Cooling Technologies for Internet Data Center in China: Principle, Energy Efficiency, and Applications
Abstract
:1. Introduction
- (1)
- Summarizing the evaluation metrics for IDC efficiency. This section discusses the impact of the cooling system on IDC energy efficiency. It also summarizes the requirements for the computer room environment and the related policies for IDC energy efficiency. Furthermore, it analyzes the benefits and drawbacks of different evaluation metrics, helping users select the most relevant one;
- (2)
- Summarizing the principles, energy efficiency and applications of both traditional and four new cooling technologies. Section 4 and Section 5 introduce the configurations of traditional and new cooling technologies in IDC, including combinations with mechanical refrigeration and air cooling terminals, free cooling, liquid cooling, TES based cooling and building envelope. By analyzing their advantages and limitations, the suitable scenarios for these five techniques are also summarized;
- (3)
- Proving a future development prospect for IDC cooling systems. This paper deeply analyzes the energy efficiencies of these cooling technologies and compares them using the same evaluation metrics. Notably, this review covers both laboratory-scale and commercial-scale systems.
2. Methodology
2.1. Requirement for Computer Room Environment
2.2. Performance Criteria
2.2.1. Energy Efficiency Assessment Indicator
2.2.2. Thermal Environment Assessment Indicator
3. Status and Policies for Energy Conservation in China
4. Traditional Cooling Technologies
4.1. Mechanical Refrigeration Technology
4.2. Terminal of Air Cooling Technology
4.2.1. Room-Level Air Cooling
4.2.2. Row-Level Air Cooling
4.2.3. Rack-Level Air Cooling
5. New Cooling Technologies
5.1. Free Cooling
5.1.1. Direct Free Cooling
- (1)
- Direct airside free cooling
- (2)
- Direct waterside free cooling
5.1.2. Indirect Free Cooling
- (1)
- Indirect airside free cooling
- (2)
- Indirect waterside free cooling
5.2. Liquid Cooling
5.2.1. Cold Plate Cooling
5.2.2. Heat Pipe Cooling
5.2.3. Immersion Cooling
5.2.4. Spray Cooling
5.3. Thermal Energy Storage (TES) Based Cooling
5.4. Building Envelope
6. Comparison of Different Cooling Technologies
7. Conclusions
- (1)
- The thermal management and efficiency enhancement of traditional cooling technology for IDC has been developed in multi-level from rack to room. But, it is still inefficient due to the mixing of the cold and hot airflow. At present, most inefficient old IDCs are cold by air cooling technology, so developing a highly efficient solution from the perspective of traditional cooling is currently demanding, considering the complexity of implementation, capital, operational cost, maintenance costs, and payback period;
- (2)
- Free cooling is the most mature among the new technologies. It is an efficient cooling solution that not only reduces the power consumption of IDC but also promotes the sustainable and renewable development of IDC. Unfortunately, the application of free cooling is highly dependent on the local climate, with a PUE of 1.4–1.6 and an average energy saving rate of 35–40%. However, free cooling can be used in combination with other cooling equipment to improve stability and efficiency, such as water chillers and solar energy;
- (3)
- Liquid cooling technology, e.g., cold plate cooling, heat pipe cooling, and immersion cooling, provides more efficient cooling for high heat density servers. However, for the utilization of liquid cooling, some characteristic parameters, i.e., hot-swap capability, versatility, reliability, capital expenditures, and operational and maintenance costs, should be further considered. In addition, although the foundational principles and techniques of liquid cooling have been mastered, it is only applied in laboratories and some high-tech companies now. Its operation reliability, investment and maintenance cost are all the key problems that hinder the development of liquid cooling technology;
- (4)
- TES based cooling provides the ability to utilize natural cooling sources by shaving peaks and valleys. However, TES based cooling must be coupled with other cooling technologies. Moreover, a system operation strategy needs to be developed;
- (5)
- Building envelope technology involves placing the racks in containers to allow cooling with conventional cooling systems or blocking solar radiation from entering the computer room to reduce the cooling losses from building windows and doors.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Zhao, Y.; Dai, S.; Nie, B.; Ma, H.; Li, J.; Miao, Q.; Jin, Y.; Tan, L.; Ding, Y. Cooling technologies for data centres and telecommunication base stations—A comprehensive review. J. Clean. Prod. 2022, 334, 130280. [Google Scholar] [CrossRef]
- Nadjahi, C.; Louahlia, H.; Lemasson, S. A review of thermal management and innovative cooling strategies for data center. Sustain. Comput. Inform. Syst. 2018, 19, 14–28. [Google Scholar] [CrossRef]
- Chu, W.-X.; Wang, C.-C. A review on airflow management in data centers. Appl. Energy 2019, 240, 84–119. [Google Scholar] [CrossRef]
- Yonyzhen, W.; Wei, Z.; Jing, W. Data Center Energy Supply under the Energy Internet. Electronic 2020, 5, 61–65. [Google Scholar]
