Latin America towards Sustainability through Renewable Energies: A Systematic Review
Abstract
:1. Introduction
2. What Is Renewable Energy?
3. Materials and Methods
3.1. Research Approach
3.2. Search Strategies
3.3. Inclusion and Exclusion Criteria
3.4. Selection Process
4. Results
4.1. Renewable Energy Applications in Latin America
4.2. Energy Transition in Latin America
4.3. Policies to Encourage the Use of Renewable Energies in Latin America
4.4. Energy Potential in Latin America
5. Discussion
6. Conclusions
Funding
Conflicts of Interest
References
- Procópio, F.; Giannini, M.; Vasconcelos, M.; Fidelis, N.; de Azevedo, E. Bigger is not always better: Review of small wind in brazil. Energies 2021, 14, 976. [Google Scholar] [CrossRef]
- Beltrán, J.D.; Quintero, M.; López, D.; Carvajal, S.X. Energy Management Systems in Latin American Industry: Case Study Colombia. TecnoLógicas 2022, 25, e2379. [Google Scholar] [CrossRef]
- Seminario-Córdova, R.; Rojas-Ortega, R. Renewable Energy Sources and Energy Production: A Bibliometric Analysis of the Last Five Years. Sustainability 2023, 15, 10499. [Google Scholar] [CrossRef]
- Valencia, G.; Cardenas, Y.; Acevedo, C. PEST analysis of wind energy in the world: From the worldwide boom to the emergent in Colombia. J. Phys. Conf. Ser. 2018, 1126, 19. [Google Scholar] [CrossRef]
- Asencios, Y. The Importance of Hydrogen for Brazil: A source of clean energy and a path to the production of nitrogen fertilizers. SciELO Prepr. 2022, in press. [Google Scholar] [CrossRef]
- Cristiano, G.; Buitrago, C. Can biogas, generated from cattle waste reduce negative externalities? A case of study in Argentina. Semest. Económico 2020, 23, 129–144. [Google Scholar] [CrossRef]
- Nahui, J.; Aguinaga, A.; Dávila, F.; Méndez, O. Incidence of load profiles in the Levelized Cost of Electricity for a solar-PV generation system located in Lambayeque-Perú. In Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology, Latin American and Caribbean Consortium of Engineering Institutions, Virtual, 9–10 December 2021. [Google Scholar] [CrossRef]
- Martínez, C.; Poladian, A. El uso de energía fotovoltaica en viviendas de Buenos Aires: Estudio microeconómico de factibilidad. Econ. Coyunt. 2020, 5, 33–58. [Google Scholar] [CrossRef]
- Shadman, M.; Silva, C.; Faller, D.; Wu, Z.; Assad, L.P.d.F.; Landau, L.; Levi, C.; Estefen, S.F. Ocean Renewable Energy Potential, Technology, and Deployments: A Case Study of Brazil. Energies 2019, 12, 3658. [Google Scholar] [CrossRef]
- Arévalo, J.; Cabellos, M.I.; Marquez, R.T. Design of a solar power system in San Agustin building Ocaña, Colombia. J. Phys. Conf. Ser. 2019, 1386, 99. [Google Scholar] [CrossRef]
- Arredondo, J.; Ramos, M. Auctions in Renewable Energy and the Grid Parity Using Solar Photovoltaic Technology in Peru. J. Phys. Conf. Ser. 2021, 1841, 7. [Google Scholar] [CrossRef]
- Verástegui, F.; Villalobos, C.; Lobos, N.; Lorca Negrete, M.; Olivares, D. An optimization-based analysis of decarbonization pathways and flexibility requirements in the Chilean electric power system. In Proceedings of the ISES Solar World Congress and IEA SHC International Conference on Solar Heating and Cooling for Buildings and Industry, International Solar Energy Society, Santiago, Chile, 4–7 November 2019; pp. 1624–1635. [Google Scholar] [CrossRef]
- Sabbatella, I. economía política internacional de las bioenergías: Avances y límites en el mercado eléctrico argentino. Relac. Int. 2022, 31, 158. [Google Scholar] [CrossRef]
- Arias, D.; Gavela, P.; Riofrio, J. Estado del Arte: Incentivos y Estrategias para la Penetración de Energía Renovable. Rev. Téc. “Energ.” 2022, 18, 91–103. [Google Scholar] [CrossRef]
- IRENA. Renewable Capacity Statistics 2022. 2022. Available online: https://www.irena.org/publications/2022/Apr/Renewable-Capacity-Statistics-2022 (accessed on 7 August 2023).
