Impacts of Pore Structure on the Occurrence of Free Oil in Lacustrine Shale Pore Networks
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Sample Preparation
3.2. Experimental Methods
3.2.1. SEM
3.2.2. Low-Pressure Nitrogen Adsorption and Fractal Dimensions
3.2.3. TOC and HAWK Pyrolysis
3.2.4. Extraction and Fractionation
4. Results
4.1. SEM Image Analysis
4.2. Low-Pressure Nitrogen Adsorption before and after Extraction
4.3. Organic Geochemical Characteristics
5. Discussion
5.1. Characteristics of Pores Where Free Oil Occurs
5.1.1. Morphology of Pores Hosting Free Oil
5.1.2. Dominant Pore Sizes in Pores with Free Oil Occurrence
5.1.3. Pore Volume Distribution in Pores Hosting Free Oil
5.2. The Relationship between Pores and Free Oil Enrichment
6. Conclusions
- (1)
- After the extraction of free oil from the pores, shale samples with TOC content below 9% exhibit a more substantial increase in pore volume, specific surface area, and complexity compared to shale samples with TOC content exceeding 9%. This suggests that a well-developed pore network favors the enrichment of free oil.
- (2)
- Pore volume and TOY display contrasting trends as TOC increases, indicating that higher kerogen content hinders pore network development and increases petroleum adsorption.
- (3)
- In all Chang7 shale samples, free oil primarily resides within slit-like interparticle pores with diameters exceeding 30 nm. However, in samples with TOC content below 9%, there is a noticeable difference in the cavity and throat sizes of the pores occupied by free oil, whereas the opposite is observed in samples with TOC content exceeding 9%.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Williams, T.S.; Bhattacharya, S.; Song, L.; Agrawal, V.; Sharma, S. Petrophysical analysis and mudstone lithofacies classification of the HRZ shale, North Slope, Alaska. J. Petrol. Sci. Eng. 2022, 208, 109454. [Google Scholar] [CrossRef]
- Fu, S.; Fu, J.; Niu, X.; Li, S.; Wu, Z.; Zhou, X.; Liu, J. Reservoir formation conditions and key technologies for exploration and development in Qingcheng large oilfield. Petrol. Res. 2020, 5, 181–201. [Google Scholar] [CrossRef]
- Zheng, R.; Wang, Y.; Li, Z.; Zhang, Z.; Wang, G.; Zhang, H. Differences and origins of hydrocarbon generation characteristics between mudstone and shale in the Seventh Member of the Yanchang Formation, Ordos Basin, China. Int. J. Coal Geol. 2022, 257, 104012. [Google Scholar] [CrossRef]
- Jarvie, D.M. Shale Resource Systems for Oil and Gas Part 2: Shale-oil Resource Systems. In Shale Reservoirs—Giant Resources for the 21st Century: AAPG Memoir; American Association of Petroleum Geologists: Tulsa, OH, USA, 2012; Volume 97, pp. 89–119. [Google Scholar] [CrossRef]
- Larter, S.; Huang, H.; Bennett, B.; Snowdon, L. What Don’t We Know About Self Sourced Oil Reservoirs: Challenges and Potential Solutions. In Proceedings of the SPE Canadian Unconventional Resources Conference, Calgary, AB, Canada, 30 October–1 November 2012. [Google Scholar] [CrossRef]
- Li, S.; Li, S.; Guo, R.; Zhou, X.; Wang, Y.; Chen, J.; Zhang, J.; Hao, L.; Ma, X.; Qiu, J. Occurrence State of Soluble Organic Matter in Shale Oil Reservoirs from the Upper Triassic Yanchang Formation in the Ordos Basin, China: Insights from Multipolarity Sequential Extraction. Nat. Resour. Res. 2021, 30, 4379–4402. [Google Scholar] [CrossRef]
- Sandvik, E.I.; Young, W.A.; Curry, D.J. Expulsion from hydrocarbon sources: The role of organic absorption. Organ. Geochem. 1992, 19, 77–87. [Google Scholar] [CrossRef]
