [43] | |
H3 | Dichloromethane | 305 372 458 | 70093 77760 25127 | - | - | [44] |
H4 | Dichloromethane | 295 384 468 | 119205 129198 63453 | - | - | [44] |
H5 | Dichloromethane | 286 503 | 88504 49865 | - | - | [44] |
H6 | Dichloromethane | 305 375 466 | 76727 82131 41384 | - | - | [44] |
DNFPhe | THF | 404 | - | 527 | - | [45] |
77 K | - | - | 548 | - | [45] | |
DDPFPhe | THF | 386 | - | 513 | - | [45] |
77 K | - | - | 538 | - | [45] | |
DFPFPhe | THF | 402 | - | 517 | - | [45] |
77 K | - | - | 557 | - | [45] | |
DPFPhe | THF | 403 | - | 513 | - | [45] |
77 K | - | - | 552 | - | [45] | |
DDPPFPh | THF | 337 | - | 515 | - | [45] |
77K | - | - | 537 | - | [45] | |
DNFPh | THF | 367 | - | 503 | - | [45] |
77 K | - | - | 540 | - | [45] | |
SC-1 | Dichloromethane | 283 370 421 | 55000 52000 25000 | Nd | - | [46] |
SC-2 | Dichloromethane | 302 337 362 411 | 69000 60000 59000 59000 | 541 | - | [46] |
SC-3 | Dichloromethane | 300 373 440 | 100000 112000 44000 | not detected | - | [46] |
SC-4 | Dichloromethane | 300 372 444 | 114000 122000 47000 | not detected | - | [46] |
V808 | - | - | - | - | - | [48] |
V1385 | - | - | - | - | - | [48] |
V1386 | - | - | - | - | - | [48] |
CC-1 | Dichloromethane | 303 373 | 70200 79200 | 402 | - | [49] |
CC-2 | Dichloromethane | 302 365 424 | 57500 54000 25200 | 420, 500 | - | [49] |
CC-3 | Dichloromethane | 307 366 408 | 62000 58700 21000 | 399, 498 | - | [49] |
1a | Chloroform | 282 327 | 52500 55600 | 375 | 0.45 | [50] |
Chlorobenzene | 291 335 | 115900 28700 | 376, 404 | 0.81 | [50] | |
Dichloromethane | 279 326 | 102900 61500 | 372 | 0.66 | [50] | |
Acetonitrile | 277 326 | 178700 59000 | 370 | 0.63 | [50] | |
Film | 359 | 31300 | 529 | 0.38 | [50] | |
Powder | 440 | - | 549 | 0.91 | [50] | |
1b | Chloroform | 280 332 | 33200 35300 | 370 | 0.83 | [50] |
Chlorobenzene | 289 334 | 106200 33400 | 360, 373 | 1.30 | [50] | |
Dichloromethane | 278 327 | 72400 60400 | 355, 370 | 1.03 | [50] | |
Acetonitrile | 275 331 | 188000 56500 | 369 | 0.83 | [50] | |
Film | not detected | - | - | - | [50] | |
Powder | 425 | - | 548 | 0.96 | [50] | |
1c | Chloroform | 268 295 324 | 17900 22900 31500 | 386 | 0.44 | [50] |
Chlorobenzene | 291 333 | 117200 36300 | 390 | 2.38 | [50] | |
Dichloromethane | 275 331 | 131100 58200 | 385 | 1.14 | [50] | |
Acetonitrile | 276 330 | 178000 42500 | 384 | 0.86 | [50] | |
Film | not detected | - | - | - | [50] | |
Powder | 483 | - | 543 | 21.31 | [50] | |
1d | Chloroform | 275 304 365 | 23500 26200 38400 | 423, 590 | 0.15 | [50] |
Chlorobenzene | 291 365 | 120600 40500 | 423 | 0.44 | [50] | |