- Castiblanco, C. El papel del impuesto al carbono en la transición energética: Una revisión de su aplicación en Colombia. Gestión Ambiente 2022, 25, 102263. [Google Scholar] [CrossRef]
- Vakulchuk, R.; Overland, I.; Scholten, D. Renewable energy and geopolitics: A review. Renew. Sustain. Energy Rev. 2020, 122, 109547. [Google Scholar] [CrossRef]
- Cárdenas, L.; Icaza, D.; Cárdenas, M.; Mejía, F.; Icaza, F.; Flores, M. System of generation of energy based on solar energy for the rural political movements centers. In Proceedings of the 8th International Conference on Renewable Energy Research and Applications, ICRERA 2019, Brasov, Romania, 3–6 November 2019; pp. 100–106. [Google Scholar] [CrossRef]
- Moreno, D.; López, I.; Blessent, D. Geothermal energy in Colombia as of 2018. Ing. Univ. Pontif. Univ. Javer. 2020, 2020, 24. [Google Scholar] [CrossRef]
- Carcelen, J.; Izquierdo, C. Energía geotérmica en Ecuador, condiciones actuales y necesidad de una legislación específica. Iuris Dictio 2022, 16, 527. [Google Scholar] [CrossRef]
- Gutiérrez, A.; Villalobos, D. Proyectos hidroeléctricos y resistencias comunitarias en defensa de los ríos en Costa Rica: Un análisis geográfico. Cuad. Geogr. Rev. Colomb. Geogr. 2020, 29, 133–151. [Google Scholar] [CrossRef]
- Hunt, J.D.; Nascimento, A.; Caten, C.S.T.; Tomé, F.M.C.; Schneider, P.S.; Thomazoni, A.L.R.; de Castro, N.J.; Brandão, R.; de Freitas, M.A.V.; Martini, J.S.C.; et al. Energy crisis in Brazil: Impact of hydropower reservoir level on the river flow. Energy 2021, 239, 121927. [Google Scholar] [CrossRef]
- Olivares, A. Incentivos regulatorios para el desarrollo de la energía eólica marina en Chile. Rev. Derecho Adm. Económico 2021, 33, 227–253. [Google Scholar] [CrossRef]
- Pardal-Refoyo, J.; Pardal-Peláez, B. Anotaciones para estructurar una revisión sistemática. Rev. ORL 2020, 11, 155–160. [Google Scholar] [CrossRef]
- Codina, L. Sistemas de búsqueda y obtención de información: Componentes y evolución. Anu. ThinkEPI 2018, 12, 77–82. [Google Scholar] [CrossRef]
- Espinoza, E. La búsqueda de información científica en las bases de datos académicas. Rev. Metrop. Cienc. Apl. 2020, 3, 31–35. Available online: https://remca.umet.edu.ec/index.php/REMCA/article/view/219 (accessed on 21 July 2023).
- World Economic Forum. Fostering Effective Energy Transition 2023. 2023. Available online: https://es.weforum.org/reports/fostering-effective-energy-transition-2023 (accessed on 7 August 2023).