- Li, Z.; Zou, Y.; Xu, X.; Sun, J.; Li, M.; Peng, P. Adsorption of mudstone source rock for shale oil—Experiments, model and a case study. Organ. Geochem. 2016, 92, 55–62. [Google Scholar] [CrossRef]
- Cui, J.; Cheng, L. A theoretical study of the occurrence state of shale oil based on the pore sizes of mixed Gaussian distribution. Fuel 2017, 206, 564–571. [Google Scholar] [CrossRef]
- Siddiqui, M.A.Q.; Ali, S.; Fei, H.; Roshan, H. Current understanding of shale wettability: A review on contact angle measurements. Earth Sci. Rev. 2018, 181, 1–11. [Google Scholar] [CrossRef]
- Arif, M.; Zhang, Y.; Iglauer, S. Shale Wettability: Data Sets, Challenges, and Outlook. Energy Fuels 2021, 35, 2965–2980. [Google Scholar] [CrossRef]
- Wang, S.; Javadpour, F.; Feng, Q. Molecular dynamics simulations of oil transport through inorganic nanopores in shale. Fuel 2016, 171, 74–86. [Google Scholar] [CrossRef]
- Cao, Z.; Jiang, H.; Zeng, J.; Saibi, H.; Lu, T.; Xie, X.; Zhang, Y.; Zhou, G.; Wu, K.; Guo, J. Nanoscale liquid hydrocarbon adsorption on clay minerals: A molecular dynamics simulation of shale oils. Chem. Eng. J. 2021, 420, 127578. [Google Scholar] [CrossRef]
- Dang, W.; Zhang, J.; Nie, H.; Wang, F.; Tang, X.; Jiang, S.; Wei, X.; Liu, Q.; Li, P.; Li, F.; et al. Microscopic occurrence characteristics of shale oil and their main controlling factors:a case study of the 3rd submember continental shale of Member 7 of Yanchang Formation in Yan’an area, Ordos Basin. Acta Pet. Sin. 2022, 43, 507–523. [Google Scholar] [CrossRef]
- Xiao, B.; Fan, J.; Ding, F. Prediction of Relative Permeability of Unsaturated Porous Media Based on Fractal Theory and Monte Carlo Simulation. Energy Fuels 2012, 26, 6971–6978. [Google Scholar] [CrossRef]
- Zargari, S.; Canter, K.L.; Prasad, M. Porosity evolution in oil-prone source rocks. Fuel 2015, 153, 110–117. [Google Scholar] [CrossRef]
- Cai, J.; Zhang, Z.; Wei, W.; Guo, D.; Li, S.; Zhao, P. The critical factors for permeability-formation factor relation in reservoir rocks: Pore-throat ratio, tortuosity and connectivity. Energy 2019, 188, 116051. [Google Scholar] [CrossRef]
- Li, Z.; Shen, X.; Qi, Z.; Hu, R. Study on the pore structure and fractal characteristics of marine and continental shale based on mercury porosimetry, N2 adsorption and NMR methods. J. Nat. Gas Sci. Eng. 2018, 53, 12–21. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, S.; Li, J.; Wang, J.; Zhang, J.; Chen, G.; Huang, H.; Zhi, Q.; Yin, Y. Microscopic characteristics of pore-fracture system in lacustrine shale from Dongying Sag, Bohai Bay Basin, China: Evidence from scanning electron microscopy. Mar. Petrol. Geol. 2023, 150, 106156. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Hammes, U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bullet. 2012, 96, 1071–1098. [Google Scholar] [CrossRef]
- Löhr, S.C.; Baruch, E.T.; Hall, P.A.; Kennedy, M.J. Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter? Org. Geochem. 2015, 87, 119–132. [Google Scholar] [CrossRef]
- Ma, L.; Fauchille, A.-L.; Dowey, P.J.; Figueroa Pilz, F.; Courtois, L.; Taylor, K.G.; Lee, P.D. Correlative multi-scale imaging of shales: A review and future perspectives. Geol. Soc. London Spec. Publicat. 2017, 454, 175–199. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Solano, N.; Bustin, R.M.; Bustin, A.; Chalmers, G.; He, L.; Melnichenko, Y.B.; Radliński, A.P.; Blach, T.P. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel 2013, 103, 606–616. [Google Scholar] [CrossRef]
