Contagion Spillover from Bitcoin to Carbon Futures Pricing: Perspective from Investor Attention
Abstract
1. Introduction
2. Related Literature
3. Data
4. Methods
4.1. VAR and Granger Causality
4.2. Squared Bitcoin Attention
4.3. Interactive Terms
4.4. Controlling Other Variables
4.5. Models and Indicators for Out-of-Sample Forecasting
5. Results for In-Sample and Out-of-Sample
5.1. VAR and Granger Causality
5.2. Nonlinear Impact of Bitcion Attention
5.3. Interactive Terms
5.4. Controlling Other Variables
5.5. Out-of-Sample Forecasts
6. Economic Values
7. Robustness Checks
7.1. Update Sample Frequency
7.2. Twitter Based Investor Attention
7.3. Twitter Based Uncertainty
7.4. VAR-DCC-GARCH Based Dynamic Correlation
8. Further Discussions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teixidó, J.; Verde, S.F.; Nicolli, F. The impact of the EU emissions trading system on low-carbon technological change: The empirical evidence. Ecol. Econ. 2019, 164, 106347. [Google Scholar] [CrossRef]
- Zhao, X.; Han, M.; Ding, L.; Kang, W. Usefulness of economic and energy data at different frequencies for carbon price forecasting in the EU ETS. Appl. Energy 2018, 216, 132–141. [Google Scholar] [CrossRef]
- Aatola, P.; Ollikainen, M.; Toppinen, A. Price determination in the EU ETS market: Theory and econometric analysis with market fundamentals. Energy Econ. 2013, 36, 380–395. [Google Scholar] [CrossRef]
- Zhu, P.; Zhang, X.; Wu, Y.; Zheng, H.; Zhang, Y. Investor attention and cryptocurrency: Evidence from the Bitcoin market. PLoS ONE 2021, 16, e0246331. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Duan, K.; Urquhart, A. Time-varying dependence between Bitcoin and green financial assets: A comparison between pre-and post-COVID-19 periods. J. Int. Financ. Mark. Inst. Money 2023, 82, 101687. [Google Scholar] [CrossRef]
- Jiang, S.; Li, Y.; Lu, Q.; Hong, Y.; Guan, D.; Xiong, Y.; Wang, S. Policy assessments for the carbon emission flows and sustainability of Bitcoin blockchain operation in China. Nat. Commun. 2021, 12, 1938. [Google Scholar] [CrossRef] [PubMed]
- Paolella, M.S.; Taschini, L. An econometric analysis of emission allowance prices. J. Bank Financ. 2008, 32, 2022–2032. [Google Scholar] [CrossRef]
- Benz, E.; Trück, S. Modeling the price dynamics of CO2 emission allowances. Energy Econ. 2009, 31, 4–15. [Google Scholar] [CrossRef]
- Feng, Z.H.; Zou, L.L.; Wei, Y.M. Carbon price volatility: Evidence from EU ETS. Appl. Energy 2011, 88, 590–598. [Google Scholar] [CrossRef]
- Dutta, A. Modeling and forecasting the volatility of carbon emission market: The role of outliers, time-varying jumps and oil price risk. J. Clean. Prod. 2018, 172, 2773–2781. [Google Scholar] [CrossRef]
- Milunovich, G.; Joyeux, R. Pricing efficiency and arbitrage in the EU ETS carbon futures market. J. Invest. Strategy 2007, 2, 23–26. [Google Scholar]
- Kanen, J.L.M. Carbon Trading and Pricing; Environmental Finance Publications: London, UK, 2006. [Google Scholar]
- Arouri, M.E.H.; Nguyen, D.K. Oil prices, stock markets and portfolio investment: Evidence from sector analysis in Europe over the last decade. Energy Policy 2010, 38, 4528–4539. [Google Scholar] [CrossRef]