- Fornillo, B. Energy transition in Uruguay: Market dominance or public-social power? Ambiente Soc. 2021, 2021, 24. [Google Scholar] [CrossRef]
- Jiménez-García, F.N.; Restrepo-Franco, A.M.; Mulcue-Nieto, L.F. Estado de la investigación en energía en Colombia: Una mirada desde los grupos de investigación. Rev. Fac. Ing. 2019, 28, 9–26. [Google Scholar] [CrossRef]
- Morato, M.; Hoepers, A.; Branco, A.; Mendes, P.; Normey, J. Automation and renewable energy: Outreach efforts in brazilian public schools. In Proceedings of the ISES Solar World Congress 2019 and IEA SHC International Conference on Solar Heating and Cooling for Buildings and Industry, International Solar Energy Society, Santiago, Chile, 4–7 November 2019; pp. 2415–2425. [Google Scholar] [CrossRef]
- Nasirov, S.; Agostini, C.; Silva, C.; Caceres, G. Renewable energy transition: A market-driven solution for the energy and environmental concerns in Chile. Clean Technol. Environ. Policy 2018, 2018, 434. [Google Scholar] [CrossRef]
- Nogar, A.G.; Clementi, L.V.; Jacinto, G.P.; Valania, M.P. Espacios rural-urbanos: Nuevos territorios de transición energética en Argentina. Cuad. Geogr. Rev. Colomb. Geogr. 2022, 31, 38–52. [Google Scholar] [CrossRef]
- Romanello, M. Renewable energy power plants and economic development in Brazil’s northeast region. Desarro. Soc. 2022, 92, 169–194. [Google Scholar] [CrossRef]
- Kazimierski, M.; Samper, M. Desarrollo fotovoltaico en San Juan: Un acercamiento al entramado de estrategias públicas para la transición energética. Cienc. Docencia Tecnol. 2021, 32, 63. [Google Scholar] [CrossRef]
- Osorio, J.; Aghahosseini, A.; Bogdanov, D.; Caldera, U.; Muñoz, E.; Breyer, C. The role of renewable energy in the transition toward a fully sustainable energy system in chile across power, heat, transport, and desalination sectors. In Proceedings of the ISES Solar World Congress 2019 and IEA SHC International Conference on Solar Heating and Cooling for Buildings and Industry, International Solar Energy Society, Santiago, Chile, 4–7 November 2019; pp. 1582–1593. [Google Scholar] [CrossRef]
- Antunes, R.; do Nascimento, L.R.; Rüther, R. The complementary nature between wind and photovoltaic generation in Brazil and the role of energy storage in utility-scale hybrid power plants. Energy Convers. Manag. 2020, 221, 113160. [Google Scholar] [CrossRef]
- de Jong, P.; Barreto, T.B.; Torres, C.J.F.; Tanajura, C.A.S.; Oliveira-Esquerre, K.P.; Kiperstok, A.; Torres, E.A. The Impact of Climate Change on Hydroelectric Resources in Brazil. In Climate Change Management; Springer: Berlin/Heidelberg, Germany, 2020; pp. 29–46. [Google Scholar] [CrossRef]
- Trejo, V.; Diaz, G.; Rojas, L. Technical and economic prefeasibility study of mini-hydro power plants in Venezuela case study: El Valle River. In Green Energy and Technology; Springer: Berlin/Heidelberg, Germany, 2018; pp. 715–724. [Google Scholar] [CrossRef]
- Coello-Pisco, S.M.; Rodríguez-Gómez, B.A.; González-Cañizalez, Y.A.; Hidalgo-Crespo, J.A. Aprovechamiento energético de la biomasa residual: Caso de estudio de los restos de comida de familias de estudiantes de la Universidad de Guayaquil, para producción de biogás. Figempa Investig. Desarro. 2021, 12, 15–25. [Google Scholar] [CrossRef]
- González, J.; Coronel, B.; Quevedo, V.; Uvidia, H.; Oliva, D.; Morón, C.; Robles, M. Biomass Potential and Kinetics of Drying Model of Piptocoma discolor (pigüe) as a Source of Renewable Energy Source in Ecuador. Enfoque UTE 2021, 12, 74–90. [Google Scholar] [CrossRef]
- Graciela, A.; Chomicki, C.; Berdolini, J. Bioenergía a partir de residuos ganaderos. Estado de situación en provincia de Buenos Aires. Mundo Agrar. 2019, 20, e110. [Google Scholar] [CrossRef]