- North China Electric Power University. Report for energy consumption and renewable energy potential of data center in China. Wind Energy 2019, 10, 8. [Google Scholar]
- Wenliang, L.; Yiyun, G.; Qi, Y.; Chao, M.; Yingru, Z. Overview of Energy-saving Operation of Data Center under “Double Carbon” Target. Distrib. Util. 2021, 38, 49–55. [Google Scholar]
- Greenpeace. Decarbonization of China’s Digital Infrastructure: Data Center and 5G Carbon Reduction Potential and Challenges (2020–2035); Ministry of Industry and Information Technology Electronics Fifth Research Institute: Guangzhou, China, 2021. [Google Scholar]
- Jiankun, H.; Zhang, L.; Xiliang, Z. Study on long-term low-carbon development strategy and transition path in China. China Popul. Resour. Environ. 2020, 30, 25. [Google Scholar]
- Dumitrescu, C.; Plesca, A.; Dumitrescu, L.; Adam, M.; Nituca, C.; Dragomir, A. Assessment of Data Center Energy Efficiency. Methods and Metrics. In Proceedings of the 2018 International Conference and Exposition on Electrical and Power Engineering (EPE), Iasi, Romania, 18–19 October 2018; pp. 487–492. [Google Scholar]
- Almoli, A.; Thompson, A.; Kapur, N.; Summers, J.; Thompson, H.; Hannah, G. Computational fluid dynamic investigation of liquid rack cooling in data centres. Appl. Energy 2012, 89, 150–155. [Google Scholar] [CrossRef]
- Siriwardana, J.; Jayasekara, S.; Halgamuge, S.K. Potential of air-side economizers for data center cooling: A case study for key Australian cities. Appl. Energy 2013, 104, 207–219. [Google Scholar] [CrossRef]
- Cho, J.; Kim, B.S. Evaluation of air management system’s thermal performance for superior cooling efficiency in high-density data centers. Energy Build. 2011, 43, 2145–2155. [Google Scholar] [CrossRef]
- Fakhim, B.; Behnia, M.; Armfield, S.W.; Srinarayana, N. Cooling solutions in an operational data centre: A case study. Appl. Therm. Eng. 2011, 31, 2279–2291. [Google Scholar] [CrossRef]
- Ding, T.; Chen, X.; Cao, H.; He, Z.; Wang, J.; Li, Z. Principles of loop thermosyphon and its application in data center cooling systems: A review. Renew. Sustain. Energy Rev. 2021, 150, 111389. [Google Scholar] [CrossRef]
- Capozzoli, A.; Primiceri, G. Cooling systems in data centers: State of art and emerging technologies. In Proceedings of the 7th International Conference on Sustainability and Energy in Buildings, SEB 2015, Lisbon, Portugal, 1–3 July 2015; pp. 484–493. [Google Scholar]
- Daraghmeh, H.M.; Wang, C.-C. A review of current status of free cooling in datacenters. Appl. Therm. Eng. 2017, 114, 1224–1239. [Google Scholar] [CrossRef]
- Dai, J.; Das, D.; Pecht, M. Prognostics-based risk mitigation for telecom equipment under free air cooling conditions. Appl. Energy 2012, 99, 423–429. [Google Scholar] [CrossRef]
- Li, Z.; Kandlikar, S.G. Current status and future trends in data-center cooling technologies. Heat Transf. Eng. 2015, 36, 523–538. [Google Scholar] [CrossRef]
- Yueqin, C.; Yongcheng, N.; Huaqiang, C. Discussions on energy efficiency improvement measure of data center under the background of new infrastructure. Telecommun. Inf. 2020, 10, 11–14. [Google Scholar]
- Zhang, H.; Shao, S.; Xu, H.; Zou, H.; Tian, C. Free cooling of data centers: A review. Renew. Sustain. Energy Rev. 2014, 35, 171–182. [Google Scholar] [CrossRef]
- Yuan, X.; Zhou, X.; Pan, Y.; Kosonen, R.; Cai, H.; Gao, Y.; Wang, Y. Phase change cooling in data centers: A review. Energy Build. 2021, 236, 110764. [Google Scholar] [CrossRef]
- Nall, D.H. Data Centers, Cooling Towers & Thermal Storage. Ashrae J. 2018, 60, 64–70. [Google Scholar]
- Quirk, D.V.; Ashrae. Convergence of Telecommunications and Data Centers. In Proceedings of the Ashrae Transactions, Chicago, IL, USA, 25–28 January 2009; pp. 201–210. [Google Scholar]
- Lei, N.; Masanet, E. Statistical analysis for predicting location-specific data center PUE and its improvement potential. Energy 2020, 201, 117556. [Google Scholar] [CrossRef]
- GB 40879-2021; Maximum Allowable Values of Energy Efficiency and Energy Efficiency Grades for Data Centers. China National Standardization Management Committee: Beijing, China, 2021.
- Sharma, R.K.; Bash, C.E.; Patel, C.D. Dimensionless Parameters for Evaluation of Thermal Design and Performance of Large-scale Data Centers. In Proceedings of the 8th ASME/AIAA Joint Thermophysics and Heat Transfer Conference, St. Louis, MO, USA, 24–26 June 2002. [Google Scholar]
- Bash, C.; Patel, C.; Sharma, R. Efficient thermal management of data centers mmediate and long term research needs. Int. J. Heat. Vent. Air Cond. Refrig. Res. 2003, 9, 137–152. [Google Scholar]
- Herrlin, M.K. Rack cooling effectiveness in data centers and telecom central offices: The Rack Cooling Index (RCI). Ashrae Trans. 2005, 111, 725–731. [Google Scholar]
- Herrlin, M.K. Airflow and Cooling Performance of Data Centers: Two Performance Metrics. In Proceedings of the 2008 ASHRAE Annual Meeting, Salt Lake City, UT, USA, 16–21 November 2008; pp. 182–187. [Google Scholar]
- Report of Data Center Market in China (2020); Centrum Intelligence (Beijing) Information Technology Research Institute: Beijing, China, 2021.