- Han, H.; Cao, Y.; Chen, S.; Lu, J.; Huang, C.; Zhu, H.; Zhan, P.; Gao, Y. Influence of particle size on gas-adsorption experiments of shales: An example from a Longmaxi Shale sample from the Sichuan Basin, China. Fuel 2016, 186, 750–757. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Thommes, M.; Cychosz, K.A. Physical adsorption characterization of nanoporous materials: Progress and challenges. Adsorption 2014, 20, 233–250. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Kube, S.A.; Turke, K.; Ellinghaus, R.; Wallacher, D.; Thommes, M.; Smarsly, B.M. Pore Size Gradient Effect in Monolithic Silica Mesopore Networks Revealed by In-Situ SAXS Physisorption. Langmuir 2020, 36, 11996–12009. [Google Scholar] [CrossRef]
- Schlumberger, C.; Thommes, M. Characterization of Hierarchically Ordered Porous Materials by Physisorption and Mercury Porosimetry—A Tutorial Review. Adv. Mater. Interfaces 2021, 8, 2002181. [Google Scholar] [CrossRef]
- Nikolaev, M.Y.; Kazak, A.V. Liquid saturation evaluation in organic-rich unconventional reservoirs: A comprehensive review. Earth Sci. Rev. 2019, 194, 327–349. [Google Scholar] [CrossRef]
- Hu, T.; Pang, X.; Jiang, F.; Wang, Q.; Liu, X.; Wang, Z.; Jiang, S.; Wu, G.; Li, C.; Xu, T.; et al. Movable oil content evaluation of lacustrine organic-rich shales: Methods and a novel quantitative evaluation model. Earth Sci. Rev. 2021, 214, 103545. [Google Scholar] [CrossRef]
- Xu, Y.; Lun, Z.; Pan, Z.; Wang, H.; Zhou, X.; Zhao, C.; Zhang, D. Occurrence space and state of shale oil: A review. J. Petrol. Sci. Eng. 2022, 211, 110183. [Google Scholar] [CrossRef]
- Pepper, A.S.; Corvi, P.J. Simple kinetic models of petroleum formation. Part III: Modelling an open system. Mar. Petrol. Geol. 1995, 12, 417–452. [Google Scholar] [CrossRef]
- Abrams, M.A.; Gong, C.; Garnier, C.; Sephton, M.A. A new thermal extraction protocol to evaluate liquid rich unconventional oil in place and in-situ fluid chemistry. Mar. Petrol. Geol. 2017, 88, 659–675. [Google Scholar] [CrossRef]
- Romero-Sarmiento, M.-F. A quick analytical approach to estimate both free versus sorbed hydrocarbon contents in liquid-rich source rocks. AAPG Bullet. 2019, 103, 2031–2043. [Google Scholar] [CrossRef]
- Qian, M.; Jiang, Q.; Li, M.; Li, Z.; Liu, P.; Ma, Y.; Cao, T. Quantitative characterization of extractable organic matter in lacustrine shale with different occurrences. Petrol. Geol. Exp. 2017, 39, 278–286. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, H.; Li, Z.; Liu, M. Comparative study between sequential solvent-extraction and multiple isothermal stages pyrolysis: A case study on Eocene Shahejie Formation shales, Dongying Depression, East China. Fuel 2020, 263, 116591. [Google Scholar] [CrossRef]
- Jarvie, D.M.; Maende, A.; Weldon, D.; Jarvie, B.M. Geochemical Assessment of in situ Petroleum in Unconventional Resource Systems. In Proceedings of the 3rd Unconventional Resources Technology Conference; American Association of Petroleum Geologists, Tulsa, OK, USA, 20–22 July 2015. [Google Scholar] [CrossRef]
- Lopatin, N.V.; Zubairaev, S.L.; Kos, I.M.; Emets, T.P.; Romanov, E.A.; Malchikhina, O.V. Unconventional oil accumulations in the upper jurassic bazhenov black shale formation, west siberian basin: A self-sourced reservoir system. J Pet. Geol. 2003, 26, 225–244. [Google Scholar] [CrossRef]
- Han, Y.; Horsfield, B.; LaReau, H.; Mahlstedt, N. Intraformational migration of petroleum: Insights into the development of sweet spot in the Cretaceous Niobrara shale-oil system, Denver Basin. Mar. Petrol. Geol. 2019, 107, 301–309. [Google Scholar] [CrossRef]
