Review of Fluidized Bed Technology Application for Adsorption Cooling and Desalination Systems
Abstract
:1. Introduction
2. Main Limitation of Adsorption Cooling Systems
3. Fluidization Technology for Adsorption Cooling Systems
3.1. Fluidization Phenomenon
3.2. Experimental Apparatus
3.3. Integration of Material Solutions with Adsorption Fluidized Beds
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- REN21. Renewables 2022 Global Status Report (Paris: REN21 Secretariat); ISBN 978-3-948393-04-5. Available online: https://www.ren21.net/wp-content/uploads/2019/05/GSR2022_Full_Report.pdf (accessed on 26 September 2023).
- Ahmed, S.; Nguyen, T. Analysis of Future Carbon-Neutral Energy System—The Case of Växjö Municipality, Sweden. Smart Energy 2022, 7, 100082. [Google Scholar] [CrossRef]
- Marie, L.F.; Landini, S.; Bae, D.; Francia, V.; O’Donovan, T.S. Advances in Thermochemical Energy Storage and Fluidised Beds for Domestic Heat. J. Energy Storage 2022, 53, 105242. [Google Scholar] [CrossRef]
- Yin, G.; Wang, Y.; Li, M.; Du, W.; Liu, Q.; Chang, Z. Experimental Investigation on a Two-Bed Adsorption Refrigeration System with Mass Recovery. Appl. Therm. Eng. 2022, 207, 118152. [Google Scholar] [CrossRef]
- Gibelhaus, A.; Postweiler, P.; Bardow, A. Efficient Modeling of Adsorption Chillers: Avoiding Discretization by Operator Splitting. Int. J. Refrig. 2022, 139, 180–191. [Google Scholar] [CrossRef]
- Elsheniti, M.B.; Hassab, M.A.; Attia, A.E. Examination of Effects of Operating and Geometric Parameters on the Performance of a Two-Bed Adsorption Chiller. Appl. Therm. Eng. 2019, 146, 674–687. [Google Scholar] [CrossRef]
- Elsheniti, M.B.; Elsamni, O.A.; Al-dadah, R.K.; Mahmoud, S.; Elsayed, E.; Saleh, K. Adsorption Refrigeration Technologies. In Sustainable Air Conditioning Systems; InTech: London, UK, 2018. [Google Scholar]
- Abedi, M.; Tan, X.; Klausner, J.F.; Bénard, A. Solar Desalination Chimneys: Investigation on the Feasibility of Integrating Solar Chimneys with Humidification–Dehumidification Systems. Renew. Energy 2023, 202, 88–102. [Google Scholar] [CrossRef]
- Denzinger, C.; Berkemeier, G.; Winter, O.; Worsham, M.; Labrador, C.; Willard, K.; Altaher, A.; Schuleter, J.; Ciric, A.; Choi, J.K. Toward Sustainable Refrigeration Systems: Life Cycle Assessment of a Bench-Scale Solar-Thermal Adsorption Refrigerator. Int. J. Refrig. 2021, 121, 105–113. [Google Scholar] [CrossRef]
- Ben Hamida, M.B. Numerical Analysis of Tubular Solar Still with Rectangular and Cylindrical Troughs for Water Production under Vacuum. J. Taibah Univ. Sci. 2023, 17, 2159172. [Google Scholar] [CrossRef]
- Hamida, M.B.B.; Alshammari, F.; Alatawi, I.; Alhadri, M.; Almeshaal, M.A.; Hajlaoui, K. Potential of tubular solar still with rectangular trough for water production under vacuum condition. Therm. Sci. 2022, 26, 4271–4283. [Google Scholar] [CrossRef]
- Kadhim Hussein, A.; El Hadi Attia, M.; Jassim Abdul-Ammer, H.; Arıcı, M.; Ben Hamida, M.B.; Younis, O.; Homod, R.Z.; Abidi, A. Experimental Study of the Impact of Low-Cost Energy Storage Materials on the Performance of Solar Distillers at Different Water Depths. Sol. Energy 2023, 257, 221–230. [Google Scholar] [CrossRef]