- Jin, C.; Bai, X.; An, Y.N.; Ni, J.; Shen, J. Case study regarding the thermal environment and energy efficiency of raised-floor and row-based cooling. Build. Environ. 2020, 182, 107110. [Google Scholar] [CrossRef]
- Habibi Khalaj, A.; Halgamuge, S.K. A Review on efficient thermal management of air- and liquid-cooled data centers: From chip to the cooling system. Appl. Energy 2017, 205, 1165–1188. [Google Scholar] [CrossRef]
- Zhang, Q.; Meng, Z.; Hong, X.; Zhan, Y.; Liu, J.; Dong, J.; Bai, T.; Niu, J.; Deen, M.J. A survey on data center cooling systems: Technology, power consumption modeling and control strategy optimization. J. Syst. Archit. 2021, 119, 102253. [Google Scholar] [CrossRef]
- Xiao, H.; Yang, Z.; Shi, W.; Wang, B.; Li, B.; Song, Q.; Li, J.; Xu, Z. Comparative analysis of the energy efficiency of air-conditioner and variable refrigerant flow systems in residential buildings in the Yangtze River region. J. Build. Eng. 2022, 55, 104644. [Google Scholar] [CrossRef]
- Wan, J.; Gui, X.; Kasahara, S.; Zhang, Y.; Zhang, R. Air Flow Measurement and Management for Improving Cooling and Energy Efficiency in Raised-Floor Data Centers: A Survey. IEEE Access 2018, 6, 48867–48901. [Google Scholar] [CrossRef]
- Rahmaninia, R.; Amani, E.; Abbassi, A. Computational optimization of a UFAD system using large eddy simulation. Sci. Iran. 2020, 27, 2871–2888. [Google Scholar] [CrossRef]
- Song, P.; Zhang, Z.; Zhu, Y. Numerical and experimental investigation of thermal performance in data center with different deflectors for cold aisle containment. Build. Environ. 2021, 200, 107961. [Google Scholar] [CrossRef]
- Lee, Y.; Wen, C.; Shi, Y.; Li, Z.; Yang, A.-S. Numerical and experimental investigations on thermal management for data center with cold aisle containment configuration. Appl. Energy 2022, 307, 118213. [Google Scholar] [CrossRef]
- Ahuja, N.; Rego, C.; Ahuja, S.; Warner, M.; Docca, A. Data Center Efficiency with Higher Ambient Temperatures and Optimized Cooling Control. In Proceedings of the 2011 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Semi-Therm), San Jose, CA, USA, 20–24 March 2011; pp. 105–109. [Google Scholar]
- Lu, H.; Zhang, Z.; Yang, L. A review on airflow distribution and management in data center. Energy Build. 2018, 179, 264–277. [Google Scholar] [CrossRef]
- Sahini, M.; Kumar, E.; Gao, T.; Ingalz, C.; Heydari, A.; Sun, X. Study of Air Flow Energy within Data Center room and sizing of hot aisle Containment for an Active vs. Passive cooling design. In Proceedings of the 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, NV, USA, 31 May–3 June 2016; pp. 1453–1457. [Google Scholar]
- Zheng, Y.; Li, Z.; Liu, X.; Tong, Z.; Tu, R. Retrofit of air-conditioning system in data center using separate heat pipe system. In Proceedings of the 8th International Symposium on Heating, Ventilation, and Air Conditioning, ISHVAC 2013, Xi’an, China, 19–21 October 2013; pp. 685–694. [Google Scholar]
- Nada, S.A.; Elfeky, K.E.; Attia, A.M.A. Experimental investigations of air conditioning solutions in high power density data centers using a scaled physical model. Int. J. Refrig. 2016, 63, 87–99. [Google Scholar] [CrossRef]
- Battaglia, F.; Maheedhara, R.; Krishna, A.; Singer, F.; Ohadi, M.M. Modeled and Experimentally Validated Retrofit of High Consumption Data Centers on an Academic Campus. In Proceedings of the 2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), San Diego, CA, USA, 29 May–1 June 2018; pp. 726–733. [Google Scholar]
- Li, L.; Jin, C.; Bai, X. A determination method on the supply airflow rate with the impact of leakage and bypass airflow of computer room air conditioning. J. Build. Eng. 2022, 59, 105063. [Google Scholar] [CrossRef]
- Athavale, J.; Joshi, Y.; Yoda, M. Experimentally Validated Computational Fluid Dynamics Model for Data Center with Active Tiles. J. Electron. Packag. 2018, 140, 010902. [Google Scholar] [CrossRef]
- Nada, S.A.; Said, M.A. Effect of CRAC units layout on thermal management of data center. Appl. Therm. Eng. 2017, 118, 339–344. [Google Scholar] [CrossRef]
- Nada, S.A.; Said, M.A. Comprehensive study on the effects of plenum depths on air flow and thermal managements in data centers. Int. J. Therm. Sci. 2017, 122, 302–312. [Google Scholar] [CrossRef]
- Saiyad, A.; Patel, A.; Fulpagare, Y.; Bhargav, A. Predictive modeling of thermal parameters inside the raised floor plenum data center using Artificial Neural Networks. J. Build. Eng. 2021, 42, 102397. [Google Scholar] [CrossRef]
- Nemati, K.; Alissa, H.; Sammakia, B. Performance of temperature controlled perimeter and row-based cooling systems in open and containment environment. In Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition, IMECE 2015, Houston, TX, USA, 13–19 November 2015. [Google Scholar]