- Zou, C.; Pan, S.; Horsfield, B.; Yang, Z.; Hao, S.; Liu, E.; Zhang, L. Oil retention and intrasource migration in the organic-rich lacustrine Chang 7 shale of the Upper Triassic Yanchang Formation, Ordos Basin, central China. AAPG Bullet. 2019, 103, 2627–2663. [Google Scholar] [CrossRef]
- Clementz, D.M. Effect of Oil and Bitumen Saturation on Source-Rock Pyrolysis: GEOLOGIC NOTES. AAPG Bullet. 1979, 63, 2227–2232. [Google Scholar] [CrossRef]
- Delvaux, D.; Martin, H.; Leplat, P.; Paulet, J. Comparative Rock-Eval pyrolysis as an improved tool for sedimentary organic matter analysis. Org. Geochem. 1990, 16, 1221–1229. [Google Scholar] [CrossRef]
- Delvaux, D.; Martin, H.; Leplat, P.; Paulet, J. Geochemical characterization of sedimentary organic matter by means of pyrolysis kinetic parameters. Org. Geochem. 1990, 16, 175–187. [Google Scholar] [CrossRef]
- Ziegs, V.; HORSFIELD, B.; Skeie, J.E.; Rinna, J. Petroleum retention in the Mandal Formation, Central Graben, Norway. Mar. Petrol. Geol. 2017, 83, 195–214. [Google Scholar] [CrossRef]
- Wang, E.; Feng, Y.; Guo, T.; Li, M. Oil content and resource quality evaluation methods for lacustrine shale: A review and a novel three-dimensional quality evaluation model. Earth Sci. Rev. 2022, 232, 104134. [Google Scholar] [CrossRef]
- Kuila, U.; McCarty, D.K.; Derkowski, A.; Fischer, T.B.; Topór, T.; Prasad, M. Nano-scale texture and porosity of organic matter and clay minerals in organic-rich mudrocks. Fuel 2014, 135, 359–373. [Google Scholar] [CrossRef]
- Wei, L.; Mastalerz, M.; Schimmelmann, A.; Chen, Y. Influence of Soxhlet-extractable bitumen and oil on porosity in thermally maturing organic-rich shales. Int. J. Coal Geol. 2014, 132, 38–50. [Google Scholar] [CrossRef]
- Li, J.; Zhou, S.; Li, Y.; Ma, Y.; Yang, Y.; Li, C. Effect of organic matter on pore structure of mature lacustrine organic-rich shale: A case study of the Triassic Yanchang shale, Ordos Basin, China. Fuel 2016, 185, 421–431. [Google Scholar] [CrossRef]
- Li, X.; Cai, J.; Liu, H.; Zhu, X.; Li, Z.; Liu, J. Characterization of shale pore structure by successive pretreatments and its significance. Fuel 2020, 269, 117412. [Google Scholar] [CrossRef]
- Bai, L.; Liu, B.; Du, Y.; Wang, B.; Tian, S.; Wang, L.; Xue, Z. Distribution characteristics and oil mobility thresholds in lacustrine shale reservoir: Insights from N2 adsorption experiments on samples prior to and following hydrocarbon extraction. Petrol. Sci. 2022, 19, 486–497. [Google Scholar] [CrossRef]
- Lei, Y.; Luo, X.; Wang, X.; Cheng, M.; Zhang, L.; Cai, Z.; Zhang, L.; Jiang, C.; Zhao, Q.; Yin, J. Effects of extractable organic matter from mature lacustrine shale on the pore structure and their implications. AAPG Bullet. 2022, 106, 1239–1264. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, C.; Jiang, F.; Hu, T.; Awan, R.S.; Chen, Z.; Lv, J.; Zhang, C.; Hu, M.; Huang, R.; et al. Occurrence Space and State of Petroleum in Lacustrine Shale: Insights from Two-Step Pyrolysis and the N2 Adsorption Experiment. Energy Fuels 2022, 36, 10920–10933. [Google Scholar] [CrossRef]
- Yang, J.J. Tectonic Evolution and Oil-Gas Reservoirs Distribution in Ordos Basin; Petroleum Industry Press: Beijing, China, 2002; pp. 36–37. ISBN 7-5021-3801-3. [Google Scholar]
- Yang, Y.; Li, W.; Ma, L. Tectonic and stratigraphic controls of hydrocarbon systems in the Ordos basin: A multicycle cratonic basin in central China. AAPG Bullet. 2005, 89, 255–269. [Google Scholar] [CrossRef]