- Boukhriss, M.; Khemili, S.; Ben Hamida, M.B.; Ben Bacha, H. Simulation and Experimental Study of an AGMD Membrane Distillation Pilot for the Desalination of Seawater or Brackish Water with Zero Liquid Discharged. Heat Mass Transf. 2018, 54, 3521–3531. [Google Scholar] [CrossRef]
- Boukhriss, M.; Ben Hmida, M.B.; Maatoug, M.A.; Zarzoum, K.; Marzouki, R.; Ben Bacha, H. The Design of a Unit Sweeping Gas Membrane Distillation: Experimental Study on a Membrane and Operating Parameters. Appl. Water Sci. 2020, 10, 110. [Google Scholar] [CrossRef]
- Saha, B.B.; El-Sharkawy, I.I.; Shahzad, M.W.; Thu, K.; Ang, L.; Ng, K.C. Fundamental and Application Aspects of Adsorption Cooling and Desalination. Appl. Therm. Eng. 2016, 97, 68–76. [Google Scholar] [CrossRef]
- Sztekler, K.; Kalawa, W.; Nowak, W.; Mika, L.; Krzywanski, J.; Grabowska, K.; Sosnowski, M.; Alharbi, A. Performance Evaluation of a Single-Stage Two-Bed Adsorption Chiller With Desalination Function. J. Energy Resour. Technol. Trans. ASME 2021, 143, 082101. [Google Scholar] [CrossRef]
- Akhtar, S.; Khan, T.S.; Ilyas, S.; Alshehhi, M.S. Feasibility and Basic Design of Solar Integrated Absorption Refrigeration for an Industry. Energy Procedia 2015, 75, 508–513. [Google Scholar] [CrossRef]
- Jrad, A.B.H.; Ben Hamida, M.B.; Ghnay, R.; Mhimid, A. Contribution to the Study of Combined Adsorption–Ejection System Using Solar Energy. Adv. Mech. Eng. 2017, 9, 1687814017711855. [Google Scholar] [CrossRef]
- Ben Hamida, M.B.; Belghaieb, J.; Hajji, N. Heat and Mass Transfer Enhancement for Falling Film Absorption Process in Vertical Plate Absorber by Adding Copper Nanoparticles. Arab. J. Sci. Eng. 2018, 43, 4991–5001. [Google Scholar] [CrossRef]
- Ben Hamida, M.B.; Belghaieb, J.; Hajji, N. Numerical Study of Heat and Mass Transfer Enhancement for Bubble Absorption Process of Ammonia-Water Mixture without and with Nanofluids. Therm. Sci. 2018, 22, 3107–3120. [Google Scholar] [CrossRef]
- Ben Jaballah, R.; Ben Hamida, M.B.; Saleh, J.; Almeshaal, M.A. Enhancement of the Performance of Bubble Absorber Using Hybrid Nanofluid as a Cooled Absorption System. Int. J. Numer. Methods Heat Fluid Flow 2019, 29, 3857–3871. [Google Scholar] [CrossRef]
- Ben Jaballah, R.; Ben Hamida, M.B.; Almeshaal, M.A.; Chamkha, A. The Influence of Hybrid Nanofluid and Coolant Flow Direction on Bubble Mode Absorption Improvement. Math. Methods Appl. Sci. 2020, 1–15. [Google Scholar] [CrossRef]
- Luo, H.L.; Wang, R.Z.; Dai, Y.J.; Wu, J.Y.; Shen, J.M.; Zhang, B.B. An Efficient Solar-Powered Adsorption Chiller and Its Application in Low-Temperature Grain Storage. Sol. Energy 2007, 81, 607–613. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.; Ji, X.; Yu, Q.; Li, G.; Ma, X. Experimental Study of the Effect of Enhanced Mass Transfer on the Performance Improvement of a Solar-Driven Adsorption Refrigeration System. Appl. Energy 2018, 224, 417–425. [Google Scholar] [CrossRef]
- Grabowska, K.; Zylka, A.; Kulakowska, A.; Skrobek, D.; Krzywanski, J.; Sosnowski, M.; Ciesielska, K.; Nowak, W. Experimental Investigation of an Intensified Heat Transfer Adsorption Bed (IHTAB) Reactor Prototype. Materials 2021, 14, 3520. [Google Scholar] [CrossRef] [PubMed]