Dichloromethane | 275 363 | 92500 64600 | 433, 594 | 0.92 | [50] | |
Acetonitrile | 273 361 | 141800 33500 | 443 | 2.22 | [50] | |
Film | 403 | - | 580 | 3.97 | [50] | |
Powder | 260 299 328 391 | - | 574 | 2.70 | [50] | |
2c | Chloroform | 296 325 391 | 35400 34900 17100 | 400 | 0.73 | [50] |
Chlorobenzene | 291 333 396 | 34700 21000 18500 | 391, 399 | 2.23 | [50] | |
Dichloromethane | 269 328 389 | 147200 30200 22200 | 394 | 0.70 | [50] | |
Acetonitrile | 272 327 390 | 166500 43700 20800 | 392 | 0.51 | [50] | |
Film | 499 | - | 462 | 1.19 | [50] | |
Powder | 298 350 402 | - | 556 | 1.28 | [50] | |
2d | Chloroform | 244 296 367 | 49800 32300 48300 | 435 | 0.74 | [50] |
Chlorobenzene | 291 367 | 113400 73100 | 434, 450 | 9.29 | [50] | |
Dichloromethane | 311 363 | 32500 75300 | 447 | 0.86 | [50] | |
Acetonitrile | 272 363 | 148200 75900 | 456 | 0.44 | [50] | |
Film | 381 | - | 589 | 6.29 | [50] | |
Powder | 257 305 320 384 | - | 597 | 1.44 | [50] | |
F-DN1 | THF | 349 | - | - | - | [57] |
Powder | - | - | 468 | - | [57] | |
F-DN2 | THF | 361 | - | - | - | [57] |
Powder | - | - | 531 | - | [57] | |
F-DAn | THF | 405 | - | - | - | [57] |
Powder | - | - | 536 | - | [57] | |
3,6-dtb-DPBF | Acetonitrile | 240 264 322 | not detected | not detected | not detected | [58] |
3,6-dtb-DPBFMe | Acetonitrile | 237 260 331 | not detected | not detected | not detected | [58] |
3,6-dtb-DPBF(Me)2 | Acetonitrile | 238 263 338 | not detected | not detected | not detected | [58] |
Code | Voc [V] (Open-Cell Voltage) | Jsc [mA/cm2] (Current Density) | FF (Fill Factors) | η [%] (Conversion Efficiency) | Ref. |
---|---|---|---|---|---|
1 | 0.79 | 6.84 | 0.75 | 3.98 | [32] |
2 | 0.83 | 6.63 | 0.74 | 4.09 | [32] |
3 | 0.81 | 9.59 | 0.62 | 4.73 | [32] |
TK7 | 0.67 | 17.82 | 0.66 | 7.88 | [33] |
TK8 | 0.66 | 14.33 | 0.67 | 6.35 | [33] |
TK9 | 0.68 | 13.48 | 0.67 | 6.14 | [33] |
OMS4 | 0.63 | 6.01 | 0.63 | 2.42 | [39] |
OMS4 (D65) * | 0.50 | 0.061 | 0.68 | 2.48 | [39] |
OMS4 (CWF-1000 lx) * | 0.49 | 0.040 | 0.69 | 7.26 | [39] |
OMS4 (CWF-2200 lx) * | 0.52 | 0.092 | 0.69 | 8.12 | [39] |
OMS4 (TL84-600 lx) * | 0.42 | 0.015 | 0.42 | 2.40 | [39] |
OMS4 (TL84-1000 lx) * | 0.48 | 0.043 | 0.68 | 7.59 | [39] |
OMS4 (TL84-2500 lx) * | 0.53 | 0.111 | 0.69 | 8.78 | [39] |
OMS5 | 0.61 | 5.17 | 0.64 | 2.00 | [39] |
OMS6 | 0.55 | 1.90 | 0.69 | 0.71 | [39] |
OMS7 | 0.55 | 1.05 | 0.72 | 0.41 | [39] |
Code | Voc [V] (Open-Cell Voltage) | Jsc [mA/cm2] (Current Density) | FF (Fill Factors) | η (PCE) [%] (Conversion Efficiency) | PCEmax [%] | Ref. |