- Jinkyun, C.; Yongdae, J.; Beungyong, P.; Sangmoon, L. Investigation on the energy and air distribution efficiency with improved data centre cooling to support high-density servers. E3S Web Conf. 2019, 111, 03070. [Google Scholar] [CrossRef]
- Moazamigoodarzi, H.; Tsai, P.J.; Pal, S.; Ghosh, S.; Puri, I.K. Influence of cooling architecture on data center power consumption. Energy 2019, 183, 525–535. [Google Scholar] [CrossRef]
- Moazamigoodarzi, H.; Pal, S.; Down, D.; Esmalifalak, M.; Puri, I.K. Performance of a rack mountable cooling unit in an IT server enclosure. Therm. Sci. Eng. Prog. 2020, 17, 100395. [Google Scholar] [CrossRef]
- Huang, Z.; Dong, K.; Sun, Q.; Su, L.; Liu, T. Numerical Simulation and Comparative Analysis of Different Airflow Distributions in Data Centers. Procedia Eng. 2017, 205, 2378–2385. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, C.; Han, Z.; Dong, J.; Zhang, Y.; Li, M.; Li, X.; Wang, Q.; Wen, Z.; Zheng, B. Experimental study on a novel pump-driven heat pipe/vapor compression system for rack-level cooling of data centers. Energy 2023, 274, 127335. [Google Scholar] [CrossRef]
- Xiaoran, N.; Chunhua, X.; Guoling, S.; Junfu, Z.; Xiaojing, C.; Bin, L. Air conditioning system design with lake water cooling technology of a data center in Qiandao Lak. Heat. Vent. Air Cond. 2016, 46, 14–17. [Google Scholar]
- Kwon, T.-D.; Jeong, J.-W. Energy advantage of cold energy recovery system using water- and air-side free cooling technologies in semiconductor fabrication plant in summer. J. Build. Eng. 2023, 69, 106277. [Google Scholar] [CrossRef]
- Lv, J.; Wang, T.; Zhao, L.; Wang, J.; Hu, L.; Liu, G.; Zhao, S. Energy Saving Analysis of Data Center Air Conditioning System Based on Application of Natural Cooling Technology. J. Refrig. 2016, 37, 113–118. [Google Scholar]
- Deymi-Dashtebayaz, M.; Namanlo, S.V. Potentiometric and economic analysis of using air and water-side economizers for data center cooling based on various weather conditions. Int. J. Refrig. 2019, 99, 213–225. [Google Scholar] [CrossRef]
- Jia, L.; Liu, J.; Wei, S.; Xu, J. Study on the performance of two water-side free cooling methods in a semiconductor manufacturing factory. Energy Build. 2021, 243, 110977. [Google Scholar] [CrossRef]
- Ham, S.; Kim, M.; Choi, B.; Jeong, J. Energy saving potential of various air-side economizers in a modular data center. Appl. Energy 2015, 138, 258–275. [Google Scholar] [CrossRef]
- Atwood, D.; Miner, J.G. Reducing Data Center Cost with an Air Economizer; White Paper; Intel Corporation: Santa Clara, CA, USA, 2008. [Google Scholar]
- Google’s Chiller-Less Data Center. Data Center Knowledge. Available online: http://www.datacenterknowledge.com/archives/2009/07/15 (accessed on 15 July 2009).
- The Green Grid. Updated Air-Side Free Cooling Maps: The Impact of ASHRAE 2011 Allowable Ranges; White Paper; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2012. [Google Scholar]
- Lee, K.P.; Chen, H.L. Analysis of energy saving potential of air-side free cooling for data centers in worldwide climate zones. Energy Build. 2013, 64, 103–112. [Google Scholar] [CrossRef]
- Rabczak, S.; Nowak, K. Possibilities of Adapting a Free-Cooling System in an Existing Commercial Building. Energies 2022, 15, 3350. [Google Scholar] [CrossRef]
- Yin, H.; Zhu, Y.; Wang, Y.L.; Gao, Y. Effects of rapamycin on cell growth and apoptosis of pancreatic carcinoma sw1990 cells. Tumor 2011, 31, 49–52. [Google Scholar]
- Clidaras, J.; Stiver, D.W.; Hamburgen, W. Water-Based Data Center. U.S. Patent US7525207B2, 28 April 2009. [Google Scholar]
- Weicong, F.; Zhipeng, Z.; Ziru, C.; Shuping, H.; Minhua, W.; Guochang, D.; Jianwen, D. Patterns of Variation in Atmospheric Visibility and Impacting Factors in Qiandao Lake National Forest Park, China. Sci. Silvae Sin. 2018, 54, 22–31. [Google Scholar]
- Bao, L.; Wang, J.; Kang, L. The applied effect analysis of heat exchanger installed in a typical communication base station in Beijing of China. Energy Procedia 2012, 14, 620–625. [Google Scholar] [CrossRef]
- Song, Z.; Murray, B.T.; Sammakia, B. Parametric analysis for thermal characterization of leakage flow in data centers. In Proceedings of the 14th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITherm 2014, Orlando, FL, USA, 27–30 May 2014; pp. 778–785. [Google Scholar]
- Dong, K.; Li, P.; Huang, Z.; Su, L.; Sun, Q. Research on Free Cooling of Data Centers by Using Indirect Cooling of Open Cooling Tower. Procedia Eng. 2017, 205, 2831–2838. [Google Scholar] [CrossRef]
- Carlson, A.B. Data Center Cooling. U.S. Patent US8113010B2, 14 February 2012. [Google Scholar]
- Hamburgen, W.; Clidaras, J.; Carlson, A.B. Changing Data Center Cooling Mode. U.S. Patent US8295047B1, 23 October 2012. [Google Scholar]
