Solar Photovoltaic Energy as a Promising Enhanced Share of Clean Energy Sources in the Future—A Comprehensive Review
Abstract
:1. Introduction
2. Solar Photovoltaic Potential
3. Dust Accumulation and Cleaning Method
3.1. Dust Deposition Rate and Factors Affecting Dust Deposition on Photovoltaics Modules
3.2. Effects of Temperature on the Performance of PV Systems
3.3. Impact of Wind Speed on the Performance of PV Systems
3.4. Impact of Relative Humidity on the Performance of PV Systems
3.5. Impact of Dust Properties on the Performance of PV Systems
3.6. Impact of Tilt Angle, Location, and Installation on the Performance of PV Systems
3.7. Impact of Photovoltaic Surface Properties on the Performance of PV Systems
3.8. Impact of Weather Conditions on the Performance of PV Systems
4. Materials and Photovoltaic Technologies
4.1. Thin-Film PV Technologies
4.2. Emerging Thin-Film PV Technologies
4.2.1. Copper Zinc Tin Sulfide (Cu2ZnSnS4, or CZTS)
4.2.2. Perovskite Solar Cells
4.2.3. Organic Photovoltaics (OPV)
4.2.4. Dye-Sensitized Solar Cell (DSSC) Technology
4.2.5. Colloidal Quantum Speck Photovoltaics
5. Multiple Techniques to Remove Dust Particles from the Surface of a Photovoltaic Module
5.1. Natural Removal
5.2. Manual Removal
5.3. Automated Removal
5.4. Preventive Removal
5.5. Electrostatic Removal
5.6. Self-Cleaning Removal
6. Solar Photovoltaic Fabrication Methods, Waste Recycling, and Costs
7. Market Value of Photovoltaic Installation
8. Conclusions and Future Perspective
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kweku, D.W.; Bismark, O.; Maxwell, A.; Desmond, K.A.; Danso, K.B.; Oti-Mensah, E.A.; Quachie, A.T.; Adormaa, B.B. Greenhouse effect: Greenhouse gases and their impact on global warming. J. Sci. Res. Rep. 2018, 17, 1–9. [Google Scholar] [CrossRef]
- Chala, G.T.; Abd Aziz, A.R.; Hagos, F.Y. Natural Gas Engine Technologies: Challenges and Energy Sustainability Issue. Energies 2018, 11, 2934. [Google Scholar] [CrossRef]
- Dewangan, D.; Ekka, J.P.; Arjunan, T.V. Solar photovoltaic thermal system: A comprehensive review on recent design and development, applications and future prospects in research. Int. J. Ambient Energy 2022, 43, 7247–7271. [Google Scholar] [CrossRef]
- Al Siyabi, I.H. Enhancing the Performance of Concentrating Photovoltaics through Multi-Layered Microchannel Heat Sink and Phase Change Materials. Ph.D. Thesis, University of Exeter, Exeter, UK, 2018. [Google Scholar]
- Abdul-Wahab, S.; Charabi, Y.; Al-Mahruqi, A.M.; Osman, I.; Osman, S. Selection of the best solar photovoltaic (PV) for Oman. Sol. Energy 2019, 188, 1156–1168. [Google Scholar] [CrossRef]
- IEA. World Energy Outlook 2022; IEA: Paris, France, 2022. [Google Scholar]
- IEA. Solar PV, Paris. License: CC BY 4.0. Available online: https://www.iea.org/reports/solar-pv (accessed on 12 July 2023).
- Spasić, V. Global Solar Power to Cross 200 GW Annual Installation Threshold in 2022. Balkan Green Energy News. Available online: https://balkangreenenergynews.com/global-solar-power-to-cross-200-gw-annual-installation-threshold-in-2022/ (accessed on 17 April 2023).
- Reviews, C.E. Most Efficient Solar Panels 2023. Available online: https://www.cleanenergyreviews.info/blog/most-efficient-solar-panels (accessed on 25 June 2023).
- EcoFlow, The Impact of Temperature on Solar Panel Efficiency: How Heat Affects Your Solar Energy System. In US Blog 2023, US Blog 2023, Volume 2023. Available online: https://blog.ecoflow.com/us/effects-of-temperature-on-solar-panel-efficiency (accessed on 22 April 2023).
- Alshebani, M. A critical review of solar energy and dust in Gulf Countries. Int. J. Eng. Res. Appl. 2021, 11, 43–73. [Google Scholar]
- Charabi, Y.; Gastli, A. Integration of temperature and dust effects in siting large PV power plant in hot arid area. Renew. Energy 2013, 57, 635–644. [Google Scholar] [CrossRef]
- Chowdhury, M.S.; Rahman, K.S.; Chowdhury, T.; Nuthammachot, N.; Techato, K.; Akhtaruzzaman, M.; Tiong, S.K.; Sopian, K.; Amin, N. An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strategy Rev. 2020, 27, 100431. [Google Scholar] [CrossRef]
- Tinta, A.A.; Sylla, A.Y.; Lankouande, E. Solar PV adoption in rural Burkina Faso. Energy 2023, 278, 127762. [Google Scholar] [CrossRef]
- Roy, A.; Pramanik, S. A review of the hydrogen fuel path to emission reduction in the surface transport industry. Int. J. Hydrog. Energy Energy 2023, in press. [Google Scholar] [CrossRef]
- Helveston, J.P.; Gang, H.; Davidson, M. The Cost of Going Solo in Solar. Available online: https://www.newsecuritybeat.org/2022/11/cost-solo-solar/ (accessed on 30 December 2022).
- EqualOcean China’s Photovoltaic Go Globa III: Dominating Global Markets in the Era of 3.0. Available online: https://equalocean.com/analysis/2023071419904 (accessed on 15 July 2023).