- Ciner, C. Energy shocks and financial markets: Nonlinear linkages. Stud. Nonlinear Dyn. Econom. 2001, 5, 203–212. [Google Scholar] [CrossRef]
- Ren, X.; Dou, Y.; Dong, K.; Yan, C. Spillover effects among crude oil, carbon, and stock markets: Evidence from nonparametric causality-in-quantiles tests. Appl. Econ. 2022, 1–24. [Google Scholar] [CrossRef]
- Chevallier, J.; Sévi, B. On the realized volatility of the ECX CO2 emissions 2008 futures contract: Distribution, dynamics and forecasting. Ann. Financ. 2011, 7, 1–29. [Google Scholar] [CrossRef]
- Zhu, B.; Wei, Y. Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology. Omega-Int. J. Manag. Sci. 2013, 41, 517–524. [Google Scholar] [CrossRef]
- Zhu, B.; Han, D.; Wang, P.; Wu, Z.; Zhang, T.; Wei, Y.M. Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression. Appl. Energy 2017, 191, 521–530. [Google Scholar] [CrossRef]
- Zhang, J.; Li, D.; Hao, Y.; Tan, Z. A hybrid model using signal processing technology, econometric models and neural network for carbon spot price forecasting. J. Clean. Prod. 2018, 204, 958–964. [Google Scholar] [CrossRef]
- Hao, Y.; Tian, C.; Wu, C. Modelling of carbon price in two real carbon trading markets. J. Clean. Prod. 2020, 244, 118556. [Google Scholar] [CrossRef]
- Cheng, Y.; Hu, B. Forecasting Regional Carbon Prices in China Based on Secondary Decomposition and a Hybrid Kernel-Based Extreme Learning Machine. Energies 2022, 15, 3562. [Google Scholar] [CrossRef]
- Adra, S.; Barbopoulos, L.G. The valuation effects of investor attention in stock-financed acquisitions. J. Empir. Financ. 2018, 45, 108–125. [Google Scholar] [CrossRef]
- Audrino, F.; Sigrist, F.; Ballinari, D. The impact of sentiment and attention measures on stock market volatility. Int. J. Forecast. 2020, 36, 334–357. [Google Scholar] [CrossRef]
- Pham, L.; Huynh, T.L.D. How does investor attention influence the green bond market? Financ. Res. Lett. 2020, 35, 101533. [Google Scholar] [CrossRef]
- Wang, Y. Volatility spillovers across NFTs news attention and financial markets. Int. Rev. Financ. Anal. 2022, 83, 102313. [Google Scholar] [CrossRef]
- Vozlyublennaia, N. Investor attention, index performance, and return predictability. J. Bank Financ. 2014, 41, 17–35. [Google Scholar] [CrossRef]
- Da, Z.; Engelberg, J.; Gao, P. In search of attention. J. Financ. 2011, 66, 1461–1499. [Google Scholar] [CrossRef]
- Han, L.; Lv, Q.; Yin, L. Can investor attention predict oil prices? Energy Econ. 2017, 66, 547–558. [Google Scholar] [CrossRef]
- Yao, T.; Zhang, Y.J.; Ma, C.Q. How does investor attention affect international crude oil prices? Appl. Energy 2017, 205, 336–344. [Google Scholar] [CrossRef]
- Han, L.; Xu, Y.; Yin, L. Does investor attention matter? The attention-return relationships in FX markets. Econ. Model. 2018, 68, 644–660. [Google Scholar] [CrossRef]