- Lozano, C.; Trujillo, A.; Carvallo, E.; Macassi, I.; Cardenas, L. Integrated sustainable model to generate electricity from municipal organic waste in a district of Lima-Peru. In Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology, Latin American and Caribbean Consortium of Engineering Institutions, Virtual, 27–31 July 2020. [Google Scholar] [CrossRef]
- Acosta, K.; Salazar, I.; Saldaña, M.; Ramos, J.; Navarra, A.; Toro, N. Chile and its Potential Role Among the Most Affordable Green Hydrogen Producers in the World. Front. Environ. Sci. Front. Media S.A. 2022, 10, 104. [Google Scholar] [CrossRef]
- Hernández, J.; Fernández, R.; Mora, A.; Alvarado, J. Evaluación de la huella de carbono de vehículos con motor eléctrico y de combustión interna según la matriz energética de Ecuador: Caso de estudio KIA Soul vs. KIA Soul EV. Rev. Digit. Novasinergia 2022, 5, 58–75. [Google Scholar] [CrossRef]
- Rueda-Bayona, J.G.; Guzmán, A.; Eras, J.J.C. Wind and power density data of strategic offshore locations in the Colombian Caribbean coast. Data Brief 2019, 27, 104720. [Google Scholar] [CrossRef] [PubMed]
- Quintana, A.; Páez, J.; Téllez, P. Actividades tecnológicas escolares: Un recurso didáctico para promover una cultura de las energías renovables. Pedagog. Saberes 2018, 48, 7372. [Google Scholar] [CrossRef]
- Salamanca, J.; Gallego, A. Wind energy education for electronic engineering students. In Proceedings of the ISES Solar World Congress 2019 and IEA SHC International Conference on Solar Heating and Cooling for Buildings and Industry, International Solar Energy Society, Santiago, Chile, 4–7 November 2019; pp. 2442–2446. [Google Scholar] [CrossRef]
- Bonilla, C.; Cordero, J. La dimensión jurídica de la energía eléctrica y las energías renovables en México. Rev. Digit. Derecho Administrativo 2019, 22, 299–333. [Google Scholar] [CrossRef]
- Fernández, A.; Watson, J. Mexico’s renewable energy innovation system: Geothermal and solar photovoltaics case study. Environ. Innov. Soc. Transit. 2022, 43, 200–219. [Google Scholar] [CrossRef]
- Freier, A.; Mazzalay, V.H.; Rolando, A. Calentamiento global y política energética. Incidencias de la gobernanza multinivel en el caso argentino. Temas Debates 2020, 40, 33–58. [Google Scholar] [CrossRef]
- Hernández, J.; Arredondo, C.; Rodriguez, D. Analysis of the law for the integration of non-conventional renewable energy sources (law 1715 of 2014) and its complementary decrees in Colombia. In Proceedings of the Conference Record of the IEEE Photovoltaic Specialists Conference, Chicago, IL, USA, 16–21 June 2019; Institute of Electrical and Electronics Engineers, Inc.: Piscataway, NJ, USA, 2019; pp. 1695–1700. [Google Scholar] [CrossRef]
- Cárdenas, Y.T.; Sarabia, L.A.; Vargas-Silva, D.A. Energía solar en la operación del acueducto municipal de González departamento del Cesar. Iteckne 2020, 17, 38–48. [Google Scholar] [CrossRef]
- Gese, P.; Martíneze, F.; Ramírez, G.; Dinter, F. Agrivoltaic in Chile—Integrative solution to use efficiently land for food and energy production and generating potential synergy effects shown by a pilot plant in Metropolitan region. In Proceedings of the ISES Solar World Congress 2019 and IEA SHC International Conference on Solar Heating and Cooling for Buildings and Industry, Santiago, Chile, 4–7 November 2019; pp. 1016–1024. [Google Scholar] [CrossRef]
- Espinoza, E.R.; Muñoz-Cerón, E.; Ramos, E.R.; de la Casa, J. Characterization in power and energy of two photovoltaic grid connected systems of different technologies (crystal silicon and thin film), operating in Lima. J. Phys. Conf. Ser. 2019, 1173, 012011. [Google Scholar] [CrossRef]
- Takigawa, F.Y.K.; Neto, E.A.C.A.; Fernandes, R.C.; de Campos, D.; Cardoso, M. Analysis of the Financial Viability of a Photovoltaic System to a Consumer Unit in South Brazil. INGENIARE-Rev. Chil. Ing. 2019, 27, 131. [Google Scholar] [CrossRef]