- Helveston, J.P.; He, G.; Davidson, M.R. Quantifying the cost savings of global solar photovoltaic supply chains. Nature 2022, 612, 83–87. [Google Scholar] [CrossRef]
- Alonso-Montesinos, J.; Martínez, F.R.; Polo, J.; Martín-Chivelet, N.; Batlles, F.J. Economic effect of dust particles on photovoltaic plant production. Energies 2020, 13, 6376. [Google Scholar] [CrossRef]
- Picotti, G.; Borghesani, P.; Cholette, M.; Manzolini, G. Soiling of solar collectors–Modelling approaches for airborne dust and its interactions with surfaces. Renew. Sustain. Energy Rev. 2018, 81, 2343–2357. [Google Scholar] [CrossRef]
- Jiang, Y.; Lu, L.; Ferro, A.R.; Ahmadi, G. Analyzing wind cleaning process on the accumulated dust on solar photovoltaic (PV) modules on flat surfaces. Sol. Energy 2018, 159, 1031–1036. [Google Scholar] [CrossRef]
- Javed, W.; Guo, B.; Figgis, B. Modeling of photovoltaic soiling loss as a function of environmental variables. Sol. Energy 2017, 157, 397–407. [Google Scholar] [CrossRef]
- Chanchangi, Y.N.; Ghosh, A.; Sundaram, S.; Mallick, T.K. Dust and PV Performance in Nigeria: A review. Renew. Sustain. Energy Rev. 2020, 121, 109704. [Google Scholar] [CrossRef]
- Gupta, V.; Sharma, M.; Pachauri, R.K.; Babu, K.D. Comprehensive review on effect of dust on solar photovoltaic system and mitigation techniques. Sol. Energy 2019, 191, 596–622. [Google Scholar] [CrossRef]
- Zaihidee, F.M.; Mekhilef, S.; Seyedmahmoudian, M.; Horan, B. Dust as an unalterable deteriorative factor affecting PV panel’s efficiency: Why and how. Renew. Sustain. Energy Rev. 2016, 65, 1267–1278. [Google Scholar] [CrossRef]
- Divya, S.; Mathiyalagan, S.R.; Mohana, J.; Dattu, V.S.C.; Hemavathi, S.; Natrayan, L.; Chakaravarthi, A.; Mohanavel, V.; Sathyamurthy, R. Analysing Analyzing the performance of combined solar photovoltaic power system with phase change material. Energy Rep. 2022, 8, 43–56. [Google Scholar]
- Ghadikolaei, S.S.C. An enviroeconomic review of the solar PV cells cooling technology effect on the CO2 emission reduction. Sol. Energy 2021, 216, 468–492. [Google Scholar] [CrossRef]
- Katkar, A.; Shinde, N.; Patil, P. Performance & evaluation of industrial solar cell wrt temperature and humidity. Int. J. Res. Mech. Eng. Technol. 2011, 1, 69–73. [Google Scholar]
- Ebhota, W.; Tabakov, P. Influence of photovoltaic cell technologies and elevated temperature on photovoltaic system performance. Ain Shams Eng. J. 2023, 14, 101984. [Google Scholar] [CrossRef]
- Kazem, H.A.; Chaichan, M.T.; Al-Waeli, A.H.; Al-Badi, R.; Fayad, M.A.; Gholami, A.J.S.E. Dust impact on photovoltaic/thermal system in harsh weather conditions. Sol. Energy 2022, 245, 308–321. [Google Scholar] [CrossRef]
- Gholami, A.; Ameri, M.; Zandi, M.; Ghoachani, R.G.; Kazem, H.A. Predicting solar photovoltaic electrical output under variable environmental conditions: Modified semi-empirical correlations for dust. Energy Sustain. Dev. 2022, 71, 389–405. [Google Scholar] [CrossRef]
- Kumari, S.; Bhende, A.; Pandit, A.; Rayalu, S. Efficiency enhancement of photovoltaic panel by heat harvesting techniques. Energy Sustain. Dev. 2023, 73, 303–314. [Google Scholar] [CrossRef]
- Preet, S.; Bhushan, B.; Mahajan, T. Experimental investigation of water based photovoltaic/thermal (PV/T) system with and without phase change material (PCM). Sol. Energy 2017, 155, 1104–1120. [Google Scholar] [CrossRef]
- Tariq, R.; Xamán, J.; Bassam, A.; Ricalde, L.J.; Soberanis, M.A.E. Multidimensional assessment of a photovoltaic air collector integrated phase changing material considering Mexican climatic conditions. Energy 2020, 209, 118304. [Google Scholar] [CrossRef]
- Gaur, A.; Ménézo, C.; Giroux-Julien, S. Numerical studies on thermal and electrical performance of a fully wetted absorber PVT collector with PCM as a storage medium. Renew. Energy 2017, 109, 168–187. [Google Scholar] [CrossRef]
- Joo, H.-J.; An, Y.-S.; Kim, M.-H.; Kong, M. Long-term performance evaluation of liquid-based photovoltaic thermal (PVT) modules with overheating-prevention technique. Energy Convers. Manag. 2023, 296, 117682. [Google Scholar] [CrossRef]
- Nižetić, S.; Čoko, D.; Yadav, A.; Grubišić-Čabo, F. Water spray cooling technique applied on a photovoltaic panel: The performance response. Energy Convers. Manag. 2016, 108, 287–296. [Google Scholar] [CrossRef]
- Zhao, W.; Lv, Y.; Zhou, Q.; Yan, W. Collision-adhesion mechanism of particles and dust deposition simulation on solar PV modules. Renew. Energy 2021, 176, 169–182. [Google Scholar] [CrossRef]
- Goossens, D.; Van Kerschaever, E. Aeolian dust deposition on photovoltaic solar cells: The effects of wind velocity and airborne dust concentration on cell performance. Sol. Energy 1999, 66, 277–289. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, W. CFD prediction of dust pollution and impact on an isolated ground-mounted solar photovoltaic system. Renew. Energy 2019, 131, 829–840. [Google Scholar] [CrossRef]
- Figgis, B.; Ennaoui, A.; Ahzi, S.; Rémond, Y. Review of PV soiling particle mechanics in desert environments. Renew. Sustain. Energy Rev. 2017, 76, 872–881. [Google Scholar] [CrossRef]
- Yao, W.; Han, X.; Huang, Y.; Zheng, Z.; Wang, Y.; Wang, X. Analysis of the influencing factors of the dust on the surface of photovoltaic panels and its weakening law to solar radiation—A case study of Tianjin. Energy 2022, 256, 124669. [Google Scholar] [CrossRef]
- Ndeto, M.P.; Wekesa, D.W.; Njoka, F.; Kinyua, R. Correlating dust deposits with wind speeds and relative humidity to overall performance of crystalline silicon solar cells: An experimental study of Machakos County, Kenya. Sol. Energy 2022, 246, 203–215. [Google Scholar] [CrossRef]
- Gholami, A.; Saboonchi, A.; Alemrajabi, A.A. Experimental study of factors affecting dust accumulation and their effects on the transmission coefficient of glass for solar applications. Renew. Energy 2017, 112, 466–473. [Google Scholar] [CrossRef]
- He, B.; Lu, H.; Zheng, C.; Wang, Y. Characteristics and cleaning methods of dust deposition on solar photovoltaic modules-A review. Energy 2022, 263, 126083. [Google Scholar] [CrossRef]
- Al Siyabi, I.; Al Mayasi, A.; Al Shukaili, A.; Khanna, S. Effect of soiling on solar photovoltaic performance under desert climatic conditions. Energies 2021, 14, 659. [Google Scholar] [CrossRef]
- Touati, F.; Al-Hitmi, M.; Chowdhury, N.A.; Hamad, J.A.; Gonzales, A.J.S.P. Investigation of solar PV performance under Doha weather using a customized measurement and monitoring system. Renew. Energy 2016, 89, 564–577. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Ray, S.; Aruna, M.; Prasad, S. Evaluation of solar PV panel performance under humid atmosphere. Mater. Today: Proc. 2021, 45, 5916–5920. [Google Scholar] [CrossRef]
- Zhao, W.; Lv, Y.; Zhou, Q.; Yan, W. Investigation on particle deposition criterion and dust accumulation impact on solar PV module performance. Energy 2021, 233, 121240. [Google Scholar] [CrossRef]
- Said, S.A.; Hassan, G.; Walwil, H.M.; Al-Aqeeli, N. The effect of environmental factors and dust accumulation on photovoltaic modules and dust-accumulation mitigation strategies. Renew. Sustain. Energy Rev. 2018, 82, 743–760. [Google Scholar] [CrossRef]
