Economic Applicability of Solar Tracking Photovoltaic Systems in Commercial Buildings: Case Study in South Korean Climate
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
1.3. Research Gap and Objectives
2. Simulation Case Study
2.1. Theoretical Background of PV Modules
2.2. Model Validation
2.3. Tracking Performance Evaluation
2.4. Building Load Coverage Analysis
2.5. Life Cycle Cost Analysis
3. Conclusions
- The PVWatts model achieved higher electricity generation than the TRNSYS and Sandia models. Their deviations were constant, so efficiency reductions (e.g., 83.5%) were applied to validate the PVWatts model with the tracking feature.
- The electricity load coverage levels of one and six tracking PV arrays were 14% and 86% of the total electricity requirement, respectively. To achieve net-zero energy in buildings in S. Korea, seven tracking PVs need to be installed, which cover 109% of the roof area.
- The LCC analysis via the NPV method yielded a payback period of between 5.3 and 8.4 years for the tracking and fixed PV system. The total cost-saving percentage in the 15-year window compared to the case without PV was 18.7–26.8%.
4. Discussion and Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Year | 11′ | 12′ | 13′ | 14′ | 15′ | 16′ | 17′ | 18′ | 19′ | 20′ | 21′ | 22′ | Avg |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Inflation rate | 4 | 2.2 | 1.3 | 1.3 | 0.7 | 1 | 1.9 | 1.5 | 0.4 | 0.5 | 2.5 | 5.1 | 1.867 |
Electricity cost increase rate | 4.75 | 4.9 | 4.7 | 0 | 0 | 0 | −1.7 | 0 | −0.5 | 0 | 0 | 4.6 | 1.396 |
HVAC | Lighting | Equipment | Unit Electricity Cost | Total Electricity Cost | |
---|---|---|---|---|---|
January | 4247 | 1388.9 | 1552.75 | 111.0 | 797,928 |
February | 2246 | 1267.29 | 1408.71 | 111.0 | 546,326 |
March | 724 | 1440.51 | 1582.95 | 83.9 | 314,400 |
April | 505 | 1295.39 | 1470.47 | 83.9 | 274,385 |
May | 1573 | 1440.51 | 1582.95 | 83.9 | 385,670 |
June | 2430 | 1382.77 | 1524.87 | 100.7 | 537,494 |
July | 2769 | 1353.13 | 1528.55 | 100.7 | 568,987 |
August | 3164 | 1440.51 | 1582.95 | 100.7 | 623,113 |
September | 2607 | 1347 | 1500.67 | 83.9 | 457,657 |
October | 1348 | 1388.9 | 1552.75 | 83.9 | 359,879 |
November | 449 | 1382.77 | 1524.87 | 83.9 | 281,622 |
December | 2897 | 1353.13 | 1528.55 | 111.0 | 641,387 |
Total | 24,958 | 16,481 | 18,341 | 1139 | 5,788,848 |
No PV | Fixed PV | Tracking PV (No. of Array) | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |||
January | 431,459 | 431,459 | 431,459 | 431,459 | 431,459 | 431,459 | 431,459 | 431,459 | 431,459 |
February | 328,371 | 328,371 | 328,371 | 328,371 | 328,371 | 328,371 | 328,371 | 328,371 | 328,371 |
March | 201,438 | 201,438 | 201,438 | 201,438 | 201,438 | 201,438 | 201,438 | 201,438 | 201,438 |
April | 109,476 | 99,167 | 92,880 | 77,454 | 68,990 | 67,400 | 65,810 | 64,220 | 62,630 |
May | 124,278 | 114,609 | 106,469 | 90,654 | 81,384 | 73,634 | 69,016 | 64,399 | 59,781 |
June | 143,386 | 134,203 | 126,678 | 112,516 | 107,464 | 102,411 | 97,359 | 92,306 | 87,254 |
July | 160,123 | 149,035 | 143,371 | 128,199 | 117,908 | 109,193 | 102,764 | 98,901 | 95,038 |
August | 164,139 | 152,276 | 147,421 | 131,983 | 119,530 | 112,019 | 108,098 | 104,178 | 100,257 |
September | 148,943 | 137,673 | 132,643 | 119,705 | 113,946 | 110,122 | 106,298 | 102,473 | 98,649 |