- Bisognin, T.; Duarte, J.; de Souza, F.; Mairesse, J. Paths and barriers to the diffusion of distributed generation of photovoltaic energy in southern Brazil. Renew. Sustain. Energy Rev. 2019, 111, 157–169. [Google Scholar] [CrossRef]
- Guzmán, T.; Obando, J.; Álvarez, X.; Ilundain, R.; Juan, P.; Castro, G. Evaluación de sistemas térmicos y fotovoltaicos solares en tres plantas procesadoras de leche de la región Huetar Norte, Costa Rica. Rev. Tecnol. Marcha 2020, 33, 37–46. [Google Scholar] [CrossRef]
- Toledo, M.; Macancela, W.; Aucapiña, F.; Álvarez, C.; Morales, D. Forecast of solar radiation with the application of neural networks in rural zones of Ecuador. In Proceedings of the FISE-IEEE/CIGRE Conference—Living the Energy Transition, FISE/CIGRE, Medellin, Colombia, 4–6 December 2019; Institute of Electrical and Electronics Engineers, Inc.: Piscataway, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Naranjo-Mendoza, C.; López-Villada, J.; Otero, P.; Casco, S. Energy and Economical Study of Different Renewable Energy Technologies for Domestic Hot Water Production Under the Climatic Conditions of the Main Cities in Ecuador. In Green Energy and Technology; Springer: Berlin/Heidelberg, Germany, 2021; pp. 163–174. [Google Scholar] [CrossRef]
- Apolo, H.; Escobar, K.; Arcentales, D. Santa Cruz, Galapagos electricity sector towards a zero fossil fuel Island. In Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology, Latin American and Caribbean Consortium of Engineering Institutions, Montego Bay, Jamaica, 24–26 July 2019. [Google Scholar] [CrossRef]
- Hammerschmitt, B.; Lucchese, F.C.; Silva, L.N.; Abaide, A.R.; Rohr, J.A.D.A. Short-Term Generation Forecasting Against the High Penetration of the Wind Energy. In Proceedings of the 8th International Conference on Modern Power Systems, MPS 2019, Cluj-Napoca, Romania, 21–23 May 2029; Institute of Electrical and Electronics Engineers, Inc.: Piscataway, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Silva, M.; Silva, Í.; Carvhalo, R. Energia Renováveis: O Parque Eólico de São Cristóvão, Município de Areia Branca (RN)—Brasil. GOT Rev. Geogr. Ordenam. Territ. 2021, 22, 111–139. [Google Scholar] [CrossRef]
- Quiñonez, J.; Huanca, E.; Holguino, A. Caracterización del recurso eólico en la ciudad de Juliaca. Rev. Investig. Altoandinas J. High Andean Res. 2019, 21, 57–68. [Google Scholar] [CrossRef]
- Yancachajlla, U.; Vilca, O. Caracterización del viento con la función de Weibull para una zona altoandina, Laraqueri—Perú. Rev. Investig. Altoandinas J. High Andean Res. 2022, 24, 190–198. [Google Scholar] [CrossRef]
- Martínez-Mendoza, E.; Rivas-Tovar, L.A.; Fernández-Echeverría, E.; Fernández-Lambert, G. Social impact of wind energy in the Isthmus of Tehuantepec, Mexico, using Likert-fuzzy. Energy Strat. Rev. 2020, 32, 100567. [Google Scholar] [CrossRef]
- Torres-Castro, K.; Torres-Quirós, C.; Richmond-Navarro, G. Microgeneración de energía eólica en un entorno boscoso en Costa Rica: Estudio de caso. Rev. Tecnol. Marcha 2021, 34, 61–69. [Google Scholar] [CrossRef]
- Rojas, R.; Araoz, J.; Balderrama, S.; Peña, J.; Senosian, V.S.; Florero, H.; Quoilin, S. Techno-economic assessment of high variable renewable energy penetration in the bolivian interconnected electric system. Int. J. Sustain. Energy Plan. Manag. 2019, 22, 17–38. [Google Scholar] [CrossRef]
- López, E.; Jiménez, J.; López, L.; Barrera, E.; Bravo, E.; Contreras, L.; Romero, O. Biochemical methane potential of agro-wastes as a renewable source alternative for electrical energy production in Cuba. Cienc. Tecnol. Agropecu. 2022, 23, 1890. [Google Scholar] [CrossRef]
- Tinoco, S.; Duke, A.M.R. Cost-benefit analysis of the implementation of off-grid photovoltaic systems in the Northwest residential sector of San Pedro Sula, Honduras. IOP Conf. Ser. Earth Environ. Sci. 2021, 812, 9. [Google Scholar] [CrossRef]