- Omubo-Pepple, V.; Israel-Cookey, C.; Alaminokuma, G. Effects of temperature, solar flux and relative humidity on the efficient conversion of solar energy to electricity. Eur. J. Sci. Res. 2009, 35, 173–180. [Google Scholar]
- Darwish, Z.A.; Sopian, K.; Fudholi, A. Reduced output of photovoltaic modules due to different types of dust particles. J. Clean. Prod. 2021, 280, 124317. [Google Scholar] [CrossRef]
- Chen, J.; Pan, G.; Ouyang, J.; Ma, J.; Fu, L.; Zhang, L. Study on impacts of dust accumulation and rainfall on PV power reduction in East China. Energy Convers. 2020, 194, 116915. [Google Scholar] [CrossRef]
- Liu, L.; Qian, H.; Sun, E.; Li, B.; Zhang, Z.; Miao, B.; Li, Z. Power reduction mechanism of dust-deposited photovoltaic modules: An experimental study. J. Clean. Prod. 2022, 378, 134518. [Google Scholar] [CrossRef]
- Fan, S.; Wang, X.; Cao, S.; Wang, Y.; Zhang, Y.; Liu, B. A novel model to determine the relationship between dust concentration and energy conversion efficiency of photovoltaic (PV) panels. Energy 2022, 252, 123927. [Google Scholar] [CrossRef]
- Fountoukis, C.; Figgis, B.; Ackermann, L.; Ayoub, M.A. Effects of atmospheric dust deposition on solar PV energy production in a desert environment. Sol. Energy 2018, 164, 94–100. [Google Scholar] [CrossRef]
- Said, S.A.; Walwil, H.M. Fundamental studies on dust fouling effects on PV module performance. Sol. Energy 2014, 107, 328–337. [Google Scholar] [CrossRef]
- Lu, H.; Cai, R.; Zhang, L.-Z.; Lu, L.; Zhang, L. Experimental investigation on deposition reduction of different types of dust on solar PV cells by self-cleaning coatings. Sol. Energy 2020, 206, 365–373. [Google Scholar] [CrossRef]
- Liu, X.; Yue, S.; Lu, L.; Li, J. Investigation of the dust scaling behaviour on solar photovoltaic panels. J. Clean. Prod. 2021, 295, 126391. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Wang, J.; Qiao, L. CFD–DEM Simulation of Dust Deposition on Solar Panels for Desert Railways. Appl. Sci. 2022, 13, 4. [Google Scholar] [CrossRef]
- Fan, S.; Wang, Y.; Cao, S.; Sun, T.; Liu, P. A novel method for analyzing the effect of dust accumulation on energy efficiency loss in photovoltaic (PV) system. Energy 2021, 234, 121112. [Google Scholar] [CrossRef]
- Shi, C.; Yu, B.; Liu, D.; Wu, Y.; Li, P.; Chen, G.; Wang, G. Effect of high-velocity sand and dust on the performance of crystalline silicon photovoltaic modules. Solar Energy 2020, 206, 390–395. [Google Scholar] [CrossRef]
- Abdelsalam, M.A.; Ahmad, F.F.; Abdul-Kadir, H.; Ghenai, C.; Rejeb, O.; Alchadirchy, M.; Obaid, W.; Assad, M.E.H. Experimental study of the impact of dust on azimuth tracking solar PV in Sharjah. Int. J. Electr. Comput. Eng. 2021, 11, 3671. [Google Scholar] [CrossRef]
- Asbayou, A.; Ihlal, A.; Isknan, I.; Soussi, A.; Bouhouch, L. Structural and Physicochemical Properties of Dust and Their Effect on Solar Modules Efficiency in Agadir-Morocco. J. Renew. Mater. 2022, 11, 2250–2264. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Aruna, M.; Murthy, C.S. Experimental investigation of dust effect on PV module performance. Glob. J. Res. Eng. 2017, 17, 35–39. [Google Scholar]
- Paudyal, B.R.; Shakya, S.R. Dust accumulation effects on efficiency of solar PV modules for off grid purpose: A case study of Kathmandu. Sol. Energy 2016, 135, 103–110. [Google Scholar] [CrossRef]
- Adinoyi, M.J.; Said, S.A.M. Effect of dust accumulation on the power outputs of solar photovoltaic modules. Renew. Energy 2013, 60, 633–636. [Google Scholar] [CrossRef]
- Hachicha, A.A.; Al-Sawafta, I.; Said, Z. Impact of dust on the performance of solar photovoltaic (PV) systems under United Arab Emirates weather conditions. Renew. Energy 2019, 141, 287–297. [Google Scholar] [CrossRef]
- Cattani, G. Combining data envelopment analysis and Random Forest for selecting optimal locations of solar PV plants. Energies 2023, 11, 100222. [Google Scholar] [CrossRef]
- Ullah, A.; Amin, A.; Haider, T.; Saleem, M.; Butt, N.Z. Investigation of soiling effects, dust chemistry and optimum cleaning schedule for PV modules in Lahore, Pakistan. Renew. Energy 2020, 150, 456–468. [Google Scholar] [CrossRef]
- Raillani, B.; Chaatouf, D.; Salhi, M.; Bria, A.; Amraqui, S.; Mezrhab, A. The effectiveness of the wind barrier in mitigating soiling of a ground-mounted photovoltaic panel at different angles and particle injection heights. Results Eng. 2022, 16, 100774. [Google Scholar] [CrossRef]
- Babatunde, A.; Abbasoglu, S.; Senol, M. Analysis of the impact of dust, tilt angle and orientation on performance of PV Plants. Renew. Sustain. Energy Rev. 2018, 90, 1017–1026. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, W. Effects of particle sizes and tilt angles on dust deposition characteristics of a ground-mounted solar photovoltaic system. Appl. Energy 2018, 220, 514–526. [Google Scholar] [CrossRef]
- Ullah, A.; Imran, H.; Maqsood, Z.; Butt, N.Z. Investigation of optimal tilt angles and effects of soiling on PV energy production in Pakistan. Renew. Energy 2019, 139, 830–843. [Google Scholar] [CrossRef]
- Lay-Ekuakille, A.; Ciaccioli, A.; Griffo, G.; Visconti, P.; Andria, G. Effects of dust on photovoltaic measurements: A comparative study. Measurement 2018, 113, 181–188. [Google Scholar] [CrossRef]
- Zabihi Sheshpoli, A.; Jahanian, O.; Nikzadfar, K. An experimental investigation on the effects of dust accumulation on a photovoltaic panel efficiency utilized near agricultural land. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 89. [Google Scholar] [CrossRef]
- Farahmand, M.Z.; Nazari, M.; Shamlou, S.; Shafie-khah, M. The simultaneous impacts of seasonal weather and solar conditions on PV panels electrical characteristics. Energies 2021, 14, 845. [Google Scholar] [CrossRef]
- Jiang, H.; Lu, L.; Sun, K. Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules. Atmos. Environ. 2011, 45, 4299–4304. [Google Scholar] [CrossRef]
- Chen, E.Y.-T.; Chen, Y.; Guo, B.; Liang, H. Effects of surface morphological parameters on cleaning efficiency of PV panels. Sol. Energy 2019, 194, 840–847. [Google Scholar] [CrossRef]
- Al-Ghussain, L.; Taylan, O.; Abujubbeh, M.; Hassan, M.A. Optimizing the orientation of solar photovoltaic systems considering the effects of irradiation and cell temperature models with dust accumulation. Sol. Energy 2023, 249, 67–80. [Google Scholar] [CrossRef]
- Enaganti, P.K.; Bhattacharjee, A.; Ghosh, A.; Chanchangi, Y.N.; Chakraborty, C.; Mallick, T.K.; Goel, S. Experimental investigations for dust build-up on low-iron glass exterior and its effects on the performance of solar PV systems. Energy 2022, 239, 122213. [Google Scholar] [CrossRef]
- Saiprakash, C.; Mohapatra, A.; Nayak, B.; Ghatak, S.R. Analysis of partial shading effect on energy output of different solar PV array configurations. Mater. Today: Proc. 2021, 39, 1905–1909. [Google Scholar] [CrossRef]
- Olabi, A.; Abdelkareem, M.A.; Semeraro, C.; Al Radi, M.; Rezk, H.; Muhaisen, O.; Al-Isawi, O.A.; Sayed, E.T. Artificial Neural Networks Applications in Partially Shaded PV Systems. Therm. Sci. Eng. Prog. 2022, 37, 101612. [Google Scholar] [CrossRef]