- Ziegler, F. Sorption heat pumping technologies: Comparisons and challenges. Int. J. Refrig. 2009, 32, 566–576. [Google Scholar] [CrossRef]
- Hamann, H.F.; Iyengar, M.K.; Van Kessel, T.G. Cooling Infrastructure Leveraging a Combination of Free and Solar Cooling. U.S. Patent US8020390B2, 20 September 2011. [Google Scholar]
- Lai, Y.; Fang, X.; Han, R.; Xuan, Y.; Huang, J. Design and key technology of the energy consumption management system for the liquid cooling data center. Energy Sci. Eng. 2023, 11, 1284–1293. [Google Scholar] [CrossRef]
- Zimmermann, S.; Meijer, I.; Tiwari, M.K.; Paredes, S.; Michel, B.; Poulikakos, D. Aquasar: A hot water cooled data center with direct energy reuse. Energy 2012, 43, 237–245. [Google Scholar] [CrossRef]
- Moazamigoodarzi, H.; Gupta, R.; Pal, S.; Tsai, P.J.; Ghosh, S.; Puri, I.K. Modeling temperature distribution and power consumption in IT server enclosures with row-based cooling architectures. Appl. Energy 2020, 261, 114355. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, C.; Li, G. Discussions of Cold Plate Liquid Cooling Technology and Its Applications in Data Center Thermal Management. Front. Energy Res. 2022, 10, 954718. [Google Scholar] [CrossRef]
- Xiao, X.; Zeng, C.; Kuang, M. Application of direct contacted liquid cooling system in data center. Refrig. Air-Cond. 2018, 18, 67–72. [Google Scholar]
- Tsai, Y.; Wang, G.; Jin, Y.; Li, S.; Fang, W.; Chen, G.; Cao, P.; Zhang, J.; Fan, Y.; Xia, Y.; et al. An Advanced Cold Plate Liquid Cooling Rack Design for Hyperscale Data Center. In Proceedings of the 2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm), San Diego, CA, USA, 31 May–3 June 2022; pp. 1–5. [Google Scholar]
- Garimella, S.V.; Yeh, L.T.; Persoons, T. Thermal management challenges in telecommunication systems and data centers. IEEE Trans. Compon. Packag. Manuf. Technol. 2012, 2, 1307–1316. [Google Scholar] [CrossRef]
- You, X.Y.; Liu, J.H.; Hua, N.; Wang, J.; Xu, R.J.; Yu, G.X.; Wang, H.S. Experimental study on flow boiling of refrigerant R1233zd(E) in microchannels: Heat transfer. Appl. Therm. Eng. 2021, 182, 116083. [Google Scholar] [CrossRef]
- Singh, R.; Akbarzadeh, A.; Mochizuki, M. Sintered porous heat sink for cooling of high-powered microprocessors for server applications. Int. J. Heat Mass Transf. 2009, 52, 2289–2299. [Google Scholar] [CrossRef]
- Lee, Y.J.; Singh, P.K.; Lee, P.S. Fluid flow and heat transfer investigations on enhanced microchannel heat sink using oblique fins with parametric study. Int. J. Heat Mass Transf. 2015, 81, 325–336. [Google Scholar] [CrossRef]
- Dede, E.M.; Liu, Y. Experimental and numerical investigation of a multi-pass branching microchannel heat sink. Appl. Therm. Eng. 2013, 55, 51–60. [Google Scholar] [CrossRef]
- Chen, T.; Garimella, S.V. Measurements and high-speed visualizations of flow boiling of a dielectric fluid in a silicon microchannel heat sink. Int. J. Multiph. Flow 2006, 32, 957–971. [Google Scholar] [CrossRef]
- Huh, C.; Kim, J.; Kim, M.H. Flow pattern transition instability during flow boiling in a single microchannel. Int. J. Heat Mass Transf. 2007, 50, 1049–1060. [Google Scholar] [CrossRef]
- Qu, W.; Mudawar, I. Measurement and prediction of pressure drop in two-phase micro-channel heat sinks. Int. J. Heat Mass Transf. 2003, 46, 2737–2753. [Google Scholar] [CrossRef]
- Kadam, S.T.; Kumar, R. Twenty first century cooling solution: Microchannel heat sinks. Int. J. Therm. Sci. 2014, 85, 73–92. [Google Scholar] [CrossRef]
- Chethana, G.D.; Sadashive Gowda, B. Thermal management of air and liquid cooled data centres: A review. Mater. Today Proc. 2021, 45, 145–149. [Google Scholar] [CrossRef]
- Xue, Z.H.; Ai, B.C.; Qu, W. Data center energy conservation study utilizing loop heat pipes as a chip-level cooling technique and its industrial application. Appl. Therm. Eng. 2023, 220, 119715. [Google Scholar] [CrossRef]
- Ding, T.; He, Z.g.; Hao, T.; Li, Z. Application of separated heat pipe system in data center cooling. Appl. Therm. Eng. 2016, 109, 207–216. [Google Scholar] [CrossRef]
- Zhang, P.; Li, X.; Shi, W.; Wang, B.; Rong, X. Experimentally comparative study on two-phase natural and pump-driven loop used in HVAC systems. Appl. Therm. Eng. 2018, 142, 321–333. [Google Scholar] [CrossRef]
- Zhou, F.; Wei, C.; Ma, G. Development and analysis of a pump-driven loop heat pipe unit for cooling a small data center. Appl. Therm. Eng. 2017, 124, 1169–1175. [Google Scholar] [CrossRef]
- Kheirabadi, A.C.; Groulx, D. Cooling of server electronics: A design review of existing technology. Appl. Therm. Eng. 2016, 105, 622–638. [Google Scholar] [CrossRef]
- Tian, H.; He, Z.; Li, Z. A combined cooling solution for high heat density data centers using multi-stage heat pipe loops. Energy Build. 2015, 94, 177–188. [Google Scholar] [CrossRef]