- Chen, R.; Wang, F.; Li, Z.; Evans, N.J.; Chen, H.; Wei, X. Late Paleozoic provenance shift in the east-central Ordos Basin: Implications for the tectonic evolution of the north China Craton. J. Asian Earth Sci. 2021, 215, 104799. [Google Scholar] [CrossRef]
- Chen, R.; Wang, F.; Li, Z.; Evans, N.J.; Chen, H. Detrital zircon geochronology of the Permian Lower Shihezi Formation, northern Ordos Basin, China: Time constraints for closing of the Palaeo-Asian Ocean. Geol. Mag. 2022, 159, 1601–1620. [Google Scholar] [CrossRef]
- Darby, B.J.; Ritts, B.D. Mesozoic contractional deformation in the middle of the Asian tectonic collage: The intraplate Western Ordos fold–thrust belt, China. Earth Planet. Sci. Lett. 2002, 205, 13–24. [Google Scholar] [CrossRef]
- Ritts, B.D.; Hanson, A.D.; Darby, B.J.; Nanson, L.; Berry, A. Sedimentary record of Triassic intraplate extension in North China: Evidence from the nonmarine NW Ordos Basin, Helan Shan and Zhuozi Shan. Tectonophysics 2004, 386, 177–202. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, H.; Zhao, J.; Wang, J.; Zhao, D.; Yang, M. Temporospatial coordinates of evolution of the Ordso basin and its mineralization response. Acta Geol. Sin. 2008, 82, 1229–1243. [Google Scholar] [CrossRef]
- Li, S.; Xiao, Y.; Liou, D.; Chen, Y.; Ge, N.; Zhang, Z.; Sun, S.; Cong, B.; Zhang, R.; Hart, S.R.; et al. Collision of the North China and Yangtse Blocks and formation of coesite-bearing eclogites: Timing and processes. Chem. Geol. 1993, 109, 89–111. [Google Scholar] [CrossRef]
- Liu, S.; Su, S.; Zhang, G. Early Mesozoic basin development in North China: Indications of cratonic deformation. J. Asian Earth Sci. 2013, 62, 221–236. [Google Scholar] [CrossRef]
- Yang, H.; Deng, X. Deposition of Yanchang Formation deep-water sandstone under the control of tectonic events, Ordos Basin. Petrol. Explorat. Dev. 2013, 40, 513–520. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, X.; Liu, X.; Li, W.; Chen, Q.; Zhang, G.; Zhang, H.; Yang, Z.; Sun, S.; Zhang, F. Propagation tectonics and multiple accretionary processes of the Qinling Orogen. J. Asian Earth Sci. 2015, 104, 84–98. [Google Scholar] [CrossRef]
- Qiu, X.; Liu, C.; Mao, G.; Deng, Y.; Wang, F.; Wang, J. Late Triassic tuff intervals in the Ordos basin, Central China: Their depositional, petrographic, geochemical characteristics and regional implications. J. Asian Earth Sci. 2014, 80, 148–160. [Google Scholar] [CrossRef]
- Yang, R.; Jin, Z.; van Loon, A.J.; Han, Z.; Fan, A. Climatic and tectonic controls of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin, central China: Implications for unconventional petroleum development. AAPG Bullet. 2017, 101, 95–117. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, W. Leading effect of the seventh member high-quality source rock of Yanchang formation in Ordos Basin during the enrichment of low-penetrating oil-gas accumulation: Geology and geochemistry. Geochimica 2005, 34, 147–154. [Google Scholar] [CrossRef]
- Hanson, A.D.; Ritts, B.D.; Moldowan, J.M. Organic geochemistry of oil and source rock strata of the Ordos Basin, north-central China. AAPG Bullet. 2007, 91, 1273–1293. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, W.; Xie, L. Controls on organic matter accumulation in the Triassic Chang 7 lacustrine shale of the Ordos Basin, central China. Int. J. Coal Geol. 2017, 183, 38–51. [Google Scholar] [CrossRef]