- Weber, B.; Quiñones, A.; Almanza, R.; Duran, M.D. Performance reduction of PV systems by dust deposition. Energy Procedia 2014, 57, 99–108. [Google Scholar] [CrossRef]
- Gholami, A.; Khazaee, I.; Eslami, S.; Zandi, M.; Akrami, E. Experimental investigation of dust deposition effects on photo-voltaic output performance. Sol. Energy 2018, 159, 346–352. [Google Scholar] [CrossRef]
- Javed, W.; Guo, B.; Figgis, B.; Aïssa, B. Dust potency in the context of solar photovoltaic (PV) soiling loss. Sol. Energy 2021, 220, 1040–1052. [Google Scholar] [CrossRef]
- Alshawaf, M.; Poudineh, R.; Alhajeri, N.S. Solar PV in Kuwait: The effect of ambient temperature and sandstorms on output variability and uncertainty. Renew. Sustain. Energy Rev. 2020, 134, 110346. [Google Scholar] [CrossRef]
- Mejia, F.; Kleissl, J.; Bosch, J.J.E.P. The effect of dust on solar photovoltaic systems. Energy Procedia 2014, 49, 2370–2376. [Google Scholar] [CrossRef]
- Sadat, S.A.; Hoex, B.; Pearce, J.M. A Review of the Effects of Haze on Solar Photovoltaic Performance. Renew. Sustain. Energy Rev. 2022, 167, 112796. [Google Scholar] [CrossRef]
- Memiche, M.; Bouzian, C.; Benzahia, A.; Moussi, A. Effects of dust, soiling, aging, and weather conditions on photovoltaic system performances in a Saharan environment—Case study in Algeria. Glob. Energy Interconnect. 2020, 3, 60–67. [Google Scholar] [CrossRef]
- Alawasa, K.M.; AlAbri, R.S.; Al-Hinai, A.S.; Albadi, M.H.; Al-Badi, A.H. Experimental study on the effect of dust deposition on a car park photovoltaic system with different cleaning cycles. Sustainability 2021, 13, 7636. [Google Scholar] [CrossRef]
- Atsu, D.; Seres, I.; Aghaei, M.; Farkas, I. Analysis of long-term performance and reliability of PV modules under tropical climatic conditions in sub-Saharan. Renew. Energy 2020, 162, 285–295. [Google Scholar] [CrossRef]
- Kumari, N.; Singh, S.K.; Kumar, S. A comparative study of different materials used for solar photovoltaics technology. Mater. Today: Proc. 2022, 66, 3522–3528. [Google Scholar] [CrossRef]
- Metz, A.; Fischer, M.; Trube, J. Recent results of the international technology roadmap for photovoltaics (ITRPV). In International Technology Roadmap for Photovoltaics (ITRPV); ITRPV: Frankfurt am Main, Germany, 2017. [Google Scholar]
- Glunz, S.W.; Preu, R.; Biro, D. Crystalline Silicon Solar Cells: State-of-the-Art and Future Developments. In Comprehensive Renewable Energy; Sayigh, A., Ed.; Elsevier: Oxford, UK, 2012; pp. 353–387. [Google Scholar]
- Mailoa, J.P.; Bailie, C.D.; Johlin, E.C.; Hoke, E.T.; Akey, A.J.; Nguyen, W.H.; McGehee, M.D.; Buonassisi, T. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl. Phys. Lett. 2015, 106, 121105. [Google Scholar] [CrossRef]
- Chunduri, S.K.; Schmela, M. PERC Solar Cell Technology 2016. TaiyangNews UG Munich Ger. 2018, 21, 6–20. [Google Scholar]
- Almansouri, I.; Ho-Baillie, A.; Bremner, S.P.; Green, M.A. Supercharging silicon solar cell performance by means of multijunction concept. IEEE J. Photovolt. 2015, 5, 968–976. [Google Scholar] [CrossRef]
- Yablonovitch, E.; Gmitter, T.; Harbison, J.; Bhat, R. Extreme selectivity in the lift-off of epitaxial GaAs films. Appl. Phys. Lett. 1987, 51, 2222–2224. [Google Scholar] [CrossRef]
- NREL. Best Research-Cell Efficiencies; National Renewable Energy Laboratory: Golden, CO, USA, 2019. [Google Scholar]
- Jones-Albertus, R.; Becker, E.; Bergner, R.; Bilir, T.; Derkacs, D.; Fidaner, O.; Jory, D.; Liu, T.; Lucow, E.; Misra, P.; et al. Using Dilute Nitrides to Achieve Record Solar Cell Efficiencies. MRS Online Proc. Libr. 2013, 1538, 161–166. [Google Scholar] [CrossRef]
- Chiu, P.T.; Law, D.C.; Woo, R.L.; Singer, S.B.; Bhusari, D.; Hong, W.D.; Zakaria, A.; Boisvert, J.; Mesropian, S.; King, R.R.; et al. Direct Semiconductor Bonded 5J Cell for Space and Terrestrial Applications. IEEE J. Photovolt. 2014, 4, 493–497. [Google Scholar] [CrossRef]
- King, R.; Law, A.D.; Edmondson, K.; Fetzer, C.; Kinsey, G.; Yoon, H.; Sherif, R.; Karam, N. 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl. Phys. Lett. 2007, 90, 183516. [Google Scholar] [CrossRef]
- Carlo, A.; Lamanna, E.; Nia, N. Photovoltaics. Eur. Phys. J. Conf. 2020, 246, 00005. [Google Scholar] [CrossRef]
- King, R.B.; Bhusari, D.; Larrabee, D.; Liu, X.; Rehder, E.; Edmondson, K.; Cotal, H.; Jones, R.; Ermer, J.; Fetzer, C. Solar cell generations over 40% efficiency. Prog. Photovolt. Res. Appl. 2012, 20, 801–815. [Google Scholar] [CrossRef]
- Solanki, C.S. Solar Photovoltaics: Fundamentals, Technologies and Applications; Phi Learning Pvt. Ltd.: New Delhi, India, 2015. [Google Scholar]
- Sopori, B. Thin-Film Silicon Solar Cells. In Handbook of Photovoltaic Science and Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2003; pp. 307–3577. [Google Scholar]
- Nikolina, S. International Renewable Energy Agency (IRENA). 2016. Available online: https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2016)586662 (accessed on 12 July 2022).
- Crose, M.; Kwon, J.S.; Nayhouse, M.; Ni, D.; Christofides, P.D. On Operation of PECVD of Thin Film Solar Cells. IFAC-Pap. 2015, 48, 278–283. [Google Scholar]
- Cherradi, N. Solar PV Technologies What’s Next? Becquerel Institute: Brussels, Belgium, 2019. [Google Scholar]
- Todorov, T.K.; Tang, J.; Bag, S.; Gunawan, O.; Gokmen, T.; Zhu, Y.; Mitzi, D.B. Beyond 11% efficiency: Characteristics of state-of-the-art Cu2ZnSn (S, Se) 4 solar cells. Adv. Energy Mater. 2013, 3, 34–38. [Google Scholar] [CrossRef]
- Katagiri, H.; Jimbo, K.; Maw, W.S.; Oishi, K.; Yamazaki, M.; Araki, H.; Takeuchi, A. Development of CZTS-based thin film solar cells. Thin. Solid Film. 2009, 517, 2455–2460. [Google Scholar] [CrossRef]
- Mendis, B.G.; Shannon, M.D.; Goodman, M.C.; Major, J.D.; Claridge, R.; Halliday, D.P.; Durose, K. Direct observation of Cu, Zn cation disorder in Cu2ZnSnS4 solar cell absorber material using aberration corrected scanning transmission electron microscopy. Prog. Photovolt. Res. Appl. 2014, 22, 24–34. [Google Scholar] [CrossRef]
- Rong, Y.; Hu, Y.; Mei, A.; Tan, H.; Saidaminov, M.I.; Seok, S.I.; McGehee, M.D.; Sargent, E.H.; Han, H. Challenges for commercializing perovskite solar cells. Science 2018, 361, eaat8235. [Google Scholar] [CrossRef] [PubMed]
- Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Stranks, S.D.; Nayak, P.K.; Zhang, W.; Stergiopoulos, T.; Snaith, H.J. Formation of thin films of organic–inorganic perovskites for high-efficiency solar cells. Angew. Chem. Int. Ed. 2015, 54, 3240–3248. [Google Scholar] [CrossRef]
- Stranks, S.D.; Eperon, G.E.; Grancini, G.; Menelaou, C.; Alcocer, M.J.; Leijtens, T.; Herz, L.M.; Petrozza, A.; Snaith, H.J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344. [Google Scholar] [CrossRef]
- Xing, G.; Mathews, N.; Sun, S.; Lim, S.S.; Lam, Y.M.; Grätzel, M.; Mhaisalkar, S.; Sum, T.C. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344–347. [Google Scholar] [CrossRef]
- Green, M.A.; Ho-Baillie, A.; Snaith, H.J.J.N. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514. [Google Scholar] [CrossRef]