- Grabowska, K.; Krzywanski, J.; Nowak, W.; Wesolowska, M. Construction of an Innovative Adsorbent Bed Configuration in the Adsorption Chiller–Selection Criteria for Effective Sorbent-Glue Pair. Energy 2018, 151, 317–323. [Google Scholar] [CrossRef]
- Rupa, M.J.; Pal, A.; Saha, B.B. Activated Carbon-Graphene Nanoplatelets Based Green Cooling System: Adsorption Kinetics, Heat of Adsorption, and Thermodynamic Performance. Energy 2020, 193, 116774–116968. [Google Scholar] [CrossRef]
- Wang, L.W.; Tamainot-Telto, Z.; Thorpe, R.; Critoph, R.E.; Metcalf, S.J.; Wang, R.Z. Study of Thermal Conductivity, Permeability, and Adsorption Performance of Consolidated Composite Activated Carbon Adsorbent for Refrigeration. Renew. Energy 2011, 36, 2062–2066. [Google Scholar] [CrossRef]
- Grabowska, K.; Sztekler, K.; Krzywanski, J.; Sosnowski, M.; Stefanski, S.; Nowak, W. Construction of an Innovative Adsorbent Bed Configuration in the Adsorption Chiller Part 2. Experimental Research of Coated Bed Samples. Energy 2021, 215, 119123. [Google Scholar] [CrossRef]
- Skrobek, D.; Krzywanski, J.; Sosnowski, M.; Kulakowska, A.; Zylka, A.; Grabowska, K.; Ciesielska, K.; Nowak, W. Implementation of Deep Learning Methods in Prediction of Adsorption Processes. Adv. Eng. Softw. 2022, 173, 103190. [Google Scholar] [CrossRef]
- Krzywanski, J.; Sztekler, K.; Bugaj, M.; Kalawa, W.; Grabowska, K.; Chaja, P.R.; Sosnowski, M.; Nowak, W.; Mika, L.; Bykuc, S. Adsorption Chiller in a Combined Heating and Cooling System: Simulation and Optimization by Neural Networks. Bull. Pol. Acad. Sci. Technol. Sci. 2021, 69, e137054. [Google Scholar] [CrossRef]
- Krzywanski, J.; Skrobek, D.; Zylka, A.; Grabowska, K.; Kulakowska, A.; Sosnowski, M.; Nowak, W.; Blanco-Marigorta, A.M. Heat and Mass Transfer Prediction in Fluidized Beds of Cooling and Desalination Systems by AI Approach. Appl. Therm. Eng. 2023, 225, 120200. [Google Scholar] [CrossRef]
- Grabowska, K.; Sosnowski, M.; Krzywanski, J.; Sztekler, K.; Kalawa, W.; Zylka, A.; Nowak, W. Analysis of Heat Transfer in a Coated Bed of an Adsorption Chiller. In Proceedings of the MATEC Web of Conferences, Cracow, Poland, 21–24 May 2018; Volume 240. [Google Scholar] [CrossRef]
- Krzywanski, J.; Grabowska, K.; Sosnowski, M.; Zylka, A.; Kulakowska, A.; Czakiert, T.; Sztekler, K.; Wesolowska, M.; Nowak, W. Heat Transfer in Adsorption Chillers with Fluidized Beds of Silica Gel, Zeolite, and Carbon Nanotubes. Heat Transf. Eng. 2021, 43, 172–182. [Google Scholar] [CrossRef]
- Krzywanski, J.; Grabowska, K.; Sosnowski, M.; Zyłka, A.; Sztekler, K.; Kalawa, W.; Wójcik, T.; Nowak, W. Modeling of a re-heat two-stage adsorption chiller by AI approach. MATEC Web Conf. 2018, 240, 5014. [Google Scholar] [CrossRef]
- Wahab, M.I.A.; Rheima, K.H. Drying of Solid Materials by Vacuum Fluidized Bed Dryer. Iraqi J. Chem. Pet. Eng. 2009, 10, 1–11. [Google Scholar] [CrossRef]
- Llop, M.F.; Madrid, F.; Arnaldos, J.; Casal, J. A generalized equation for the prediction of minimum fluidization velocity. Chem. Eng. Sci. 1996, 51, 5149–5157. [Google Scholar] [CrossRef]