---|---|---|---|---|---|---|
YC-1 | 1.032 ± 0.014 | 20.98 ± 0.67 | 72.9 ± 2.6 | 15.78 ± 0.61 | 16.53 | [40] |
NiOx/YC-1 | 1.069 ± 0.010 | 22.14 ± 0.35 | 79.5 ± 1.6 | 18.81 ± 0.42 | 19.37 | [40] |
YC-2 | 1.014 ± 0.024 | 16.38 ± 1.62 | 64.5 ± 4.9 | 10.64 ± 0.44 | 11.27 | [40] |
YC-3 | 0.968 ± 0.045 | 15.46 ± 1.55 | 57.3 ± 2.7 | 8.53 ± 0.63 | 9.40 | [40] |
YC-1 | 1.054 ± 0.06 | 22.46 ± 0.583 | 0.588 ± 0.017 | 13.89 ± 1.12 | 14.91 | [41] |
NiOx/SC-1 | 1.080 ± 0.01 | 22.03 ± 0.28 | 79.29 ± 2.61 | 18.86 ± 0.55 | 19.40 | [46] |
NiOx/SC-2 | 1.078 ± 0.01 | 21.88 ± 0.46 | 76.30 ± 2.16 | 17.98 ± 0.48 | 18.90 | [46] |
NiOx/SC-3 | 1.080 ± 0.01 | 21.65 ± 0.21 | 80.33 ± 1.46 | 18.78 ± 0.29 | 19.25 | [46] |
NiOx/SC-4 | 1.080 ± 0.01 | 22.00 ± 0.56 | 80.53 ± 1.33 | 19.13 ± 0.49 | 19.86 | [46] |
V808 | 0.63 | 13.9 | 0.54 | 4.73 | [48] | |
V1385 | 0.68 | 13.7 | 0.53 | 4.94 | [48] | |
V1386 | 0.56 | 13.6 | 0.59 | 4.50 | [48] | |
NiOx/CC-1 | 1.078 ± 0.12 | 20.21 ± 0.72 | 71.44 ± 2.91 | 15.564 ± 0.555 | 16.36 | [49] |
NiOx/CC-2 | 1.091 ± 0.09 | 20.45 ± 1.04 | 74.48 ± 2.12 | 16.617 ± 0.816 | 17.89 | [49] |
NiOx/CC-3 | 1.105 ± 0.05 | 21.66 ± 0.41 | 79.33 ± 1.81 | 18.987 ± 0.635 | 19.82 | [49] |
CC-3 | 0.574 ± 0.08 | 16.23 ± 0.61 | 75.10 ± 1.17 | 4.847 ± 0.757 | 5.605 | [49] |
1d/Li–TFSI (8.75 μL) | 0.690 | 15.90 | 0.39 | 4.14 | - | [50] |
1d/Li–TFSI (17.50 μL) | 0.775 | 15.41 | 0.41 | 4.72 | - | [50] |
1d/Li–TFSI (35.00 μL) | 0.639 | 8.55 | 0.33 | 1.75 | - | [50] |
2d/Li–TFSI (8.75 μL) | 0.507 | 15.79 | 0.23 | 1.80 | - | [50] |
2d/Li–TFSI (17.50 μL) | 0.693 | 15.23 | 0.29 | 3.00 | - | [50] |
2d/Li–TFSI (35.00 μL) | 0.568 | 2.68 | 0.28 | 0.44 | - | [50] |
PN3 | 1.046 | 20.83 | 73.82 | 15.50 ± 0.43 | 16.08 | [72] |
PN2 | 0.952 | 21.59 | 74.38 | 13.99 ± 0.79 | 15.29 | [72] |
T1 | 0.918 | 20.33 | 72.50 | 12.85 ± 0.57 | 13.53 | [72] |
Code | Operation Voltage [V] | Lmax [cd/m2] | CE [cd/A] (Current Efficacy) | PE [lm/W] (Power Efficacy) | EQE [%] (External Quantum Efficiency) | CIE a [x;y] | Ref. |
---|---|---|---|---|---|---|---|
phosphorescent OLEDs | |||||||
NPB | 3.5 a/4.3 b/6.8 c/3.0 d | 15202 | 35.0 a/27.5 b/9.9 c/39.8 d | 31.3 a/20.4 b/4.6 c/41.6 d | 11.3 a/8.7 b/3.1 c/12.9 d | 0.52, 0.48 | [45] |
DNFPhe | 3.5 a/4.3 b/6.5 c/3.0 d | 16632 | 35.9 a/28.8 b/11.7 c/41.0 d | 32.2 a/21.4 b/5.7 c/42.8 d | 11.7 a/9.1 b/3.6 c/13.3 d | 0.52, 0.48 | [45] |
DDPFPhe | 3.7 a/4.4 b/6.5 c/3.5 d | 17345 | 42.6 a/30.3 b/14.0 c/44.2 d | 36.4 a/21.6 b/6.8 c/39.7 d | 16.5 a/11.6 b/5.2 c/17.2 d | 0.51, 0.48 | [45] |