- Krebs, F.C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 2009, 93, 394–412. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, K.; Coates, N.E.; Moses, D.; Nguyen, T.-Q.; Dante, M.; Heeger, A.J. Efficient tandem polymer solar cells fabricated by all-solution processing. Science 2007, 317, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Kawano, K.; Pacios, R.; Poplavskyy, D.; Nelson, J.; Bradley, D.D.C.; Durrant, J.R. Degradation of organic solar cells due to air exposure. Sol. Energy Mater. Sol. Cells 2006, 90, 3520–3530. [Google Scholar] [CrossRef]
- Lunt, R.R.; Osedach, T.P.; Brown, P.R.; Rowehl, J.A.; Bulović, V. Practical roadmap and limits to nanostructured photovoltaics. Adv. Mater. 2011, 23, 5712–5727. [Google Scholar] [CrossRef] [PubMed]
- Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595–6663. [Google Scholar] [CrossRef]
- Maisch, P.; Lucera, L.; Brabec, C.J.; Egelhaaf, H.J. Flexible Carbon-based Electronics: Flexible Solar Cells. Flexible Carbon-based Electronics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 51–69. [Google Scholar]
- Luque, A.; Hegedus, S. Handbook of Photovoltaic Science and Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Lan, X.; Masala, S.; Sargent, E.H. Charge-extraction strategies for colloidal quantum dot photovoltaics. Nat. Mater. 2014, 13, 233–240. [Google Scholar] [CrossRef]
- Brown, P.; Kim, D.; Lunt, R.; Zhao, N.; Bawendi, M.; Grossman, J.; Bulović, V. Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 2014, 8, 5863–5872. [Google Scholar] [PubMed]
- Wanger, D.D.; Correa, R.E.; Dauler, E.A.; Bawendi, M.G. The dominant role of exciton quenching in PbS quantum-dot-based photovoltaic devices. Nano Lett. 2013, 13, 5907–5912. [Google Scholar] [CrossRef] [PubMed]
- Udayakumar, M.D.; Anushree, G.; Sathyaraj, J.; Manjunathan, A. The impact of advanced technological developments on solar PV value chain. Mater. Today: Proc. 2021, 45, 2053–2058. [Google Scholar]
- Joshi, A.; Khan, A.; Afra, S. Comparison of half cut solar cells with standard solar cells. In Proceedings of the 2019 Advances in Science and Engineering Technology International Conferences ASET), Dubai, United Arab Emirates, 26 March–10 April 2019; pp. 1–3. [Google Scholar]
- Zhong, O. What Is a Half-Cut Cell Mono PERC Solar Panel? 2019. Available online: https://www.prostarsolar.net/article/what-is-a-half-cut-cell-mono-perc-solar-panel.html (accessed on 6 October 2022).
- Mercom Clean Energy Insights. Available online: https://www.mercomindia.com/goodbye-polycrystalline-solar-modules-bifacial (accessed on 6 January 2023).
- Suresh Kumar, N.; Chandra Babu Naidu, K. A review on perovskite solar cells (PSCs), materials and applications. J. Mater. 2021, 7, 940–956. [Google Scholar]
- Abuzaid, H.; Awad, M.; Shamayleh, A. Impact of dust accumulation on photovoltaic panels: A review paper. Int. J. Sustain. Eng. 2022, 15, 264–285. [Google Scholar]
- Sulaiman, S.A.; Singh, A.K.; Mokhtar, M.M.M.; Bou-Rabee, M.A. Influence of dirt accumulation on performance of PV panels. Energy Procedia 2014, 50, 50–56. [Google Scholar] [CrossRef]
- Tanesab, J.; Parlevliet, D.; Whale, J.; Urmee, T. Seasonal effect of dust on the degradation of PV modules performance deployed in different climate areas. Renew. Energy 2017, 111, 105–115. [Google Scholar]
- Tanesab, J.; Parlevliet, D.; Whale, J.; Urmee, T. Dust effect and its economic analysis on PV modules deployed in a temperate climate zone. Energy Procedia 2016, 100, 65–68. [Google Scholar] [CrossRef]
- Kimber, A.; Mitchell, L.; Nogradi, S.; Wenger, H. The effect of soiling on large grid-connected photovoltaic systems in California and the southwest region of the United States. In Proceedings of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, Waikoloa, HI, USA, 7–12 May 2006; pp. 2391–2395. [Google Scholar]
- Aljaghoub, H.; Abumadi, F.; AlMallahi, M.N.; Obaideen, K.; Alami, A.H. Solar PV cleaning techniques contribute to Sustainable Development Goals (SDGs) using Multi-criteria decision-making (MCDM): Assessment and review. Int. J. Thermofluids 2022, 16, 100233. [Google Scholar]
- Al-Housani, M.; Bicer, Y.; Koç, M. Experimental investigations on PV cleaning of large-scale solar power plants in desert climates: Comparison of cleaning techniques for drone retrofitting. Energy Convers. Manag. 2019, 185, 800–815. [Google Scholar]
- Yadav, A.; Pillai, S.R.; Singh, N.; Philip, S.A.; Mohanan, V. Preliminary investigation of dust deposition on solar cells. Mater. Today: Proc. 2021, 46, 6812–6815. [Google Scholar] [CrossRef]
- Lasfar, S.; Haidara, F.; Mayouf, C.; Abdellahi, F.M.; Elghorba, M.; Wahid, A.; Kane, C.S.E. Study of the influence of dust deposits on photovoltaic solar panels: Case of Nouakchott. Energy Sustain. Dev. 2021, 63, 7–15. [Google Scholar] [CrossRef]
- Alnasser, T.M.A.; Mahdy, A.M.J.; Abass, K.I.; Chaichan, M.T.; Kazem, H.A. Impact of dust ingredient on photovoltaic performance: An experimental study. Sol. Energy 2020, 195, 651–659. [Google Scholar]
- Chiteka, K.; Arora, R.; Sridhara, S.; Enweremadu, C. A novel approach to Solar PV cleaning frequency optimization for soiling mitigation. Sci. Afr. 2020, 8, e00459. [Google Scholar] [CrossRef]
- Sahouane, N.; Ziane, A.; Dabou, R.; Neçaibia, A.; Rouabhia, A.; Lachtar, S.; Blal, M.; Slimani, A.; Boudjamaa, T. Technical and economic study of the sand and dust accumulation impact on the energy performance of photovoltaic system in Algerian Sahara. Renew. Energy 2023, 205, 142–155. [Google Scholar] [CrossRef]
- Al-Doori, G.F.; Mahmood, R.A.; Al-Janabi, A.; Hassan, A.M.; Chala, G.T. Impact of Surface Temperature of a Photovoltaic Solar Panel on Voltage Production. In Energy and Environment in the Tropics; Springer: Berlin/Heidelberg, Germany, 2022; pp. 81–93. [Google Scholar]
- Li, D.; King, M.; Dooner, M.; Guo, S.; Wang, J. Study on the cleaning and cooling of solar photovoltaic panels using compressed airflow. Sol. Energy 2021, 221, 433–444. [Google Scholar] [CrossRef]
- Kazem, H.A.; Chaichan, M.T.; Al-Waeli, A.H.; Sopian, K. Effect of dust and cleaning methods on mono and polycrystalline solar photovoltaic performance: An indoor experimental study. Sol. Energy 2022, 236, 626–643. [Google Scholar]
- Fan, S.; Liang, W.; Wang, G.; Zhang, Y.; Cao, S. A novel water-free cleaning robot for dust removal from distributed photovoltaic (PV) in water-scarce areas. Sol. Energy 2022, 241, 553–563. [Google Scholar] [CrossRef]
- Yadav, V.; Suthar, P.; Mukhopadhyay, I.; Ray, A. Cutting edge cleaning solution for PV modules. Mater. Today Proc. 2021, 39, 2005–2008. [Google Scholar] [CrossRef]
- Ekinci, F.; Yavuzdeğer, A.; Nazlıgül, H.; Esenboğa, B.; Doğru Mert, B.; Demirdelen, T. Experimental investigation on solar PV panel dust cleaning with solution method. Sol. Energy 2022, 237, 1–10. [Google Scholar]
- Juaidi, A.; Muhammad, H.H.; Abdallah, R.; Abdalhaq, R.; Albatayneh, A.; Kawa, F. Experimental validation of dust impact on-grid connected PV system performance in Palestine: An energy nexus perspective. Energy Nexus 2022, 6, 100082. [Google Scholar] [CrossRef]
- Derakhshandeh, J.F.; AlLuqman, R.; Mohammad, S.; AlHussain, H.; AlHendi, G.; AlEid, D.; Ahmad, Z. A comprehensive review of automatic cleaning systems of solar panels. Sustain. Energy Technol. Assess. 2021, 47, 101518. [Google Scholar] [CrossRef]
- Rehman, S.; Mohandes, M.; Hussein, A.; Alhems, L.; Al-Shaikhi, A. Cleaning of Photovoltaic Panels Utilizing the Downward Thrust of a Drone. Energies 2022, 15, 8159. [Google Scholar] [CrossRef]