- De Souza-Santos, M.L. Proposals for Power Generation Based on Processes Consuming Biomass-Glycerol Slurries. Energy 2017, 120, 959–974. [Google Scholar] [CrossRef]
- Krzywanski, J. Heat Transfer Performance in a Superheater of an Industrial CFBC Using Fuzzy Logic-Based Methods. Entropy 2019, 21, 919. [Google Scholar] [CrossRef]
- Rosen, M.A. The exergy of stratified thermal energy storages. Sol. Energy 2001, 71, 173–185. [Google Scholar] [CrossRef]
- Almendros-Ibáñez, J.A.; Fernández-Torrijos, M.; Díaz-Heras, M.; Belmonte, J.F.; Sobrino, C. A Review of Solar Thermal Energy Storage in Beds of Particles: Packed and Fluidized Beds. Sol. Energy 2019, 192, 193–237. [Google Scholar] [CrossRef]
- Muskala, W.; Krzywański, J.; Czakiert, T.; Nowak, W. The research of CFB boiler operation for oxygen-enhanced dried lignite Combustion. Rynek Energii 2011, 92, 172–176. [Google Scholar]
- Krzywanski, J.; Blaszczuk, A.; Czakiert, T.; Rajczyk, R.; Nowak, W. Artificial intelligence treatment of NOX emissions from CFBC in air and oxy-fuel conditions. In Proceedings of the 11th International Conference on Fluidized Bed Technology, Beijing, China, 14–17 May 2014; pp. 619–624. [Google Scholar]
- Krzywański, J.; Rajczyk, R.; Nowak, W. Model Research of Gas Emissions from Lignite and Biomass Co-Combustion in a Large Scale Cfb Boiler. Chem. Process Eng. Inz. Chem. I Proces. 2014, 35, 217–231. [Google Scholar] [CrossRef]
- AL-Hasni, S.; Santori, G. The Cost of Manufacturing Adsorption Chillers. Therm. Sci. Eng. Prog. 2023, 39, 101685. [Google Scholar] [CrossRef]
- Fernandes, M.S.; Brites, G.J.V.N.; Costa, J.J.; Gaspar, A.R.; Costa, V.A.F. Review and Future Trends of Solar Adsorption Refrigeration Systems. Renew. Sustain. Energy Rev. 2014, 39, 102–123. [Google Scholar] [CrossRef]
- Wang, Q.; Gao, X.; Xu, J.Y.; Maiga, A.S.; Chen, G.M. Experimental Investigation on a Fluidized-Bed Adsorber/Desorber for the Adsorption Refrigeration System. Int. J. Refrig. 2012, 35, 694–700. [Google Scholar] [CrossRef]
- Sztekler, K.; Kalawa, W.; Mika, Ł.; Mlonka-Medrala, A.; Sowa, M.; Nowak, W. Effect of Additives on the Sorption Kinetics of a Silica Gel Bed in Adsorption Chiller. Energies 2021, 14, 1083. [Google Scholar] [CrossRef]
- Bujok, T.; Boruta, P.; Mika, Ł.; Sztekler, K. Analysis of Designs of Heat Exchangers Used in Adsorption Chillers. Energies 2021, 14, 8038. [Google Scholar] [CrossRef]
- Alghoul, M.A.; Sulaiman, M.Y.; Azmi, B.Z.; Wahab, M.A. Advances on Multi-Purpose Solar Adsorption Systems for Domestic Refrigeration and Water Heating. Appl. Therm. Eng. 2007, 27, 813–822. [Google Scholar] [CrossRef]
- Kulakowska, A.; Pajdak, A.; Krzywanski, J.; Grabowska, K.; Zylka, A.; Sosnowski, M.; Wesolowska, M.; Sztekler, K.; Nowak, W. Effect of Metal and Carbon Nanotube Additives on the Thermal Diffusivity of a Silica-Gel-Based Adsorption Bed. Energies 2020, 16, 1391. [Google Scholar] [CrossRef]
- Sztekler, K.; Kalawa, W.; Mika, Ł.; Sowa, M. Effect of Metal Additives in the Bed on the Performance Parameters of an Adsorption Chiller with Desalination Function. Energies 2021, 14, 7226. [Google Scholar] [CrossRef]