October | 131,762 | 122,247 | 118,234 | 108,673 | 99,781 | 94,411 | 92,837 | 91,262 | 89,687 |
November | 105,786 | 102,299 | 102,299 | 102,299 | 102,299 | 102,299 | 102,299 | 102,299 | 102,299 |
December | 404,669 | 404,669 | 404,669 | 404,669 | 404,669 | 404,669 | 404,669 | 404,669 | 404,669 |
Total | 2,453,830 | 2,377,447 | 2,335,932 | 2,237,420 | 2,177,238 | 2,137,426 | 2,110,418 | 2,085,975 | 2,061,532 |
No PV | Fixed PV | Tracking PV (No. of Array) | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |||
January | 1,229,387 | 1,229,387 | 1,229,387 | 1,229,387 | 1,229,387 | 1,229,387 | 1,229,387 | 1,229,387 | 1,229,387 |
February | 874,697 | 874,697 | 874,697 | 874,697 | 874,697 | 874,697 | 874,697 | 874,697 | 874,697 |
March | 515,838 | 515,838 | 515,838 | 515,838 | 515,838 | 515,838 | 515,838 | 515,838 | 515,838 |
April | 383,861 | 373,552 | 367,265 | 351,839 | 343,375 | 341,785 | 340,195 | 338,605 | 337,015 |
May | 509,948 | 500,279 | 492,138 | 476,323 | 467,054 | 459,303 | 454,686 | 450,068 | 445,451 |
June | 680,880 | 671,697 | 664,171 | 650,010 | 644,957 | 639,905 | 634,852 | 629,800 | 624,747 |
July | 729,110 | 718,022 | 712,358 | 697,186 | 686,894 | 678,180 | 671,751 | 667,888 | 664,025 |
August | 787,252 | 775,389 | 770,534 | 755,096 | 742,643 | 735,132 | 731,212 | 727,291 | 723,370 |
September | 606,600 | 595,330 | 590,301 | 577,362 | 571,603 | 567,779 | 563,955 | 560,131 | 556,307 |
October | 491,642 | 482,126 | 478,113 | 468,552 | 459,660 | 454,291 | 452,716 | 451,141 | 449,567 |
November | 387,408 | 383,921 | 383,921 | 383,921 | 383,921 | 383,921 | 383,921 | 383,921 | 383,921 |
December | 1,046,056 | 1,046,056 | 1,046,056 | 1,046,056 | 1,046,056 | 1,046,056 | 1,046,056 | 1,046,056 | 1,046,056 |
Total | 8,242,678 | 8,166,295 | 8,124,780 | 8,026,268 | 7,966,086 | 7,926,274 | 7,899,266 | 7,874,823 | 7,850,381 |
Monthly Cost of Electricity [₩/kWh] | Tracking PV | Fixed PV | ||||
---|---|---|---|---|---|---|
PV Generation [kWh] | Operation Consumption [kwh] | Net Generation Cost [₩] | PV Generation [kWh] | Net Generation Cost [₩] | ||
January | 111.0 | 656 | 10.85 | 71,667 | 532 | 102,201 |
February | 111.0 | 686 | 9.80 | 75,078 | 560 | 105,278 |
March | 83.9 | 828 | 10.85 | 68,601 | 680 | 100,132 |
April | 83.9 | 834 | 10.50 | 69,119 | 660 | 98,466 |
May | 83.9 | 858 | 10.85 | 71,038 | 650 | 97,688 |
June | 100.7 | 787 | 10.50 | 78,195 | 597 | 103,279 |
July | 100.7 | 655 | 10.85 | 64,897 | 532 | 96,663 |
August | 100.7 | 669 | 10.85 | 66,298 | 546 | 98,079 |
September | 83.9 | 748 | 10.50 | 61,875 | 612 | 94,426 |
October | 83.9 | 674 | 10.85 | 55,610 | 564 | 90,437 |
November | 83.9 | 597 | 10.50 | 49,178 | 491 | 84,304 |
December | 111.0 | 601 | 10.85 | 65,467 | 486 | 97,036 |
Total | 1139 | 8594 | 127.75 | 797,022 | 6909 | 1,167,989 |
References
- UN (United Nation). Climate Change. Available online: https://unfccc.int/process/bodies/supreme-bodies/conference-of-the-parties-cop (accessed on 2 October 2023).
- RE100 Climate Group. RE100 Members. Available online: https://www.there100.org/re100-members (accessed on 2 October 2023).
- IEA. World Electricity Final Consumption by Sector. 2022. Available online: https://www.iea.org/data-and-statistics/charts/world-electricity-final-consumption-by-sector-1974-2019 (accessed on 2 October 2023).