- De León, L.; Mora, D.; Carpino, C.; Arcuri, N.; Austin, M.C. A Reference Framework for Zero Energy Districts in Panama Based on Energy Performance Simulations and Bioclimatic Design Methodology. Buildings 2023, 13, 315. [Google Scholar] [CrossRef]
- Garcia, M.; Oliva, S. Technical, economic, and CO2 emissions assessment of green hydrogen production from solar/wind energy: The case of Chile. Energy 2023, 2023, 127981. [Google Scholar] [CrossRef]
- Prăvălie, R.; Patriche, C.; Bandoc, G. Spatial assessment of solar energy potential at global scale. A geographical approach. J. Clean. Prod. 2019, 209, 692–721. [Google Scholar] [CrossRef]
- Shahbaz, M.; Raghutla, C.; Chittedi, K.R.; Jiao, Z.; Vo, X.V. The effect of renewable energy consumption on economic growth: Evidence from the renewable energy country attractive index. Energy 2020, 207, 118162. [Google Scholar] [CrossRef]
- Mamat, R.; Sani, M.S.M.; Sudhakar, K.J. Renewable energy in Southeast Asia: Policies and recommendations. Sci. Total. Environ. 2019, 670, 1095–1102. [Google Scholar] [CrossRef]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Solaun, K.; Cerdá, E. Climate change impacts on renewable energy generation. A review of quantitative projections. Renew. Sustain. Energy Rev. 2019, 116, 109415. [Google Scholar] [CrossRef]
- Da Silva, L. Determinantes del consumo de energía renovable en la Unión Europea: Un análisis entre ue-15 y los 13 nuevos miembros. Rev. Estud. Empres. Segunda Época 2022, 1, 94–116. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Publications in Spanish, English and Portuguese. | Publications in other languages. |
Publications from ScienceDirect and Scielo databases. | Publications in other databases. |
Publications referring to renewable energies and their use in Latin America. | Publications related to other subjects. |
Publications since 2018. | Publications before 2018. |
Review and research publications. | Publications of other types (reviews, monographs, theses, etc.). |
Global Ranking | Country | ETI |
---|---|---|
14 | Brazil | 65.9 |
23 | Uruguay | 63.6 |
25 | Costa Rica | 63.5 |
30 | Chile | 62.5 |
34 | Paraguay | 61.9 |
39 | Colombia | 60.5 |
47 | El Salvador | 57.3 |
51 | Panama | 56.4 |
53 | Peru | 56.4 |
68 | Mexico | 54.1 |
74 | Bolivia | 53.5 |
78 | Ecuador | 52.8 |
85 | Argentina | 52.0 |
87 | Guatemala | 51.9 |
93 | Dominican Republic | 50.3 |
100 | Honduras | 48.0 |
103 | Venezuela | 47.7 |
114 | Nicaragua | 44.9 |
Country | Use | Reference |
---|---|---|
Colombia | Use of solar panels in the San Agustín building, located in the municipality of Ocaña. This generates savings and reduces dependence on oil by using a renewable energy source. | [10] |
Solar energy has been considered as an alternative for energy availability problems in the department of Cesar. As a result, the construction of the first aqueduct in Colombia with solar and hydraulic energy has been promoted to guarantee the continuity of drinking water service and reduce CO2 emissions. | [52] | |
Chile | Solar photovoltaic energy has great potential in the country, given the high levels of radiation, especially in the northern region of Chile. This country has set aggressive targets for the expansion of non-conventional renewable energies, in addition to seeking to reduce costs and achieve rapid growth in the sector. | [53] |
Peru | The Renewable Energy Center of the National Engineering University of Peru and the Solar Energy Research and Development Group of the University of Jaén, Spain, have implemented two grid-connected photovoltaic systems at the National Engineering University, one with crystalline photovoltaic modules and the other with second-generation thin-film photovoltaic modules. | [54] |