- Sur, A.; Das, R.K. Review on solar adsorption refrigeration cycle. Int. J. Mech. Eng. Technol. 2010, 1, 190–226. [Google Scholar]
- Zhang, H.; Degrève, J.; Baeyens, J.; Dewil, R. The Voidage in a CFB Riser as Function of Solids Flux and Gas Velocity. In Proceedings of the Procedia Engineering; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; Volume 102, pp. 1112–1122. [Google Scholar]
- von Berg, L.; Anca-Couce, A.; Hochenauer, C.; Scharler, R. Multi-Scale Modelling of Fluidized Bed Biomass Gasification Using a 1D Particle Model Coupled to CFD. Fuel 2022, 324, 124677. [Google Scholar] [CrossRef]
- Majumder, P.; Deb, B.; Gupta, R. Design and Development of Solar Assisted Fluidized Bed Dryer Integrated with Liquid Desiccant Dehumidifier: Theoretical Analysis and Experimental Investigation. Energy Convers. Manag. 2022, 270, 116281. [Google Scholar] [CrossRef]
- Jiang, Y.; Bagheri, M.H.; Loibl, R.T.; Schiffres, S.N. Thermodynamic Limits of Adsorption Heat Pumps: A Facile Method of Comparing Adsorption Pairs. Appl. Therm. Eng. 2019, 160, 113906. [Google Scholar] [CrossRef]
- Kunii, D.; Levenspiel, O. Fluidization Engineering; Butterworth-Heinemann: Oxford, UK, 1991; ISBN 0409902330. [Google Scholar]
- Horibe, A.; Sukmawaty; Haruki, N.; Hiraishi, D. Sorption-Desorption Operations on Two Connected Fluidized Bed Using Organic Sorbent Powder. Int. J. Heat Mass Transf. 2013, 65, 817–825. [Google Scholar] [CrossRef]
- Yohana, E.; Haryanto, I.; Dwiputra, M.; Luqmanul, Y. Static and Dynamic Analysis of Vibro Fluidized Bed Dryer Using Finite Element Method. E3S Web Conf. 2018, 73, 05029. [Google Scholar]
- Wang, S.; Hu, C.; Luo, K.; Yu, J.; Fan, J. Multi-Scale Numerical Simulation of Fluidized Beds: Model Applicability Assessment. Particuology 2023, 80, 11–41. [Google Scholar] [CrossRef]
- de Souza-Santos, M.L. Solid Fuels Combustion and Gasification; CRC Press: Boca Raton, FL, USA, 2010; ISBN 9781420047509. [Google Scholar]
- de Souza-Santos, M.L. Solid Fuels Combustion and Gasification; CRC Press: Boca Raton, FL, USA, 2004; ISBN 9780429216497. [Google Scholar]
- Rogala, Z.; Kolasiński, P.; Gnutek, Z. Effect of Operating Conditions on Performance of Silica Gel-Water Air-Fluidised Desiccant Cooler. In Proceedings of the E3S Web of Conferences, Montpellier, France, 3–7 July 2017; EDP Sciences: Les Ulis, France, 2017; Volume 22. [Google Scholar]
- Rogala, Z.; Kolasiński, P.; Gnutek, Z. Modelling and Experimental Analyzes on Air-Fluidised Silica Gel-Water Adsorption and Desorption. Appl. Therm. Eng. 2017, 127, 950–962. [Google Scholar] [CrossRef]
- Nikam, S.; Mandal, D. A Study on Fluidization of Activated Carbon Particles in Gas-Solid Fluidized Bed. Indian Chem. Eng. 2021, 63, 478–490. [Google Scholar] [CrossRef]
- Hamed, A.M. Experimental Investigation on the Adsorption/Desorption Processes Using Solid Desiccant in an Inclined-Fluidized Bed. Renew. Energy 2005, 30, 1913–1921. [Google Scholar] [CrossRef]