- Irfan, M.; Abas, N.; Saleem, M.S. Thermal performance analysis of net zero energy home for sub zero temperature areas. Case Stud. Therm. Eng. 2018, 12, 789–796. [Google Scholar] [CrossRef]
- Park, S.; Jang, Y.; Kim, E. Multi-objective optimization for sizing multi-source renewable energy systems in the community center of a residential apartment complex. Energy Convers. Manag. 2021, 244, 114446. [Google Scholar] [CrossRef]
- Kumar, N.M.; Gupta, R.P.; Mathew, M.; Jayakumar, A.; Singh, N.K. Performance, energy loss, and degradation prediction of roofintegrated crystalline solar PV system installed in Northern India. Case Stud. Therm. Eng. 2019, 13, 100409. [Google Scholar] [CrossRef]
- Pal, P.; Mukherjee, V.; Kumar, P.; Makhatha, M.E. Pre-feasibility analysis and performance assessment of solar photovoltaic (PV) modules for the application of renewable power generation. Mater. Today Proc. 2020, 39, 1813–1819. [Google Scholar] [CrossRef]
- Asaee, S.R.; Nikoofard, S.; Ugursal, V.I.; Beausoleil-Morrison, I. Techno-economic assessment of photovoltaic (PV) and building integrated photovoltaic/thermal (BIPV/T) system retrofits in the Canadian housing stock. Energy Build. 2017, 152, 667–679. [Google Scholar] [CrossRef]
- Pan, L.; Zhang, R.; Wang, X. Review on the structure and application of solar photovoltaic air collector. J. Asian Archit. Build. Eng. 2023, 22, 1373–1386. [Google Scholar] [CrossRef]
- Park, S.H.; Jang, Y.S.; Kim, E.J. Design and performance evaluation of a heat pump system utilizing a permanent dewatering system. Energies 2021, 14, 2273. [Google Scholar] [CrossRef]
- Tang, J.; Ni, H.; Peng, R.L.; Wang, N.; Zuo, L. A review on energy conversion using hybrid photovoltaic and thermoelectric systems. J. Power Sources 2023, 562, 232785. [Google Scholar] [CrossRef]
- Ghosh, A. Potential of building integrated and attached/applied photovoltaic (BIPV/BAPV) for adaptive less energy-hungry building’s skin: A comprehensive review. J. Clean. Prod. 2020, 276, 123343. [Google Scholar] [CrossRef]
- IEA. 2020. Available online: https://www.iea.org/policies/4837-renewable-portfolio-standard-rps (accessed on 2 October 2023).
- KEA—(Korea Energy Agency). 2012. Available online: https://dco.energy.or.kr/renew_eng/new/standards.aspx (accessed on 2 October 2023).
- AMBER. 2020. Available online: https://ember-climate.org/topics/solar/ (accessed on 2 October 2023).
- Shu, N.; Kameda, N.; Kishida, Y.; Sonoda, H. Experimental and Theoretical Study on the Optimal Tilt Angle of Photovoltaic Panels. J. Asian Archit. Build. Eng. 2006, 5, 399–405. [Google Scholar] [CrossRef]
- Huang, B.J.; Ding, W.L.; Huang, Y.C. Long-term field test of solar PV power generation using one-axis 3-position sun tracker. Sol. Energy 2011, 85, 1935–1944. [Google Scholar] [CrossRef]
- Eke, R.; Senturk, A. Performance comparison of a double-axis sun tracking versus fixed PV system. Sol. Energy 2012, 86, 2665–2672. [Google Scholar] [CrossRef]
- Lazaroiu, G.C.; Longo, M.; Roscia, M.; Pagano, M. Comparative analysis of fixed and sun tracking low power PV systems considering energy consumption. Energy Convers. Manag. 2015, 92, 143–148. [Google Scholar] [CrossRef]
- Bahrami, A.; Okoye, C.O.; Atikol, U. Technical and economic assessment of fixed, single and dual-axis tracking PV panels in low latitude countries. Renew. Energy 2017, 113, 563–579. [Google Scholar] [CrossRef]
- Li, X.; Peng, J.; Li, N.; Wu, Y.; Fang, Y.; Li, T.; Wang, M.; Wang, C. Optimal design of photovoltaic shading systems for multi-story buildings. J. Clean. Prod. 2019, 220, 1024–1038. [Google Scholar] [CrossRef]
- Das, M. Exploration of the effect of two-axis PLC solar tracking system on the thermal performance of solar air collector. Case Stud. Therm. Eng. 2021, 28, 101692. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, W.; Xie, L.; Wang, W.; Tian, H.; Chen, M.; Li, J. Life cycle assessment of semi-transparent photo-voltaic window applied on building. J. Clean. Prod. 2021, 295, 126403. [Google Scholar] [CrossRef]
- PVWatts. PVWatts Calculator. Available online: https://pvwatts.nrel.gov/pvwatts.php (accessed on 2 October 2023).