Studies have been carried out to take advantage of the large amount of solar radiation received by the Peruvian territory. An example is the study of an electric load in Lambayeque used to power the five types of residential buildings (single-family bungalow, traditional patio, flat/apartment house, apartments and duplex), estimating the amount of solar radiation using the HOMER program (Hybrid Optimization Model for Electric Renewables). | [7] | |
Argentina | In Argentina, the use of renewable energies is still incipient and underdeveloped, which is evidenced by the approval of laws such as Law 24.424/17 to promote their use. Although this law did not have much impact in the country, the public has been increasingly interested in migrating towards this type of energy, especially in urban environments. | [8] |
Brazil | Solar photovoltaic energy is a renewable energy source that is growing in the Brazilian energy scenario, mainly after the approval of Regulatory Resolution (REN) No. 482/2012 of the Brazilian Regulatory Agency. | [55] |
Currently, in southern Brazil, the installed capacity for photovoltaic power generation is much lower than the existing potential in the region, mainly due to barriers such as high initial investment cost, poor quality of the systems, lack of knowledge about this technology, inefficient after-sales services, dependence on China for imports and lack of policies to encourage photovoltaic generation, among others. | [56] | |
Costa Rica | Three milk processing plants in the northern Huetar region of Costa Rica use solar thermal and photovoltaic technology. As a result, energy consumption has been reduced and greenhouse gas emissions have been significantly reduced due to the use of solar energy, a completely renewable and clean source. | [57] |
Ecuador | To develop a solar electric production model that meets the demand, it is necessary to analyze a matrix of factors in order to find the optimal algorithm to calculate the daily solar radiation incidence. Studies have been conducted to predict solar radiation in a rural area of Ecuador using artificial intelligence and data analysis to evaluate solar photovoltaic generation capacity. | [58] |
In Ecuador, electricity is considered the main source for producing domestic hot water through water heaters or electric showers. In this context, this country has a high availability of solar resources that can be exploited by making use of more environmentally friendly technologies. | [59] |
Country | Use | Reference |
---|---|---|
Ecuador | The Ecuadorian government has implemented the “Zero fossil fuels in the Galapagos Islands” initiative to reduce diesel consumption and replace it with renewable energies in order to protect this territory considered a UNESCO World Natural Heritage Site. | [60] |
Brazil | Brazil has tried to promote the development of small wind farms and reduce their technological costs through public policies in contrast to the large wind farms that have been used since they began to take advantage of this type of renewable energy. | [1] |
Short-term modeling and simulation structures have been proposed for wind farms in the southern region of Brazil, since reliable operation of these systems requires adequate planning to take advantage of this intermittent energy source. | [61] | |
Brazil has introduced several wind farms throughout its territory, including in places such as the municipality of Areia Branca in Rio Grande do Norte (RN). However, this wind farm appears to have had a negligible impact on the local economy, in addition to generating socio-environmental conflicts and distrust among the local population. | [62] | |
Colombia | After signing the Paris Agreement, Colombia generated a large number of opportunities, supported by state policies and economic investment, especially in the construction of wind farms that provide a true alternative to the country’s energy demand. | [4] |