- Lienhard, J.H. A Heat Transfer Textbook, 3rd ed.; Phlogiston Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Horibe, A.; Husain, S.; Inaba, H.; Haruki, N. Sorption Characteristics of Organic Powder Sorption Material in Fluidized Bed with a Cooling Pipe. J. Therm. Sci. Technol. 2008, 3, 207–218. [Google Scholar] [CrossRef]
- Chen, C.H.; Schmid, G.; Chan, C.T.; Chiang, Y.C.; Chen, S.L. Application of Silica Gel Fluidised Bed for Air-Conditioning Systems. Appl. Therm. Eng. 2015, 89, 229–238. [Google Scholar] [CrossRef]
- Chiang, Y.C.; Chen, C.H.; Chiang, Y.C.; Chen, S.L. Circulating Inclined Fluidized Beds with Application for Desiccant Dehumidification Systems. Appl. Energy 2016, 175, 199–211. [Google Scholar] [CrossRef]
- Hamed, A.M.; Abd El Rahman, W.R.; El-Eman, S.H. Experimental Study of the Transient Adsorption/Desorption Characteristics of Silica Gel Particles in Fluidized Bed. Energy 2010, 35, 2468–2483. [Google Scholar] [CrossRef]
- Hamed, A.M. Theoretical and Experimental Study on the Transient Adsorption Characteristics of a Vertical Packed Porous Bed. Renew. Energy 2002, 27, 525–541. [Google Scholar] [CrossRef]
- Wang, S.; Shen, Y. Particle-Scale Modelling of the Pyrolysis of End-of-Life Solar Panel Particles in Fluidized Bed Reactors. Resour. Conserv. Recycl. 2022, 183, 106378. [Google Scholar] [CrossRef]
- Horibe, A.; Sukmawaty; Haruki, N.; Hiraishi, D. Continuous Sorption and Desorption of Organic Sorbent Powder in Two Connected Fluidized Beds. J. Therm. Sci. Technol. 2012, 7, 563–576. [Google Scholar] [CrossRef]
- Chen, C.H.; Ma, S.S.; Wu, P.H.; Chiang, Y.C.; Chen, S.L. Adsorption and Desorption of Silica Gel Circulating Fluidized Beds for Air Conditioning Systems. Appl. Energy 2015, 155, 708–718. [Google Scholar] [CrossRef]
- Reichhold, A.; Hofbauer, H. Internally Circulating Fluidized Bed for Continuous Adsorption and Desorption. Chem. Eng. Process. 1995, 34, 521–527. [Google Scholar] [CrossRef]
- Berggren, J.C.; Eklund, H.; Karlsson, H. 56 Application of Chemical and Physical Operations in a Circulating Fluidized Bed System; Pergamon Press Ltd.: Oxford, UK, 1980; Volume 35. [Google Scholar]
- Chen, C.J.; Wang, R.Z.; Xia, Z.Z.; Kiplagat, J.K.; Lu, Z.S. Study on a Compact Silica Gel-Water Adsorption Chiller without Vacuum Valves: Design and Experimental Study. Appl. Energy 2010, 87, 2673–2681. [Google Scholar] [CrossRef]
- Harriman, L.G. The Dehumidification Handbook; Munters Corporation: Amesbury, MA, USA, 2002; ISBN 0971788707. [Google Scholar]
- Muskała, W.; Krzywański, J.; Rajczyk, R.; Cecerko, M.; Kierzkowski, B.; Nowak, W.; Gajewski, W. Investigation of erosion in CFB boilers. Rynek Energii 2010, 87, 97–102. [Google Scholar]
- Muskała, W.; Krzywański, J.; Sekret, R.; Nowak, W. Model research of coal combustion in circulating fluidized bed boilers. Chem. Process Eng. 2008, 29, 473–492. [Google Scholar]
- Kulakowska, A.; Zylka, A.; Krzywanski, J.; Skrobek, D.; Grabowska, K.; Sosnowski, M.; Nowak, W. Influence of the Adsorption Bed Composition on the Low-Pressure Fluidization. Processes 2023, 11, 1912. [Google Scholar] [CrossRef]
- Pajdak, A.; Kulakowska, A.; Liu, J.; Berent, K.; Kudasik, M.; Krzywanski, J.; Kalawa, W.; Sztekler, K.; Skoczylas, N. Accumulation and Emission of Water Vapor by Silica Gel Enriched with Carbon Nanotubes CNT-Potential Applications in Adsorption Cooling and Desalination Technology. Appl. Sci. 2022, 12, 5644. [Google Scholar] [CrossRef]