- Kou, Y.; Ye, Q.; Zhao, F.; Wang, X. Effects of investor attention on commodity futures markets. Financ. Res. Lett. 2018, 25, 190–195. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhu, P.; Wu, Y.; Zhang, Y. Research on the Volatility of the Cotton Market under Different Term Structures: Perspective from Investor Attention. Sustainability 2022, 14, 14389. [Google Scholar] [CrossRef]
- Chen, R.; Qian, Q.; Jin, C.; Xu, M.; Song, Q. Investor attention on internet financial markets. Financ. Res. Lett. 2020, 36, 101421. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, Y. Coronation Day of Financial Market, Investor Attention, and Stock Return: A Perspective of Local and Global Media. Emerg. Mark. Financ. Trade 2021, 58, 1–14. [Google Scholar] [CrossRef]
- Ibikunle, G.; McGroarty, F.; Rzayev, K. More heat than light: Investor attention and bitcoin price discovery. Int. Rev. Financ. Anal. 2020, 69, 101459. [Google Scholar] [CrossRef]
- Su, X.; Zhan, W.; Li, Y. Quantile dependence between investor attention and cryptocurrency returns: Evidence from time and frequency domain analyses. Appl. Econ. 2021, 53, 6439–6471. [Google Scholar] [CrossRef]
- Wang, C.; Shen, D.; Li, Y. Aggregate investor attention and Bitcoin return: The long short-term memory networks perspective. Financ. Res. Lett. 2022, 49, 103143. [Google Scholar] [CrossRef]
- Neto, D. Examining interconnectedness between media attention and cryptocurrency markets: A transfer entropy story. Econ. Lett. 2022, 214, 110460. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Wu, Y.; Zhu, P. Investor attention and carbon return: Evidence from the EU-ETS. Ekon. Istraz. 2021, 35, 709–727. [Google Scholar] [CrossRef]
- Pan, D.; Zhang, C.; Zhu, D.; Hu, S. Carbon price forecasting based on news text mining considering investor attention. Environ. Sci. Pollut. Res. 2022, 1–14. [Google Scholar] [CrossRef]
- Wu, Y.; Han, L.; Yin, L. Our currency, your attention: Contagion spillovers of investor attention on currency returns. Econ. Model. 2019, 80, 49–61. [Google Scholar] [CrossRef]
- Yin, L.; Feng, J. Can investors attention on oil markets predict stock returns? N. Am. Econ. Financ. 2019, 48, 786–800. [Google Scholar] [CrossRef]
- Ding, Q.; Huang, J.; Zhang, H. Time-frequency spillovers among carbon, fossil energy and clean energy markets: The effects of attention to climate change. Int. Rev. Financ. Anal. 2022, 83, 102222. [Google Scholar] [CrossRef]
- Ali, F.; Bouri, E.; Naifar, N.; Shahzad, S.J.H.; AlAhmad, M. An examination of whether gold-backed Islamic cryptocurrencies are safe havens for international Islamic equity markets. Res. Int. Bus. Financ. 2022, 63, 101768. [Google Scholar] [CrossRef]
- Han, L.; Wu, Y.; Yin, L. Investor attention and currency performance: International evidence. Appl. Econ. 2018, 50, 2525–2551. [Google Scholar] [CrossRef]
- Guidolin, M.; Hyde, S. Can VAR models capture regime shifts in asset returns? A long-horizon strategic asset allocation perspective. J. Bank Financ. 2012, 36, 695–716. [Google Scholar] [CrossRef]