- Kim, D.W.; Kim, Y.M.; Lee, S.H.; Park, W.Y.; Bok, Y.J.; Ha, S.K.; Lee, S.E. Development of Reference Building Energy Models for South Korea. In Proceedings of the 15th IBPSA Conference, San Francisco, CA, USA, 7–9 August 2017. [Google Scholar]
- Dobos, A.P. PVWatts Version 5 Manual; National Renewable Energy Laboratory (NREL): Albuquerque, NM, USA, 2014. [Google Scholar]
- King, D.L.; Boyson, W.E.; Kratochvill, J.A. Photovoltaic Array Performance Model; Sandia National Laboratory: Albuquerque, NM, USA, 2004. [Google Scholar]
- Marion, W.; Dobos, A.P. Rotation Angle for the Optimum Tracking of One-Axis Trackers; TP-6A20-58891; National Renewable Energy Laboratory: Golden, CO, USA, 2013. [Google Scholar]
- Marion, W. Overview of the PV Module Model in PVWatts. In Proceedings of the Presentation at the Sandia National Laboratories PV Performance Modeling Workshop, Albuquerque, NM, USA, 22 September 2010. [Google Scholar]
- KEPCO. ElectricRatesTable. 2023. Available online: https://home.kepco.co.kr/kepco/EN/F/htmlView/ENFBHP00101.do?menuCd=EN060201 (accessed on 2 October 2023).
- Aboagye, B.; Gyamfi, S.; Ofosu, E.A.; Djordjevic, S. Investigation into the impacts of design, installation, operation and maintenance issues on performance and degradation of installed solar photovoltaic (PV) systems. Energy Sustain. Dev. 2022, 66, 165–176. [Google Scholar] [CrossRef]
No. PV Array | Building Electricity Demand | Base Utility Cost (Demand Charge) | Annual Electricity Cost | Annual Unit PV Generation Cost | Annual Net Cost | |
---|---|---|---|---|---|---|
No PV | 5,788,848 | 2,453,830 | 8,242,678 | 8,242,678 | ||
Fixed PV | 2 | 2,377,447 | 8,166,295 | 650,549 | 6,865,197 | |
Tracking PV | 1 | 2,335,932 | 8,124,780 | 797,022 | 7,327,758 | |
2 | 2,237,420 | 8,026,268 | 6,432,224 | |||
3 | 2,177,238 | 7,966,086 | 5,575,020 | |||
4 | 2,137,426 | 7,926,274 | 4,738,186 | |||
5 | 2,110,418 | 7,899,266 | 3,914,156 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joe, J.; Park, J.; Choi, H.; Park, Y.; Oh, J.; Kwak, Y. Economic Applicability of Solar Tracking Photovoltaic Systems in Commercial Buildings: Case Study in South Korean Climate. Energies 2023, 16, 7338. https://doi.org/10.3390/en16217338
Joe J, Park J, Choi H, Park Y, Oh J, Kwak Y. Economic Applicability of Solar Tracking Photovoltaic Systems in Commercial Buildings: Case Study in South Korean Climate. Energies. 2023; 16(21):7338. https://doi.org/10.3390/en16217338
Chicago/Turabian StyleJoe, Jaewan, Jinhyung Park, Heewon Choi, Yooseok Park, Jungwhan Oh, and Younghoon Kwak. 2023. "Economic Applicability of Solar Tracking Photovoltaic Systems in Commercial Buildings: Case Study in South Korean Climate" Energies 16, no. 21: 7338. https://doi.org/10.3390/en16217338
APA StyleJoe, J., Park, J., Choi, H., Park, Y., Oh, J., & Kwak, Y. (2023). Economic Applicability of Solar Tracking Photovoltaic Systems in Commercial Buildings: Case Study in South Korean Climate. Energies, 16(21), 7338. https://doi.org/10.3390/en16217338