- Wang, X.; Wen, Q.; Yang, J.; Xiang, J.; Wang, Z.; Weng, C.; Chen, F.; Zheng, S. A review on data centre cooling system using heat pipe technology. Sustain. Comput. Inform. Syst. 2022, 35, 100774. [Google Scholar] [CrossRef]
- Kanbur, B.B.; Wu, C.; Fan, S.; Duan, F. System-level experimental investigations of the direct immersion cooling data center units with thermodynamic and thermoeconomic assessments. Energy 2021, 217, 119373. [Google Scholar] [CrossRef]
- Muneeshwaran, M.; Lin, Y.-C.; Wang, C.-C. Performance analysis of single-phase immersion cooling system of data center using FC-40 dielectric fluid. Int. Commun. Heat Mass Transf. 2023, 145, 106843. [Google Scholar] [CrossRef]
- Zhou, G.; Zhou, J.; Huai, X.; Zhou, F.; Jiang, Y. A two-phase liquid immersion cooling strategy utilizing vapor chamber heat spreader for data center servers. Appl. Therm. Eng. 2022, 210, 118289. [Google Scholar] [CrossRef]
- Pambudi, N.A.; Yusuf, A.M.; Sarifudin, A. The Use of Single-Phase Immersion Cooling by Using Two Types of Dielectric Fluid for Data Center Energy Savings. Energy Eng. 2022, 119, 275–286. [Google Scholar] [CrossRef]
- Kang, D.; Lee, J.; Chakraborty, A.; Lee, S.; Kim, G.; Yu, C. Recent Advances in Two-Phase Immersion Cooling with Surface Modifications for Thermal Management. Energies 2022, 15, 1214. [Google Scholar] [CrossRef]
- Shojaeian, M.; Koşar, A. Pool boiling and flow boiling on micro- and nanostructured surfaces. Exp. Therm. Fluid Sci. 2015, 63, 45–73. [Google Scholar] [CrossRef]
- Tuma, P.E. The merits of open bath immersion cooling of datacom equipment. In Proceedings of the 2010 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), Santa Clara, CA, USA, 21–25 February 2010. [Google Scholar]
- Li, F.; Cao, H. Current Status and Prospects of Two-phase Cooling for Data Centers. J. Refrig. 2022, 43, 28–36. [Google Scholar] [CrossRef]
- Liu, C.K.; Chang, T.Y. Thermal Performance of Single-Phase and Two-Phase Immersion Cooling in Data Center. In Proceedings of the 2022 17th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), Taipei, Taiwan, 26–28 October 2022; pp. 1–4. [Google Scholar]
- Pambudi, N.A.; Sarifudin, A.; Firdaus, R.A.; Ulfa, D.K.; Gandidi, I.M.; Romadhon, R. The immersion cooling technology: Current and future development in energy saving. Alex. Eng. J. 2022, 61, 9509–9527. [Google Scholar] [CrossRef]
- Kuncoro, I.W.; Pambudi, N.A.; Biddinika, M.K.; Widiastuti, I.; Hijriawan, M.; Wibowo, K.M. Immersion cooling as the next technology for data center cooling: A review. In Proceedings of the 4th Annual Applied Science and Engineering Conference, Bali, Indonesia, 24 April 2019. [Google Scholar]
- Wang, Y.; Zhang, Q.; Sun, C.; Zhuang, Z.; Huang, Z.; Zhai, T. Analysis on the Development of Liquid Cooling Data Center Technology. Electr. Power Inf. Commun. Technol. 2021, 19, 69–74. [Google Scholar] [CrossRef]
- Kim, J. Spray cooling heat transfer: The state of the art. Int. J. Heat Fluid Flow 2007, 28, 753–767. [Google Scholar] [CrossRef]
- Park, J.E.; Thome, J.R. Critical heat flux in multi-microchannel copper elements with low pressure refrigerants. Int. J. Heat Mass Transf. 2010, 53, 110–122. [Google Scholar] [CrossRef]
- Liu, S.; Ruan, L.; Kang, Y. Experimental investigation and numerical analysis of atomization characteristics at the spray cooling axis. Sci. Technol. Eng. 2018, 18, 225–229. [Google Scholar]
- Kandasamy, R.; Ho, J.Y.; Liu, P.; Wong, T.N.; Toh, K.C.; Chua, S., Jr. Two-phase spray cooling for high ambient temperature data centers: Evaluation of system performance. Appl. Energy 2022, 305, 117816. [Google Scholar] [CrossRef]
- Yang, J.; Chow, L.C.; Pais, M.R. Nucleate Boiling Heat Transfer in Spray Cooling. Heat Transf. 1996, 118, 668–671. [Google Scholar] [CrossRef]
- Silk, E.A.; Golliher, E.L.; Selvam, R.P. Spray cooling heat transfer: Technology overview and assessment of future challenges for micro-gravity application. Energy Convers. Manag. 2008, 49, 453–468. [Google Scholar] [CrossRef]
- Visaria, M.; Mudawar, I. Application of Two-Phase Spray Cooling for Thermal Management of Electronic Devices. IEEE Trans. Compon. Packag. Technol. 2009, 32, 784–793. [Google Scholar] [CrossRef]
- Yin, J.; Wang, S.; Sang, X.; Zhou, Z.; Chen, B.; Thrassos, P.; Romeos, A.; Giannadakis, A. Spray Cooling as a High-Efficient Thermal Management Solution: A Review. Energies 2022, 15, 8547. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, L.; Zhang, C.; Wang, S.; Zhang, L.; Chen, J. Research Status and Future Development of Cooling Technologies for Green and Energy-Efficient Data Centers. Strateg. Study CAE 2022, 4, 94–104. [Google Scholar] [CrossRef]