- Yao, W.; Guangsheng, G.; Fei, W.; Jun, W. Fluidization and Agglomerate Structure of SiO2 Nanoparticles. Powder Technol. 2002, 124, 152–159. [Google Scholar] [CrossRef]
- Dasgupta, K.; Joshi, J.B.; Banerjee, S. Fluidized Bed Synthesis of Carbon Nanotubes—A Review. Chem. Eng. J. 2011, 171, 841–869. [Google Scholar] [CrossRef]
- Hogg, R. Role of Colloid and Interface Science in Agglomeration. In Proceedings of the 5th International Symposium on Agglomeration, Brighton, UK, 25–27 September 1989; pp. 483–493. [Google Scholar]
- Zhu, C.; Yu, Q.; Dave, R.N.; Pfeffer, R. Gas Fluidization Characteristics of Nanoparticle Agglomerates. AIChE J. 2005, 51, 426–439. [Google Scholar] [CrossRef]
- Krzywanski, J.; Sztekler, K.; Szubel, M.; Siwek, T.; Nowak, W.; Mika, Ł. A Comprehensive, Three-Dimensional Analysis of a Large-Scale, Multi-Fuel, CFB Boiler Burning Coal and Syngas. Part 1. The CFD Model of a Large-Scale Multi-Fuel CFB Combustion. Entropy 2020, 22, 964. [Google Scholar] [CrossRef] [PubMed]
- Krzywanski, J.; Sztekler, K.; Szubel, M.; Siwek, T.; Nowak, W.; Mika, Ł. A Comprehensive, Three-Dimensional Analysis of a Large-Scale, Multi-Fuel, CFB Boiler Burning Coal and Syngas. Part 2. Numerical Simulations of Coal and Syngas Co-Combustion. Entropy 2020, 22, 856. [Google Scholar] [CrossRef]
Adsorbent | Adsorbate | Working Phase | (kg) | (kg) | t (s) | (kg/kg) | (g/s) | |
---|---|---|---|---|---|---|---|---|
Fixed bed | active carbon | R134a | adsorption | 2 | 0.978 | 1800 | 0.49 | 0.54 |
desorption | 2 | 0.455 | 2600 | 3.34 | 0.18 | |||
Fluidized bed | adsorption | 2 | 0.984 | 250 | 0.49 | 3.94 | ||
desorption | 2 | 0.498 | 330 | 0.25 | 1.51 |
Desiccant Mass (g) | Outdoor Air (°C) | Outdoor Air Relative Humidity (%) | Desorption Temperature (°C) | Average Adsorption Rate (g/s) | Average Desorption Rate (g/s) | Pressure Drop (mmAq/m) |
---|---|---|---|---|---|---|
540 | 33 | 60 | 25 | 0.047 | 0.048 | 837.5 |
40 | 0.054 | 0.056 | 837.0 | |||
50 | 0.077 | 0.077 | 837.0 | |||
60 | 0.095 | 0.096 | 837.0 |
Source | Year | Type of Fluidized Bed | Operational Arrangements | Purpose of the Device | Operating Temperatures [°C] | Main Drawback of Apparatus |
---|---|---|---|---|---|---|
[47] | 2012 | Single fluidized bed | Fluidized bed powered by a blower | adsorption refrigeration system | 40–180 | Equipping an adsorption refrigerator with a blower can reduce the COP. No data available on the energy efficiency of the refrigerator. |
[83] | 2021 | Single fluidized bed | Fluidization is obtained by the pressure difference between the evaporator and the sorption chamber | adsorption refrigeration system | 30–40 | Laboratory scale station. Fluidization obtained as presented in the study requires scaling up to a larger device. |
[77] | 1995 | Internally circulating fluidized bed | Fluidization for sorption achieved by adsorbate flow, for desorption by hot air or steam | separation of pollutants | 20, 22, 40, 55 | Adsorbate constantly circulating in the bed may make it difficult to obtain a cooling effect and disturb the stability of the process. |