- Anggraeni, W.; Andri, K.B.; Mahananto, F. The performance of ARIMAX model and Vector Autoregressive (VAR) model in forecasting strategic commodity price in Indonesia. Procedia Comput. Sci. 2017, 124, 189–196. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Lin, J.J. Can the VAR model outperform MRS model for asset allocation in commodity market under different risk preferences of investors? Int. Rev. Financ. Anal. 2019, 66, 101395. [Google Scholar] [CrossRef]
- Ren, X.; Dou, Y.; Dong, K.; Li, Y. Information spillover and market connectedness: Multi-scale quantile-on-quantile analysis of the crude oil and carbon markets. Appl. Econ. 2022, 54, 4465–4485. [Google Scholar] [CrossRef]
- Yin, L.; Feng, J.; Liu, L.; Wang, Y. It’s not that important: The negligible effect of oil market uncertainty. Int. Rev. Econ. Financ. 2019, 60, 62–84. [Google Scholar] [CrossRef]
- Welch, I.; Goyal, A. A comprehensive look at the empirical performance of equity premium prediction. Rev. Financ. Stud. 2008, 21, 1455–1508. [Google Scholar] [CrossRef]
- Clark, T.E.; West, K.D. Approximately normal tests for equal predictive accuracy in nested models. J. Econom. 2007, 138, 291–311. [Google Scholar] [CrossRef]
- Neely, C.J.; Rapach, D.E.; Tu, J.; Zhou, G. Forecasting the equity risk premium: The role of technical indicators. Manag. Sci. 2014, 60, 1772–1791. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, Y.; Wu, C.; Yin, L. Oil and the short-term predictability of stock return volatility. J. Empir. Financ. 2018, 47, 90–104. [Google Scholar] [CrossRef]
- Ferreira, M.A.; Santa-Clara, P. Forecasting stock market returns: The sum of the parts is more than the whole. J. Financ. Econ. 2011, 100, 514–537. [Google Scholar] [CrossRef]
- Shen, D.; Urquhart, A.; Wang, P. Does twitter predict bitcoin? Econ. Lett. 2019, 174, 118–122. [Google Scholar] [CrossRef]
- Ustaoğlu, E. Return and Volatility Spillover between Cryptocurrency and Stock Markets: Evidence from Turkey. J. Account. Financ. 2022, 93, 117–126. [Google Scholar] [CrossRef]
- Ren, X.; Li, J.; He, F.; Lucey, B. Impact of climate policy uncertainty on traditional energy and green markets: Evidence from time-varying granger tests. Renew. Sust. Energy Rev. 2023, 173, 113058. [Google Scholar] [CrossRef]
Panel A: Descriptive Statistics | ||||||
Mean | std. dev | min | max | Skewness | Kurtosis | |
Carbon futures return | 0.0014 | 0.0281 | −0.1594 | 0.1331 | −0.0973 | 2.776 |
Bitcoin attention | 0.0218 | 0.1457 | −0.4260 | 0.7985 | 1.2130 | 4.6775 |
Bitcoin return | 0.0039 | 0.0388 | −0.3918 | 0.1941 | −0.7493 | 15.0439 |
Panel B: ADF Stationary Test | ||||||
Type | T-Statistics | |||||
Carbon Futures Return | Bitcoin Attention | Bitcoin Return | ||||
Intercept | −21.4022 *** | −18.6729 *** | −31.8958 *** | |||
Trend and intercept | −21.3944 *** | −18.6801 *** | −31.9082 *** | |||
None | −21.4216 *** | −17.8842 *** | −31.5704 *** |
Lag | LR | FPE | AIC | SC | HQ |
---|---|---|---|---|---|
1 | 5.9447 | 1.53 × 10−5 | −5.4130 | −5.3564 | −5.3906 |
2 | 27.2447 | 1.46 × 10−5 | −5.4584 | −5.3640 * | −5.4211 * |
3 | 7.7233 | 1.46 × 10−5 | −5.4580 | −5.3260 | −5.4059 |
4 | 12.4481 * | 1.45 × 10−5 * | −5.4690 * | −5.2992 | −5.4019 |
−0.0354 (0.0478) | −0.4005 * (0.2218) | |
0.0682 (0.0474) | −0.0967 (0.2203) | |