DFPFPhe | 3.4 a/4.1 b/6.2 c/3.0 d | 18627 | 33.8 a/27.8 b/13.5 c/35.8 d | 31.8 a/21.2 b/6.8 c/37.2 d | 13.1 a/10.6 b/5.0 c/13.9 d | 0.52, 0.48 | [45] |
DPFPhe | 3.5 a/4.3 b/6.5 c/3.0 d | 16258 | 37.8 a/30 b/12.1 c/42.9 d | 33.8 a/22.3 b/5.9 c/44.8 d | 12.3 a/9.5 b/3.7 c/13.9 d | 0.52, 0.48 | [45] |
DDPPFPh | 3.7 a/4.4 b/6.4 c/3.5 d | 19409 | 48.2 a/33.8 b/15.6 c/50.6 d | 41.4 a/24.3 b/7.7 c/45.4 d | 18.7 a/12.9 b/5.8 c/19.6 d | 0.51, 0.48 | [45] |
DNFPh | 3.7 a/4.4 b/6.4 c/3.5 d | 18382 | 46 a/32.5 b/15.0 c/47.9 d | 39.4 a/23.2 b/7.4 c/43.0 d | 17.8 a/12.4 b/5.6 c/18.6 d | 0.51, 0.48 | [45] |
TADF OLEDs | |||||||
NPB | 5.2 a/6.5 b/7.5 c/4.0 d | 12905 | 48.4 a/45.0 b/29.2 c/54.1 d | 29.4 a/21.7 b/12.3 c/42.5 d | 18.1 a/17.0 b/ 11.6 c/20.1 d | 0.27, 0.55 | [45] |
DNFPhe | 5.3 a/6.5 b/7.6 c/4.0 d | 12550 | 49.6 a/45.4 b/23.9 c/61.6 d | 29.8 a/21.8 b/9.9 c/48.3 d | 18.5 a/17.0 b/ 9.3 c/22.9 d | 0.27, 0.55 | [45] |
DDPFPhe | 4.7 a/6.2 b/7.6 c/4.0 d | 28015 | 61.5 a/58.9 b/45.7 c/66.6 d | 41.9 a/29.9 b/18.9 c/52.3 d | 22.2 a/21.3 b/ 16.7 c/24.2 d | 0.28, 0.57 | [45] |
DFPFPhe | 4.9 a/6.5 b/7.8 c/4.0 d | 21530 | 53.5 a/37.1 b/31.4 c/60.6 d | 34.4 a/17.6 b/12.7 c/47.5 d | 16.8 a/11.7 b/ 10.0 c/19.1 d | 0.28, 0.57 | [45] |
DPFPhe | 4.9 a/6.5 b/7.8 c/4.0 d | 22230 | 53.8 a/37.2 b/31.5 c/60.9 d | 34.5 a/17.8 b/12.8 c/47.8 d | 25.2 a/17.5 b/ 15.0 c/28.6 d | 0.28, 0.57 | [45] |
DDPPFPh | 4.2 a/5.5 b/7.0 c/3.6 d | 44278 | 71.6 a/64.0 b/50.0 c/78.0 d | 53.2 a/36.3 b/22.5 c/69.1 d | 25.0 a/22.4 b/ 17.6 c/27.2 d | 0.29, 0.58 | [45] |
DNFPh | 4.7 a/6.4 b/7.6 c/4.0 d | 28899 | 70.6 a/51.4 b/44.6 c/79.1 d | 47 a/25.5 b/18.4 c/62.1 d | 25.5 a/18.6 b/ 16.3 c/28.6 d | 0.28, 0.57 | [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szlapa-Kula, A.; Ledwon, P.; Krawiec, A.; Kula, S. Dibenzofulvene Derivatives as Promising Materials for Photovoltaic and Organic Electronics. Energies 2023, 16, 8027. https://doi.org/10.3390/en16248027
Szlapa-Kula A, Ledwon P, Krawiec A, Kula S. Dibenzofulvene Derivatives as Promising Materials for Photovoltaic and Organic Electronics. Energies. 2023; 16(24):8027. https://doi.org/10.3390/en16248027
Chicago/Turabian StyleSzlapa-Kula, Agata, Przemyslaw Ledwon, Agnieszka Krawiec, and Slawomir Kula. 2023. "Dibenzofulvene Derivatives as Promising Materials for Photovoltaic and Organic Electronics" Energies 16, no. 24: 8027. https://doi.org/10.3390/en16248027
APA StyleSzlapa-Kula, A., Ledwon, P., Krawiec, A., & Kula, S. (2023). Dibenzofulvene Derivatives as Promising Materials for Photovoltaic and Organic Electronics. Energies, 16(24), 8027. https://doi.org/10.3390/en16248027