- Jiang, F.; Chen, D.; Chen, J.; Li, Q.; Liu, Y.; Shao, X.; Hu, T.; Dai, J. Fractal Analysis of Shale Pore Structure of Continental Gas Shale Reservoir in the Ordos Basin, NW China. Energy Fuels 2016, 30, 4676–4689. [Google Scholar] [CrossRef]
- Hackley, P.C.; Zhang, L.; Zhang, T. Organic petrology of peak oil maturity Triassic Yanchang Formation lacustrine mudrocks, Ordos Basin, China. Interpretation 2017, 5, SF211–SF223. [Google Scholar] [CrossRef]
- Pan, S.; Zou, C.; Li, J.; Yang, Z.; Liu, E.; Han, Y. Unconventional shale systems: A comparative study of the “in-source sweet spot” developed in the lacustrine Chang 7 Shale and the marine Barnett Shale. Mar. Petrol. Geol. 2019, 100, 540–550. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, Q.; Jiang, C.; Liu, X.; Reyes, J.; Mort, A.; Jia, Z. Source rock characteristics and Rock-Eval-based hydrocarbon generation kinetic models of the lacustrine Chang-7 Shale of Triassic Yanchang Formation, Ordos Basin, China. Int. J. Coal Geol. 2017, 182, 52–65. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Pfeifer, P.; Obert, M.; Cole, M.W. Fractal bet and FHH theories of adsorption: A comparative study. Proc. R. Soc. Lond. A 1989, 423, 169–188. [Google Scholar] [CrossRef]
- Pfeifer, P.; Liu, K. Multilayer adsorption as a tool to investigate the fractal nature of porous adsorbents. In Equilibria and Dynamics of Gas Adsorption on Heterogeneous Solid Surfaces; Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 1997; pp. 625–677. [Google Scholar] [CrossRef]
- Behar, F.; Beaumont, V.; Penteado, H.D.B. Rock-Eval 6 technology: Performances and developments. Oil Gas Sci. Technol. 2001, 56, 111–134. [Google Scholar] [CrossRef]
- Katz, B.J.; Arango, I. Organic porosity: A geochemist’s view of the current state of understanding. Org. Geochem. 2018, 123, 1–16. [Google Scholar] [CrossRef]
- Gregg, S.J.; Sing, K.S.W. Adsorption, Surface Area and Porosity, 2nd ed.; Academic Press: New York, NY, USA, 1982; pp. 242–245. ISBN 0-12-300956-1. [Google Scholar]
- Kruk, M.; Jaroniec, M. Gas Adsorption Characterization of Ordered Organic−Inorganic Nanocomposite Materials. Chem. Mater. 2001, 13, 3169–3183. [Google Scholar] [CrossRef]
- Sandau, K.; Kurz, H. Measuring fractal dimension and complexity—An alternative approach with an application. J. Microsc. 1997, 186, 164–176. [Google Scholar] [CrossRef]
- Peters, K.E.; Cassa, M.R. Applied source rock geochemistry. In The Petroleum System—From Source to Trap: AAPG Memoir; American Association of Petroleum Geologists: Tulsa, OH, USA, 1991; Volume 60, pp. 93–120. [Google Scholar]
- Horsfield, B.; Zou, C.; Li, J.; Yang, S.; Mahlstedt, N.; Misch, D.; Gross, D.; Wei, M.; Wang, Y.; Tan, J. Prediction of the gas-generating characteristics of the Qiongzhusi and Longmaxi Formations, Yangtze Platform, southern China, using analogues. AAPG Bullet. 2021, 105, 945–985. [Google Scholar] [CrossRef]
- Cychosz, K.A.; Thommes, M. Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials. Engineering 2018, 4, 559–566. [Google Scholar] [CrossRef]
- Meyer, K.; Klobes, P. Comparison between different presentations of pore size distribution in porous materials. Fresenius J. Analyt. Chem. 1999, 363, 174–178. [Google Scholar] [CrossRef]
- Liu, K.; Ostadhassan, M. The impact of pore size distribution data presentation format on pore structure interpretation of shales. Adv. Geo Energy Res. 2019, 3, 187–197. [Google Scholar] [CrossRef]