- Qiu, L.; Dubey, S.; Choo, F.H.; Duan, F. Recent developments of jet impingement nucleate boiling. Int. J. Heat Mass Transf. 2015, 89, 42–58. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Q.; Zhai, Z.; Yue, C.; Ma, X. State-of-the-art on thermal energy storage technologies in data center. Energy Build. 2020, 226, 110345. [Google Scholar] [CrossRef]
- Mustapha, A.N.; Onyeaka, H.; Omoregbe, O.; Ding, Y.; Li, Y. Latent heat thermal energy storage: A bibliometric analysis explicating the paradigm from 2000–2019. J. Energy Storage 2021, 33, 102027. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Q.; Medina, M.A.; Liu, Y.; Liao, S. A study on the use of phase change materials (PCMs) in combination with a natural cold source for space cooling in telecommunications base stations (TBSs) in China. Appl. Energy 2014, 117, 95–103. [Google Scholar] [CrossRef]
- Sundaram, A.S.; Seeniraj, R.V.; Velraj, R. An experimental investigation on passive cooling system comprising phase change material and two-phase closed thermosyphon for telecom shelters in tropical and desert regions. Energy Build. 2010, 42, 1726–1735. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Q.; Zhai, Z.J.; Ma, X. Potential of ventilation systems with thermal energy storage using PCMs applied to air conditioned buildings. Renew. Energy 2019, 138, 39–53. [Google Scholar] [CrossRef]
- Wang, Z.B.; Xiong, W.; Liu, Y.W.; Jiang, C.Y.; Zhu, C.Y. Energy saving research of heat pipe-cool storage air conditioning system used in internet data center. Refrig. Air-Cond. 2015, 15, 71–74. [Google Scholar]
- Ling, L.; Zhang, Q.; Yu, Y.; Ma, X.; Liao, S. Energy saving analysis of the cooling plant using lake water source base on the optimized control strategy with set points change. Appl. Therm. Eng. 2018, 130, 1440–1449. [Google Scholar] [CrossRef]
- Chen, H.; Peng, Y.-H.; Wang, Y.-L. Thermodynamic analysis of hybrid cooling system integrated with waste heat reusing and peak load shifting for data center. Energy Convers. Manag. 2019, 183, 427–439. [Google Scholar] [CrossRef]
- Endo, H.; Kodama, H.; Fukuda, H.; Sugimoto, T.; Horie, T.; Kondo, M. Effect of climatic conditions on energy consumption in direct fresh-air container data centers. In Proceedings of the 2013 International Green Computing Conference Proceedings, Arlington, VA, USA, 27–29 June 2013; pp. 1–10. [Google Scholar]
- Gong, X.; Jia, C. Research Progress and Prospects of Passive Optimization Design of Residential Buildings in China. Build. Energy Effic. 2022, 50, 25–30. [Google Scholar]
- Gong, D.; Zhu, H.; Huang, P. Case study on effect of public building envelope. Green Build. 2021, 13, 39–42. [Google Scholar]
- He, R.; Rong, G.; Tan, J.; Phoon, K.-k. Analytical and numerical study on heat transfer coefficient between rock fracture walls and flowing fluid. Geothermics 2021, 95, 102122. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, L. Solid sorption heat pipe coupled with direct air cooling technology for thermal control of rack level in internet data centers: Design and numerical simulation. Int. J. Heat Mass Transf. 2019, 145, 118714. [Google Scholar] [CrossRef]
- Ding, T.; Cao, H.W.; He, Z.G.; Li, Z. Experiment research on influence factors of the separated heat pipe system, especially the filling ratio and Freon types. Appl. Therm. Eng. 2017, 118, 357–364. [Google Scholar] [CrossRef]
- Kanbur, B.B.; Wu, C.; Fan, S.; Tong, W.; Duan, F. Two-phase liquid-immersion data center cooling system: Experimental performance and thermoeconomic analysis Système de refroidissement des centres de données par immersion dans un liquide diphasique: Performances expérimentales et analyse thermoéconomique. Int. J. Refrig. 2020, 118, 290–301. [Google Scholar] [CrossRef]
- Daraghmeh, H.M.; Sulaiman, M.W.; Yang, K.-S.; Wang, C.-C. Investigation of separated two-phase thermosiphon loop for relieving the air-conditioning loading in datacenter. Energies 2019, 12, 105. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Sun, X.; Du, Y.; Liao, S. Optimization on performance of the latent heat storage unit (LHSU) in telecommunications base stations (TBSs) in China. Clean Effic. Afford. Energy A Sustain. Future 2015, 75, 2119–2124. [Google Scholar]
- Cho, J.; Lim, T.; Kim, B.S. Viability of datacenter cooling systems for energy efficiency in temperate or subtropical regions: Case study. Energy Build. 2012, 55, 189–197. [Google Scholar] [CrossRef]
- Sugon. CloudBASE GreenLP Liquid Cooling Server Supporting Infrastructure Solution. Available online: https://www.sugon.com/product/377.html (accessed on 1 March 2020).
- Xu, P. Original Warm Water Cooling: Lenovo Data Center’s Secret Weapon. Available online: https://biz.zol.com.cn/658/6582386.html (accessed on 29 September 2017).
- Huawei. Fusion Server High Density Dedicated Liquid Cooling System. Available online: https://e.huawei.com/cn/material/datacenter/server/2d194f7330e3403b9ec51160f602fcd6 (accessed on 9 August 2018).