Perú | Qualitative and quantitative evaluations of the wind resource have been carried out in regions such as the city of Juliaca in Puno to characterize its exploitable potential. It was concluded that it is possible to implement small wind generators to take advantage of the low abundance and variable direction of the wind resource. | [63] |
Studies have analyzed the assessment of the availability of renewable energy in places such as Laraqueri, a site located in southern Peru. It was concluded that this location has the appropriate characteristics for the generation of low-power wind energy. | [64] | |
Mexico | The wind farms installed in Tehuantepec, Mexico, have generated dissatisfaction among the population, given the impact of noise and shade on their livestock activities. In addition, the people consider that these installations only benefit those who rent their land and businesses, without including the local communities in the decision-making process regarding wind energy. | [65] |
Costa Rica | Wind energy is an important source of energy in Costa Rica, whose installed capacity reached 597 GW at the end of 2018. There are currently 18 wind farms and 343 turbines, capable of generating between 410 kW and 3 MW of power, which represents more than 10% of the national electricity matrix. | [66] |
Country | Use | Reference |
---|---|---|
Peru | Improved technologies have reduced solar and wind energy costs by 82% for photovoltaic solar energy and 39% for onshore wind energy. In this context, countries such as Peru have been able to incorporate this type of energy in the form of wind farms and solar plants located in different parts of its territory. | [11] |
Chile | Studies in this country reveal that an energy system based 100% on renewable energies in Chile would be feasible and even more profitable than the current system. The use of solar and wind energy sources would reduce costs by approximately 25%, aiming to emit zero greenhouse gases by 2050. | [35] |
Brazil | Brazil has sought to generate wind and photovoltaic energy simultaneously to complement these sources and reduce the deficiencies generated by the intermittency of natural resources. The implementation of a hybrid wind, solar and storage plant based on 40% wind energy and 60% solar energy that takes advantage of the high availability of both resources is noteworthy. | [36] |
The region with the largest installed capacity of renewable energy is the northeast region of Brazil. Through the use of incentive policies, the region became a pioneer in the installation of solar and wind power plants. There are 472 parks installed. | [33] | |
Argentina | In view of the recent promotion of renewable energies in the Argentine matrix, the province of San Juan is carrying out the energy transition through the development of photovoltaic parks, experimentation in smart grids and the manufacture of solar panels. | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seminario-Córdova, R. Latin America towards Sustainability through Renewable Energies: A Systematic Review. Energies 2023, 16, 7422. https://doi.org/10.3390/en16217422
Seminario-Córdova R. Latin America towards Sustainability through Renewable Energies: A Systematic Review. Energies. 2023; 16(21):7422. https://doi.org/10.3390/en16217422
Chicago/Turabian StyleSeminario-Córdova, Renzo. 2023. "Latin America towards Sustainability through Renewable Energies: A Systematic Review" Energies 16, no. 21: 7422. https://doi.org/10.3390/en16217422
APA StyleSeminario-Córdova, R. (2023). Latin America towards Sustainability through Renewable Energies: A Systematic Review. Energies, 16(21), 7422. https://doi.org/10.3390/en16217422