- Noble, R.A.; Kaldi, J.G.; Atkinson, C.D. Oil saturation in shales: Applications in seal evaluation. In Seals, Traps, and the Petroleum System: AAPG Memoir; American Association of Petroleum Geologists: Tulsa, OH, USA, 1997; Volume 67, pp. 13–29. ISBN 0-89181-347-0. [Google Scholar]
- Melnikov, L.; Martinov, M.; Demin, V.; Cherevko, M.; Zaray, E.; Ezersky, D.; Karpekin, E.; Weinheber, P.; Filimonov, A.; Novikov, S.; et al. Defining Potentially-Productive Intervals and Evaluating Petrophysical Properties of the Tight-Oil Bazhenov Formation in Western Siberia Using a Suite of Modern Wireline Logs. In Proceedings of the SPE Russian Petroleum Technology Conference, Moscow, Russia, 26–28 October 2015. [Google Scholar] [CrossRef]
- Ertas, D.; Kelemen, S.R.; Halsey, T.C. Petroleum Expulsion Part 1. Theory of Kerogen Swelling in Multicomponent Solvents. Energy Fuels 2006, 20, 295–300. [Google Scholar] [CrossRef]
- Cui, R.; Hassanizadeh, S.M.; Sun, S. Pore-network modeling of flow in shale nanopores: Network structure, flow principles, and computational algorithms. Earth Sci. Rev. 2022, 234, 104203. [Google Scholar] [CrossRef]
- Aplin, A.C.; Larter, S.R. Fluid flow, pore pressure, wettability, and leakage in mudstone cap rocks. In Evaluating Fault and Cap Rock Seals: AAPG Hedberg Series; American Association of Petroleum Geologists: Tulsa, OH, USA, 2005; Volume 2, pp. 1–12. [Google Scholar] [CrossRef]
- Yin, Y.; Qu, Z.G.; Zhang, J.F. Multiple diffusion mechanisms of shale gas in nanoporous organic matter predicted by the local diffusivity lattice Boltzmann model. Int. J. Heat Mass Transf. 2019, 143, 118571. [Google Scholar] [CrossRef]
- Wang, X.L.; Qu, Z.G.; Ren, G.F. Collective enhancement in hydrophobicity and electrical conductivity of gas diffusion layer and the electrochemical performance of PEMFCs. J. Power Sour. 2023, 575, 233077. [Google Scholar] [CrossRef]
- Tian, Y.; Ju, B.; Chen, Z.; Hu, J.; Fan, D. New Model of Relative Permeability for Two-Phase Flow in Mixed-Wet Nanoporous Media of Shale. Energy Fuels 2021, 35, 12045–12055. [Google Scholar] [CrossRef]
- Bhosle, B.; Crozier, P.; Flynn, K. Effects of Sample Holding Time, Storage and Preservation on Sample Integrity for Source Rock Analysis: Experimental Results. In Proceedings of the SPE Asia Pacific Unconventional Resources Conference and Exhibition, Brisbane, Australia, 9–11 November 2015. [Google Scholar] [CrossRef]
- Jiang, C.; Chen, Z.; Mort, A.; Milovic, M.; Robinson, R.; Stewart, R.; Lavoie, D. Hydrocarbon evaporative loss from shale core samples as revealed by Rock-Eval and thermal desorption-gas chromatography analysis: Its geochemical and geological implications. Mar. Petrol. Geol. 2016, 70, 294–303. [Google Scholar] [CrossRef]
Sample ID | Well | Depth | Before Extraction | After Extraction | VEX—VNEX | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VNEX | SNEX | APDNEX | D1NEX | D2NEX | VEX | SEX | APDEX | D1EX | D2EX | ||||
m | 10−3 *cc/g | m2/g | nm | 10−3 *cc/g | m2/g | nm | 10−3 *cc/g | ||||||
5950Z214 | Z214 | 1759.50 | 17.31 | 3.93 | 16.36 | 2.46 | 2.60 | 21.82 | 7.43 | 10.52 | 2.53 | 2.69 | 4.51 |
0590Z214 | Z214 | 1805.90 | 11.30 | 1.40 | 30.91 | 2.33 | 2.45 | 16.70 | 2.88 | 22.00 | 2.39 | 2.54 | 5.40 |
0676Y285 | Y285 | 2806.76 | 10.89 | 2.49 | 16.04 | 2.31 | 2.62 | 13.85 | 4.89 | 7.75 | 2.37 | 2.78 | 2.96 |
3660G138 | G138 | 2736.60 | 10.17 | 1.18 | 33.05 | 2.28 | 2.44 | 15.72 | 2.58 | 23.17 | 2.36 | 2.53 | 5.55 |
2720G138 | G138 | 2727.20 | 10.31 | 1.42 | 27.86 | 2.31 | 2.45 | 15.31 | 2.61 | 22.23 | 2.31 | 2.52 | 5.00 |