- Sun, Y.; Wang, T.; Yang, L.; Hu, L.; Zeng, X. Research of an integrated cooling system consisted of compression refrigeration and pump-driven heat pipe for data centers. Energy Build. 2019, 187, 16–23. [Google Scholar] [CrossRef]
- Wylie, W. Schneider and HPE Throw Their Weight behind Data Center Liquid Cooling. Data Center Knowledge. Available online: https://www.datacenterknowledge.com/power-and-cooling/schneider-and-hpe-throw-their-weight-behind-data-center-liquid-cooling (accessed on 14 October 2019).
- ZOL. Inspur Launches Submerged Liquid-Cooled Supercomputing. Available online: http://news.zol.com.cn/701/7015103.html (accessed on 23 October 2018).
Level | Dry Bulb Temperature (°C) | Relative Humidity (%) | Application |
---|---|---|---|
A1 | 15–32 | 20–80 | Enterprise servers, storage, devices, etc. |
A2 | 10–35 | 20–80 | Servers, calculators, workstations, etc. |
A3 | 5–40 | 8–85 | |
A4 | 5–45 | 8–90 | |
Recommended | 10–27 | 60 |
Level | Method | Type | Conditions | PUE | Energy Saving Rate | Company | Model |
---|---|---|---|---|---|---|---|
Laboratory | Free cooling | Airside [59] | Supply air: 21.5 °C IT power: 35.1 kW | 2.30 | / | / | / |
Liquid cooling | Cold plate [78] | Supply air: 15 °C IT power: 7 kW | 1.15 | / | / | / | |
Cold plate [59] | Supply air: 23.8 °C IT power: 35.1 kW | 1.035 | 41.5% | / | / | ||
Cold plate [10] | Supply air: 21 °C IT power: 15 kW | 1.30 | / | / | / | ||
Heat pipe [133] | Supply liquid: 15–24 °C | 1.48 | 18.29% | / | / | ||
Heat pipe [134] | Supply liquid: 20 °C | 1.70 | / | / | / | ||
Heat pipe [135] | Supply liquid: 28 °C | 1.20–1.58 | 48.3% | / | / | ||
Immersion [15] | Supply liquid: 30 °C | 1.14 | 88% | / | / | ||
Immersion [136] | Supply liquid: 27 °C IT power: 9.17 kW | 1.15 | / | / | / | ||
Spray [137] | Supply liquid: 21–25 °C | / | 38.7% | / | / | ||
Building envelope | Container-based [130] | / | / | 20.8% | / | / | |
PDM and free cooling [124] | / | / | 50% | ||||
TES | Based free cooling [138] | temperature: 20 °C | / | 57.11% | / | / | |
Based two-phase [127] | Temperature: 20.2 °C | 1.51 | 28% | / | / | ||
Commercial | Free Cooling | Airside [65] | Supply air: 27 °C IT power: 76 kW | 1.38 | 33% | / | / |
Airside [139] | Supply air: 22 °C IT power: 198 kW | 1.62 | 42.2% | / | / | ||
Airside [61] | IT power: 220 kW | / | 67.2% | / | / | ||
Airside [72] | Supply liquid: 16 °C | / | 19.2% | / | / | ||
Liquid cooling | Cold plate [140] | IT power: 200 kW | 1.17 | 45% | Sugon | C7000 | |
Cold plate [141] | IT power: ~90 kW | 1.15 | / | Lenovo | SuperMUC direct water-cooled supercomputing cluster | ||
Cold plate [142] | Supply liquid: 5–35 °C IT power: 49 kW | 1.10 | / | Huawei | FusionServer high density dedicated liquid cooling system | ||
Heat pipe [42] | Supply liquid: 27.2 °C IT power: 60 kW | / | 18% | / | Retrofit separate heat pipe air-conditioning | ||
Heat pipe [143] | Supply liquid: 35 °C IT power: 200 kW | / | 46% | / | HFK-200FH | ||
immersion [144] | IT power per rack: 200 kW | 1.03 | 95% | Green Revolution Cooling (GRC) | Immersion Cooling System ICEraQ Server | ||
immersion [145] | / | 1.10–1.20 | / | Inspur | TS4220LC | ||
TES | Based free cooling [129] | Energy storge temperature: 25 °C | / | 51% | / | / | |
Based free cooling [128] | IT power > 115 kW Energy storge temperature: 12–18 °C | 1.2 | 33.1% | / | / |
Method | Type | Benefits | Disadvantages | Maintenance & Cost | Application |
---|---|---|---|---|---|
Traditional cooling | Air cooling |
|
|
|
|
New cooling | Free cooling |
|
|
|
|
Liquid cooling |
|
|
|
| |
TES based cooling |
|
|
|
| |
Building envelope |
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Yan, J.; Zhou, X.; Wu, Y.; Hu, S. Cooling Technologies for Internet Data Center in China: Principle, Energy Efficiency, and Applications. Energies 2023, 16, 7158. https://doi.org/10.3390/en16207158
Huang X, Yan J, Zhou X, Wu Y, Hu S. Cooling Technologies for Internet Data Center in China: Principle, Energy Efficiency, and Applications. Energies. 2023; 16(20):7158. https://doi.org/10.3390/en16207158
Chicago/Turabian StyleHuang, Xiaofei, Junwei Yan, Xuan Zhou, Yixin Wu, and Shichen Hu. 2023. "Cooling Technologies for Internet Data Center in China: Principle, Energy Efficiency, and Applications" Energies 16, no. 20: 7158. https://doi.org/10.3390/en16207158
APA StyleHuang, X., Yan, J., Zhou, X., Wu, Y., & Hu, S. (2023). Cooling Technologies for Internet Data Center in China: Principle, Energy Efficiency, and Applications. Energies, 16(20), 7158. https://doi.org/10.3390/en16207158