[59,69,75] | 2013 | Two connected fluidized bed | Fluidization for sorption achieved by adsorbate flow, for desorption by hot air | desiccant-dehumidifier system | Sorption temperature—30 Desorption temperature—50 | No mass recovery and no cooling effect. Due to the need to maintain a vacuum in the refrigerator, hot air cannot be used during desorption. |
[70] | 2015 | Circulating fluidized bed | Fluidization for sorption achieved by adsorbate flow, for desorption by hot air | desiccant-dehumidifier system | Sorption temperature—20 Desorption temperature—50 | No mass recovery and no cooling effect. Due to the need to maintain a vacuum in the refrigerator, hot air cannot be used during desorption. |
[71] | 2016 | Inclined fluidized beds | Fluidization for sorption achieved by adsorbate flow, for desorption by hot air | desiccant-dehumidifier system | Sorption temperature 25 Desorption temperature 50 | No mass recovery and no cooling effect. Due to the need to maintain a vacuum in the refrigerator, hot air cannot be used during desorption. |
Source | Year | Adsorbent | Adsorbate | Granulation | Bulk Density | Density | Addiction | Research Area |
---|---|---|---|---|---|---|---|---|
[25] | 2021 | Silica gel | Water | 160–200 μm | 780 kg/m3 | 2200 kg/m3 | - | Investigating the capacity to achieve fluidization through the application of pressure differentials between evaporator and sorption chamber |
850 kg/m3 | 2200 kg/m3 | - | ||||||
[51] | 2020 | Silica gel | - | 100–160 μm | - | 2100 kg/m3 | Aluminum Cooper Carbon Nanotubes | Examining the impact of metal and carbon nanotube additives on thermal diffusivity |
[84] | 2022 | Silica gel | Water | 100–160 μm | - | - | Carbon Nanotubes | Evaluating the adsorption ability of silica gel infused with carbon nanotubes |
200–250 μm | ||||||||
350–400 μm | ||||||||
[34] | 2022 | Silica gel | Water | 50–150 μm | - - | 2200 | Carbon Nanotubes | Investigation of changes in the thermal properties of silica gel and zeolite enriched with carbon nanotubes |
Zeolite | 2600 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lasek, L.; Zylka, A.; Krzywanski, J.; Skrobek, D.; Sztekler, K.; Nowak, W. Review of Fluidized Bed Technology Application for Adsorption Cooling and Desalination Systems. Energies 2023, 16, 7311. https://doi.org/10.3390/en16217311
Lasek L, Zylka A, Krzywanski J, Skrobek D, Sztekler K, Nowak W. Review of Fluidized Bed Technology Application for Adsorption Cooling and Desalination Systems. Energies. 2023; 16(21):7311. https://doi.org/10.3390/en16217311
Chicago/Turabian StyleLasek, Lukasz, Anna Zylka, Jaroslaw Krzywanski, Dorian Skrobek, Karol Sztekler, and Wojciech Nowak. 2023. "Review of Fluidized Bed Technology Application for Adsorption Cooling and Desalination Systems" Energies 16, no. 21: 7311. https://doi.org/10.3390/en16217311
APA StyleLasek, L., Zylka, A., Krzywanski, J., Skrobek, D., Sztekler, K., & Nowak, W. (2023). Review of Fluidized Bed Technology Application for Adsorption Cooling and Desalination Systems. Energies, 16(21), 7311. https://doi.org/10.3390/en16217311