- Khalid, H.M.; Rafique, Z.; Muyeen, S.; Raqeeb, A.; Said, Z.; Saidur, R.; Sopian, K. Dust accumulation and aggregation on PV panels: An integrated survey on impacts, mathematical models, cleaning mechanisms, and possible sustainable solution. Sol. Energy 2023, 251, 261–285. [Google Scholar] [CrossRef]
- Wang, P.; Xie, J.; Ni, L.; Wan, L.; Ou, K.; Zheng, L.; Sun, K. Reducing the effect of dust deposition on the generating efficiency of solar PV modules by super-hydrophobic films. Sol. Energy 2018, 169, 277–283. [Google Scholar] [CrossRef]
- Zhang, L.-z.; Pan, A.-j.; Cai, R.-r.; Lu, H. Indoor experiments of dust deposition reduction on solar cell covering glass by transparent super-hydrophobic coating with different tilt angles. Sol. Energy 2019, 188, 1146–1155. [Google Scholar] [CrossRef]
- Hossain, M.I.; Ali, A.; Bermudez Benito, V.; Figgis, B.; Aïssa, B. Anti-Soiling Coatings for Enhancement of PV Panel Performance in Desert Environment: A Critical Review and Market Overview. Materials 2022, 15, 7139. [Google Scholar] [CrossRef]
- Eisa, K.; Shenouda, R.; Abd-Elhady, M.; Kandil, H.; Khalil, T. Mitigation of dust on PV panels that operate light posts using a wind shield, mechanical vibrations and AN antistatic coating. Ain Shams Eng. J. 2023, 14, 101993. [Google Scholar] [CrossRef]
- Joshi, A.; Chiranjeevi, C.; Srinivas, T.; Sekhar, Y.R.; Natarajan, M.; San, N. Experimental investigations on the performance of solar photovoltaic system for different industrial weather conditions with dust accumulation. Mater. Today: Proc. 2021, 46, 5262–5271. [Google Scholar] [CrossRef]
- Du, X.; Li, Y.; Tang, Z.; Ma, Z.; Jiang, F.; Zhou, H.; Wu, C.; Ghorbel, F.H. Modeling and experimental verification of a novel vacuum dust collector for cleaning photovoltaic panels. Powder Technol. 2022, 397, 117014. [Google Scholar] [CrossRef]
- Kawamoto, H. Electrostatic cleaning equipment for dust removal from soiled solar panels. J. Electrost. 2019, 98, 11–16. [Google Scholar] [CrossRef]
- Guo, B.; Javed, W.; Khoo, Y.S.; Figgis, B. Solar PV soiling mitigation by electrodynamic dust shield in field conditions. Sol. Energy 2019, 188, 271–277. [Google Scholar] [CrossRef]
- Farr, B.; Wang, X.; Goree, J.; Hahn, I.; Israelsson, U.; Horányi, M. Dust removal from a variety of surface materials with multiple electron beams. Acta Astronaut. 2022, 200, 42–47. [Google Scholar] [CrossRef]
- Wu, Z.; Yan, S.; Wang, Z.; Ming, T.; Zhao, X.; Ma, R.; Wu, Y. The effect of dust accumulation on the cleanliness factor of a parabolic trough solar concentrator. Renew. Energy 2020, 152, 529–539. [Google Scholar] [CrossRef]
- Elnozahy, A.; Abd-Elbary, H.; Abo-Elyousr, F.K. Efficient energy harvesting from PV Panel with reinforced hydrophilic nano-materials for eco-buildings. Energy Built Environ. 2022, 5, 393–403. [Google Scholar] [CrossRef]
- Hariri, N. A novel dust mitigation technology solution of a self-cleaning method for a PV module capable of harnessing reject heat using shape memory alloy. Case Stud. Therm. Eng. 2022, 32, 101894. [Google Scholar] [CrossRef]
- El-Mahallawi, I.; Elshazly, E.; Ramadan, M.; Nasser, R.; Yasser, M.; El-Badry, S.; Elthakaby, M.; Oladinrin, O.T.; Rana, M.Q. Solar PV Panels-Self-Cleaning Coating Material for Egyptian Climatic Conditions. Sustainability 2022, 14, 11001. [Google Scholar] [CrossRef]
- Lebbi, M.; Touafek, K.; Benchatti, A.; Boutina, L.; Khelifa, A.; Baissi, M.T.; Hassani, S. Energy performance improvement of a new hybrid PV/T Bi-fluid system using active cooling and self-cleaning: Experimental study. Appl. Therm. Eng. 2021, 182, 116033. [Google Scholar] [CrossRef]
- Alamri, H.R.; Rezk, H.; Abd-Elbary, H.; Ziedan, H.A.; Elnozahy, A. Experimental investigation to improve the energy efficiency of solar PV panels using hydrophobic SiO2 nanomaterial. Coatings 2020, 10, 503. [Google Scholar] [CrossRef]
- Aljdaeh, E.; Kamwa, I.; Hammad, W.; Abuashour, M.I.; Sweidan, T.e.; Khalid, H.M.; Muyeen, S. Performance enhancement of self-cleaning hydrophobic nanocoated photovoltaic panels in a dusty environment. Energies 2021, 14, 6800. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Chesnutt, J.K.; Chien, C.-H.; Guo, B.; Wu, C.-Y. Dust removal from solar concentrators using an electrodynamic screen. Sol. Energy 2019, 187, 341–351. [Google Scholar] [CrossRef]
- Søndergaard, R.; Hösel, M.; Angmo, D.; Larsen-Olsen, T.T.; Krebs, F.C. Roll-to-roll fabrication of polymer solar cells. Mater. Today 2012, 15, 36–49. [Google Scholar] [CrossRef]
- Hunde, B.R.; Woldeyohannes, A.D. 3D Printing and Solar Cell Fabrication Methods: A Review of Challenges, Opportunities, and Future Prospects. Results Opt. 2023, 11, 100385. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, C.; Zheng, S. Investment and pricing in solar photovoltaic waste recycling with government intervention: A supply chain perspective. Comput. Ind. Eng. 2023, 177, 109044. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, Z.; Zhu, C.; Yang, R.; Yan, B.; Jiang, G. Green or not? Environmental challenges from photovoltaic technology. Environ. Pollut. 2023, 320, 121066. [Google Scholar] [CrossRef] [PubMed]
- Deng, R.; Chang, N.; Lunardi, M.M.; Dias, P.; Bilbao, J.; Ji, J.; Chong, C.M. Remanufacturing end-of-life silicon photovoltaics: Feasibility and viability analysis. Prog. Photovolt. Res. Appl. 2021, 29, 760–774. [Google Scholar] [CrossRef]
- Farrell, C.C.; Osman, A.I.; Doherty, R.; Saad, M.; Zhang, X.; Murphy, A.; Harrison, J.; Vennard, A.S.M.; Kumaravel, V.; Al-Muhtaseb, A.H.; et al. Technical challenges and opportunities in realising a circular economy for waste photovoltaic modules. Renew. Sustain. Energy Rev. 2020, 128, 109911. [Google Scholar] [CrossRef]
- Padoan, F.C.S.M.; Altimari, P.; Pagnanelli, F. Recycling of end of life photovoltaic panels: A chemical prospective on process development. Sol. Energy 2019, 177, 746–761. [Google Scholar] [CrossRef]
- Lee, T.D.; Ebong, A.U. A review of thin film solar cell technologies and challenges. Renew. Sustain. Energy Rev. 2017, 70, 1286–1297. [Google Scholar] [CrossRef]
- Trivedi, H.; Meshram, A.; Gupta, R. Recycling of photovoltaic modules for recovery and repurposing of materials. J. Environ. Chem. Eng. 2023, 11, 109501. [Google Scholar] [CrossRef]
- Granata, G.; Altimari, P.; Pagnanelli, F.; De Greef, J. Recycling of solar photovoltaic panels: Techno-economic assessment in waste management perspective. J. Clean. Prod. 2022, 363, 132384. [Google Scholar] [CrossRef]
- Pagnanelli, F.; Altimari, P.; Moscardini, E.; Toro, L.; Abo Atia, T.; Baldassari, L.; dos Santos Martins Padoan, F.C. Pilot scale tests for recycling of photovoltaic panels by physical and chemical treatment. In 2017-Sustainable Industrial Processing Summit; Flogen Star Outreach: Quebec, QC, Canada, 2017; pp. 114–120. [Google Scholar]
- Pagnanelli, F.; Moscardini, E.; Granata, G.; Abo Atia, T.; Altimari, P.; Havlik, T.; Toro, L. Physical and chemical treatment of end of life panels: An integrated automatic approach viable for different photovoltaic technologies. Waste Manag. 2017, 59, 422–431. [Google Scholar] [CrossRef]