2850Y285 | Y285 | 2828.50 | 10.02 | 1.35 | 28.25 | 2.34 | 2.48 | 15.34 | 4.47 | 10.79 | 2.35 | 2.70 | 5.32 |
5450Y285 | Y285 | 2854.50 | 7.77 | 1.14 | 25.98 | 2.26 | 2.51 | 10.53 | 3.34 | 8.56 | 2.24 | 2.73 | 2.76 |
0695G135 | G135 | 1806.95 | 6.21 | 1.00 | 23.81 | 2.31 | 2.53 | 9.59 | 3.03 | 11.04 | 2.40 | 2.69 | 3.38 |
7720L211 | L211 | 2377.20 | 6.09 | 0.78 | 29.73 | 2.31 | 2.47 | 7.35 | 1.09 | 25.85 | 2.21 | 2.49 | 1.26 |
3158G135 | G135 | 1831.58 | 4.97 | 0.76 | 24.99 | 2.20 | 2.51 | 6.03 | 0.78 | 29.84 | 2.27 | 2.48 | 1.07 |
0250L231 | L231 | 2102.50 | 5.60 | 0.77 | 27.88 | 2.30 | 2.51 | 6.47 | 0.90 | 27.57 | 2.27 | 2.49 | 0.87 |
0485L82 | L82 | 2204.85 | 4.03 | 0.58 | 26.71 | 2.23 | 2.50 | 4.22 | 0.58 | 27.88 | 2.16 | 2.50 | 0.20 |
Sample ID | Well | Depth | Before Extraction | After Extraction | EOM | Sat | Aro | NSO | TOY | OSI | OSIcorr | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1NEX | S2NEX | TmaxNEX | TOCNEX | S1EX | S2EX | TmaxEX | ||||||||||
m | mg/g | mg/g | °C | % | mg/g | mg/g | °C | % | % | % | % | mg/g | mg/g | mg/g | ||
5950Z214 | Z214 | 1759.50 | 0.48 | 1.74 | 445 | 0.78 | 0.06 | 1.01 | 448 | 0.20 | 57.35 | 11.76 | 30.88 | 1.15 | 61.19 | 146.61 |
0590Z214 | Z214 | 1805.90 | 1.50 | 6.78 | 440 | 2.71 | 0.08 | 4.44 | 446 | 0.53 | 40.23 | 18.66 | 41.11 | 3.76 | 55.39 | 138.85 |
0676Y285 | Y285 | 2806.76 | 2.05 | 7.24 | 446 | 3.27 | 0.08 | 5.91 | 449 | 0.48 | 40.82 | 14.87 | 44.30 | 3.30 | 62.63 | 100.82 |
3660G138 | G138 | 2736.60 | 2.79 | 8.91 | 434 | 3.98 | 0.11 | 7.20 | 443 | 0.75 | 44.73 | 14.53 | 40.74 | 4.39 | 70.05 | 110.22 |
2720G138 | G138 | 2727.20 | 3.36 | 14.33 | 441 | 4.68 | 0.10 | 10.57 | 443 | 0.84 | 40.12 | 19.48 | 40.41 | 7.02 | 71.79 | 150.00 |
2850Y285 | Y285 | 2828.50 | 2.99 | 12.34 | 447 | 5.20 | 0.11 | 9.35 | 449 | 0.79 | 38.01 | 19.31 | 42.68 | 5.87 | 57.50 | 112.88 |
5450Y285 | Y285 | 2854.50 | 2.92 | 19.06 | 449 | 7.62 | 0.11 | 15.19 | 451 | 0.73 | 33.94 | 21.10 | 44.95 | 6.68 | 38.34 | 87.71 |
0695G135 | G135 | 1806.95 | 3.25 | 18.57 | 444 | 8.35 | 0.14 | 15.03 | 446 | 0.90 | 24.01 | 19.74 | 56.25 | 6.65 | 38.91 | 79.61 |
7720L211 | L211 | 2377.20 | 2.74 | 22.39 | 447 | 9.59 | 0.18 | 17.38 | 447 | 0.53 | 23.75 | 25.31 | 50.94 | 7.57 | 28.56 | 78.91 |
3158G135 | G135 | 1831.58 | 3.30 | 41.60 | 441 | 11.85 | 0.26 | 33.26 | 441 | 0.73 | 7.96 | 16.88 | 75.16 | 11.38 | 27.85 | 96.03 |
0250L231 | L231 | 2102.50 | 5.25 | 52.97 | 444 | 17.62 | 0.25 | 45.63 | 444 | 0.88 | 19.54 | 23.78 | 56.68 | 12.34 | 29.80 | 70.03 |
0485L82 | L82 | 2204.85 | 5.53 | 39.72 | 446 | 19.30 | 0.34 | 33.15 | 447 | 0.73 | 21.16 | 26.96 | 51.88 | 11.76 | 28.65 | 60.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, F.; Liu, G.; Sun, M.; An, C.; Li, C.; Li, Y. Impacts of Pore Structure on the Occurrence of Free Oil in Lacustrine Shale Pore Networks. Energies 2023, 16, 7205. https://doi.org/10.3390/en16207205
You F, Liu G, Sun M, An C, Li C, Li Y. Impacts of Pore Structure on the Occurrence of Free Oil in Lacustrine Shale Pore Networks. Energies. 2023; 16(20):7205. https://doi.org/10.3390/en16207205
Chicago/Turabian StyleYou, Fuliang, Guangdi Liu, Mingliang Sun, Cheng An, Chaozheng Li, and Yishu Li. 2023. "Impacts of Pore Structure on the Occurrence of Free Oil in Lacustrine Shale Pore Networks" Energies 16, no. 20: 7205. https://doi.org/10.3390/en16207205
APA StyleYou, F., Liu, G., Sun, M., An, C., Li, C., & Li, Y. (2023). Impacts of Pore Structure on the Occurrence of Free Oil in Lacustrine Shale Pore Networks. Energies, 16(20), 7205. https://doi.org/10.3390/en16207205