- Pagnanelli, F.; Moscardini, E.; Altimari, P.; Padoan, F.C.S.M.; Abo Atia, T.; Beolchini, F.; Amato, A.; Toro, L. Solvent versus thermal treatment for glass recovery from end of life photovoltaic panels: Environmental and economic assessment. J. Environ. Manag. 2019, 248, 109313. [Google Scholar] [CrossRef]
- Rubino, A.; Granata, G.; Moscardini, E.; Baldassari, L.; Altimari, P.; Toro, L.; Pagnanelli, F. Development and Techno-Economic Analysis of an Advanced Recycling Process for Photovoltaic Panels Enabling Polymer Separation and Recovery of Ag and Si. Energies 2020, 13, 6690. [Google Scholar] [CrossRef]
- Corcelli, F.; Ripa, M.; Ulgiati, S. End-of-life treatment of crystalline silicon photovoltaic panels. An emergy-based case study. J. Clean. Prod. 2017, 161, 1129–1142. [Google Scholar] [CrossRef]
- Tembo, P.M.; Subramanian, V. Current trends in silicon-based photovoltaic recycling: A technology, assessment, and policy review. Sol. Energy 2023, 259, 137–150. [Google Scholar] [CrossRef]
- Li, J.; Shao, J.; Yao, X.; Li, J. Life cycle analysis of the economic costs and environmental benefits of photovoltaic module waste recycling in China. Resour. Conserv. Recycl. 2023, 196, 107027. [Google Scholar] [CrossRef]
- Wang, X.; Xue, J.; Hou, X. Barriers analysis to Chinese waste photovoltaic module recycling under the background of “double carbon”. Renew. Energy 2023, 214, 39–54. [Google Scholar] [CrossRef]
- Li, J.; Yan, S.; Li, Y.; Wang, Z.; Tan, Y.; Li, J.; Xia, M.; Li, P. Recycling Si in waste crystalline silicon photovoltaic panels after mechanical crushing by electrostatic separation. J. Clean. Prod. 2023, 415, 137908. [Google Scholar] [CrossRef]
- Costoya, X.; deCastro, M.; Carvalho, D.; Gómez-Gesteira, M. Assessing the complementarity of future hybrid wind and solar photovoltaic energy resources for North America. Renew. Sustain. Energy Rev. 2023, 173, 113101. [Google Scholar] [CrossRef]
- Pascasio, J.D.A.; Esparcia, E.A.; Castro, M.T.; Ocon, J.D. Comparative assessment of solar photovoltaic-wind hybrid energy systems: A case for Philippine off-grid islands. Renew. Energy 2021, 179, 1589–1607. [Google Scholar] [CrossRef]
- Bhandari, B.; Lee, K.-T.; Lee, C.S.; Song, C.-K.; Maskey, R.K.; Ahn, S.-H. A novel off-grid hybrid power system comprised of solar photovoltaic, wind, and hydro energy sources. Appl. Energy 2014, 133, 236–242. [Google Scholar] [CrossRef]
- Daniela-Abigail, H.-L.; Tariq, R.; Mekaoui, A.E.; Bassam, A.; Vega De Lille, M.J.; Ricalde, L.; Riech, I. Does recycling solar panels make this renewable resource sustainable? Evidence supported by environmental, economic, and social dimensions. Sustain. Cities Soc. 2022, 77, 103539. [Google Scholar] [CrossRef]
- Winkler, J.; Pudlik, M.; Ragwitz, M.; Pfluger, B. The market value of renewable electricity—Which factors really matter? Appl. Energy 2016, 184, 464–481. [Google Scholar] [CrossRef]
- Borenstein, S. The Market Value and Cost of Solar Photovoltaic Electricity Production; University of California: La Jolla, CA, USA, 2008. [Google Scholar]
- Zipp, A. Revenue prospects of photovoltaic in Germany—Influence opportunities by variation of the plant orientation. Energy Policy 2015, 81, 86–97. [Google Scholar] [CrossRef]
- Dujardin, J.; Schillinger, M.; Kahl, A.; Savelsberg, J.; Schlecht, I.; Lordan-Perret, R. Optimized market value of alpine solar photovoltaic installations. Renew. Energy 2022, 186, 878–888. [Google Scholar] [CrossRef]
- Guangul, F.M.; Chala, G.T. Solar energy as renewable energy source: SWOT analysis. In Proceedings of the 2019 4th MEC International Conference on Big Data and Smart City (ICBDSC), Muscat, Oman, 15–16 January 2019; pp. 1–5. [Google Scholar]
- Gómez-Calvet, R.; Martínez-Duart, J.M.; Gómez-Calvet, A.R. The 2030 power sector transition in Spain: Too little storage for so many planned solar photovoltaics? Renew. Sustain. Energy Rev. 2023, 174, 113094. [Google Scholar] [CrossRef]
- Albadi, M.; Al-Badi, A.; Al-Lawati, A.; Malik, A. Cost of PV electricity in Oman. In Proceedings of the 2011 IEEE GCC Conference and Exhibition (GCC), Dubai, United Arab Emirates, 19–22 February 2011; pp. 373–376. [Google Scholar]
No | Type of Photovoltaic Technologies | Performance Efficiency | Max Power W | Description |
---|---|---|---|---|
1 | N-type IBC | 22.8% | 440 W | A silicon heterojunction solar cell with interdigitated back contact (IBC) demonstrated exceptional performance under one-sun illumination or concentration. The lack of contact grid shadowing at the sunward side and perhaps inexpensive substrate cost due to the thin device design are two benefits of this design. The module assembly costs can also be reduced, as both connections are on the back. The lack of space between the solar cells allows for closer placement of the cells within the module. To increase cell efficiency and reduce manufacturing costs for solar cells, interdigitated back contact (IBC) solar cells are the only feasible choice (Anon, n.d.). |
2 | Half-cut mono PERC (Passivated Emitter and Rear Cell) HPBC | 22.6% | 440 W | Solar cells have better durability and performance. Half-cut cells can improve panel efficiencies by a few percentage points in terms of performance. In addition to having higher production rates, half-cut cells are also stronger physically than their conventional counterparts; their smaller size makes them more resistant to shattering. Furthermore, the technique for half-cut cells not only cuts the cells in half but also decreases the cost, guaranteeing a lower LCOE [131,132]. |
3 | Half-cut mono PERC HJT (Heterojunction Technology) | 22.3–22.5% | 430–440 W | In a single-cell structure, HJT combines the benefits of crystalline silicon cells and thin-film technology. Efficiency levels of over 25% are implied by this. A heterojunction is a junction produced between two separate materials, crystalline and amorphous silicon, in an HJT cell, compared to a normal crystalline solar cell, which employs a single material, silicon. This results in several performance advantages over traditional cells [133]. |
4 | Half-cut mono PERC TOPCon | 21–22% | 425–430 W | The solar cells receive an extra tunnelling oxide passivation layer from TOPCon. In terms of capital cost, this technology provides an unmatched mix of efficiency and reliability. With the TOPCon procedure, PERC cells (passivated emitter rear contact) become more powerful and effective. New TOPCon technology produces higher power under low irradiation and reaches up to 5 watts per panel above the minimum power rating, with 22% at peak efficiency. After 30 years, the panel would still produce 87.5% of the electricity, showing excellent investment with a longer lifespan (Anon, n.d.) |
5 | Shingled mono PERC | 18–20% | 440 W | The shingle cell solar panel uses the shingling method, which offers ultra-high efficiency and increases the performance of the panel in low-light situations, thereby increasing the duration of power generation by the solar PV system. Solar cells are separated into strips and placed inside shimmed modules. Intercell gaps are eliminated to increase power output and module efficiency, and more silicon cells may be packed into a given module [9]. |
6 | Mono PERC | 17–19% | 440 W | Due to their purity and black appearance, monocrystals are easily identified. They also feature rounded edges and very high efficiency. In an ideal world, this could be about 20%. Such solar modules do not achieve a positive energy balance for several years (Anon, n.d.). |
7 | Poly PERC | 16–17% | 440 W | As a less complicated manufacturing alternative to monocrystalline solar cells, polycrystalline solar cells are available. This technique involves pouring liquid silicon into prepared blocks, which are subsequently cut into individual wafers. They become multi-crystalline at this point, accounting for their much greater brightness compared to monocrystalline ones. Although their efficiency is slightly lower at 15%, the streamlined production process improves the energy balance and manufacturing costs (Anon, n.d.). |
8 | Perovskite solar cells (PSCs) | 25–26% | 440 W | Recently, there has been a lot of interest in perovskite solar cells because of a number of factors, including their greater power conversion efficiency (PCE), simple fabrication process, flightiness, lightweight design, deplorability in extremely light space, and low cost of material components. The efficiency of perovskite solar cells has recently surpassed 25% [134] because of the superior quality of the perovskite membrane made using low-temperature synthesis techniques combined with the development of suitable interface and electrode materials. |
Reference | Location | Study Period | PV-Cleaning Method | Results |
---|---|---|---|---|
Al-Housani et al. [141] | Qatar | 6 months | Manual cleaning:
| PV system efficiency is considerably reduced for monthly cleaning durations regardless of cleaning method in desert climates. Moreover, fiber-based fabric scanning is the most economical and performance-focused method. The best results were achieved at the lowest expense with regular, weekly cleaning. |
Yadav et al., 2021 [142] | United Arab Emirates | - | Manual cleaning:
| After using a cleaning brush to clean the solar cell, it was discovered that the brush caused surface scratches. The output current (A) and voltage (V) were measured together with the electrical characteristics, and they were found to be 7.2 mA and 3.171 volts, respectively. This translates into a voltage loss of 23% and a current loss of 8%, respectively. |
Lasfar et al. [143] | Toujounine, Nouakchott, Mauritania | 2 months | Manual cleaning:
| Using a cleaning brush, a power increment of 21.57% was observed. |
Tanesab et al., 2017 [137] | Perth, Western Australia, and Nusa Tenggara Timur (NTT), Indonesia | 1 year | Natural cleaning | The end of summer and spring saw a decline in solar module performance, whereas the end of autumn and winter saw an increase. |
Kimber et al., [139] | California and the Southwest region of the United States | 1 year | Natural cleaning | Rainfall is considered to be the most efficient and environmentally friendly technique for cleaning a PV module’s surface. However, light rain is detrimental, as it collects airborne dust particles and sediments them on the surface, leaving sticky dirt patches that can suddenly reduce the performance of photovoltaic cells. |
Juaidi et al., 2022 [153] | Palestine | 7 months | Automated cleaning | The results showed a power loss of 9.99% and an average monthly power decrease of 2.93% after seven consecutive months. |
Fan et al., 2022 [150] | Northeast China | 5 months | Automated cleaning:
| The findings demonstrated that the waterless robot was capable of removing dust from panels, with an average dust cleaning rate of 92.46% and an increase in PV energy efficiency ranging from 11.06% to 49.53%. The usefulness of the robot was confirmed by assessing the PV efficiency and light transmittance of the panels. |
Yadav et al., 2021 [151] | India | 1 year | Automated cleaning:
| The cleaning efficiency was 97.8% higher than the suggested cleaning technique. |
Wang et al. [157] | Qinghai, China | - | Preventive cleaning:
| Dust has a smaller impact on the energy generation efficiency of photovoltaic modules coated with a waterproof fluorine film than it does on those coated with a hydrophobic silicon film, although both types of modules can benefit from reduced dust accumulation on the surface and higher efficiency. |
Zhang et al., 2019 [158] | Guangzhou, China | 1 month | Preventive cleaning:
| The findings showed that the hydrophobic super coating’s low adhesion energy could greatly reduce dust deposition on the surface of the glass. The super hydrophobic coating performed better than the hydrophobic coating at reducing the precipitation of dust. For tilt angles of 30°, 45°, and 60°, the deposition density on the water-repellent coated glass was only 44.4%, 28.6%, or 11.2% of the bare surface. |
Joshi et al. [161] | India | 1 month | Preventive cleaning:
| The installed capacity of each set of panels reached around 39 kilowatts, and the power difference between the coated and uncoated panels peaked at 3.5 kilowatts. |
Elnozahy et al. [167] | Egypt | 5 months | Self-cleaning:
| The nano-efficiency coating reached 11%. Also, according to the economic results, using PV panels with nano-coating resulted in a targeted 11% reduction in BIPV carbon emissions. |
Alamri et al. [171] | Egypt | 6 months | Self-cleaning:
| SiO2 coating improved the performance of PV panels. Coated plates’ general efficiency rose by 15%. |
Chen et al., 2019 [173] | Doha, Qatar | - | Electrostatic cleaning:
| It was discovered that more than half of the particles successfully moved up the cell, despite some particles also moving down the slope due to gravity. It is possible to produce an electrodynamic screen (EDC) under optimal and suitable parameters and conditions. |
Farr et al. [165] | USA | - | Electrostatic cleaning:
| It has been shown that, by transforming the sample surface to change the e-beam incident angle, more microcavities can be disclosed, increasing the cleaning efficiency. In contrast to a single fixed beam and sample, a multifaceted electron beam source arrangement was demonstrated to improve cleaning performance by 10%–30%. Upon only 2–3 min of beam contact, 80–90% cleanliness was achieved by the majority of the insulating samples. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chala, G.T.; Al Alshaikh, S.M. Solar Photovoltaic Energy as a Promising Enhanced Share of Clean Energy Sources in the Future—A Comprehensive Review. Energies 2023, 16, 7919. https://doi.org/10.3390/en16247919
Chala GT, Al Alshaikh SM. Solar Photovoltaic Energy as a Promising Enhanced Share of Clean Energy Sources in the Future—A Comprehensive Review. Energies. 2023; 16(24):7919. https://doi.org/10.3390/en16247919
Chicago/Turabian StyleChala, Girma T., and Shamsa M. Al Alshaikh. 2023. "Solar Photovoltaic Energy as a Promising Enhanced Share of Clean Energy Sources in the Future—A Comprehensive Review" Energies 16, no. 24: 7919. https://doi.org/10.3390/en16247919
APA StyleChala, G. T., & Al Alshaikh, S. M. (2023). Solar Photovoltaic Energy as a Promising Enhanced Share of Clean Energy Sources in the Future—A Comprehensive Review. Energies, 16(24), 7919. https://doi.org/10.3390/en16247919