−0.0106 (0.0471) | 0.0935 (0.2186) | |
0.0401 (0.0470) | −0.1360 (0.2183) | |
0.0065 (0.0104) | −0.0956 ** (0.0481) | |
−0.0292 *** (0.0103) | −0.2265 *** (0.0481) | |
−0.0201 ** (0.0104) | −0.1040 ** (0.0484) | |
−0.0312 *** (0.0104) | −0.0708 (0.0485) | |
Constant | 0.0021 (0.0014) | 0.0320 *** (0.0067) |
0.0517 | 0.0663 | |
23.5008 *** | 30.6262 *** | |
Granger Causality test | F-statistics | |
Carbon return does not Granger cause Bitcoin attention | 0.9521 | |
Bitcoin attention does not Granger cause carbon return | 4.5617 *** |
Coefficient | Standard Error | |
---|---|---|
−0.0351 | 0.0482 | |
0.0669 | 0.0479 | |
−0.0113 | 0.0476 | |
0.0354 | 0.0475 | |
−0.0005 | 0.0131 | |
−0.0344 *** | 0.0129 | |
−0.0221 * | 0.0126 | |
−0.0197 | 0.0127 | |
0.0315 | 0.0329 | |
0.0177 | 0.0321 | |
0.0047 | 0.0318 | |
−0.0655 ** | 0.0321 | |
Constant | 0.0024 | 0.0016 |
0.0623 | ||
F-statistic | 2.32 *** |
Coefficient | Standard Error | |
---|---|---|
−0.0545 | 0.0496 | |
0.0210 | 0.0493 | |
0.0019 | 0.0487 | |
0.0444 | 0.0486 | |
0.0081 | 0.0104 | |
−0.0244 ** | 0.0104 | |
−0.0180 * | 0.0104 | |
−0.0296 *** | 0.0105 | |
0.2976 | 0.3398 | |
1.1354 *** | 0.3382 | |
0.0140 | 0.3419 | |
0.4089 | 0.3409 | |
Constant | 0.0021 | 0.0014 |
0.0856 | ||
F-statistic | 3.26 *** |
Equation (5) | Equation (6) | |
---|---|---|
−0.0623 (0.0506) | −0.0896 * (0.0504) | |
0.0503 (0.0500) | 0.0550 (0.0494) | |
−0.0490 (0.0498) | −0.0258 (0.0490) | |
0.0224 (0.0500) | 0.0299 (0.0493) | |
0.0085 (0.0105) | 0.0119 (0.0105) | |
−0.0299 *** (0.0104) | −0.0242 ** (0.0103) | |
−0.0205 * (0.0105) | −0.0189 * (0.0104) | |
−0.0318 *** (0.0105) | −0.0283 *** (0.0104) | |
0.0280 (0.0414) | 0.0543 (0.0460) | |
0.0254 (0.0416) | −0.0362 (0.0461) | |
0.1031 ** (0.0415) | 0.0461 (0.0461) | |
0.0599 (0.0414) | 0.0134 (0.0458) | |
−0.3756 * (0.2152) | ||
0.5439 ** (0.2103) | ||
0.4136 * (0.2121) | ||
0.6790 *** (0.2189) | ||
Constant | 0.0021 (0.0015) | 0.0021 (0.0014) |
0.0756 | 0.1216 | |
F-statistic | 2.85 *** | 3.58 *** |
Equation (7) | Equation (8) | Equation (9) | Equation (10) | Equation (11) | |
---|---|---|---|---|---|
−0.0201 | −0.0713 | −0.0615 | −0.0293 | 0.0262 | |
1.0050 | 0.4195 | 0.4665 | 0.9442 | 1.8268 ** |
Equation (7) | Equation (8) | Equation (9) | Equation (10) | Equation (11) | |
---|---|---|---|---|---|
Panel A: forecast horizon is 2 | |||||
−0.0180 | −0.0712 | −0.0615 | −0.0286 | 0.0282 | |
1.0609 | 0.4702 | 0.4825 | 0.9735 | 1.8489 ** | |
Panel B: forecast horizon is 3 | |||||
−0.0209 | −0.0766 | −0.0650 | −0.0317 | 0.0248 | |
0.9968 | 0.3634 | 0.4178 | 0.9189 | 1.7941 ** | |
Panel C: forecast horizon is 4 | |||||
−0.0186 | −0.0732 | −0.0635 | −0.0290 | 0.0279 | |
1.0521 | 0.4558 | 0.4709 | 0.9728 | 1.8454 ** | |
Panel D: forecast horizon is 5 | |||||
−0.0240 | −0.0806 | −0.0691 | −0.0329 | 0.0246 | |
0.9285 | 0.3307 | 0.3723 | 0.8890 | 1.7554 ** |
Forecast Horizon = 1 | Forecast Horizon = 2 | Forecast Horizon = 3 | Forecast Horizon = 4 | Forecast Horizon = 5 | |
---|---|---|---|---|---|
: Equation (11) | 0.0262 | 0.0282 | 0.0248 | 0.0279 | 0.0246 |
: Equation (14) | 0.0156 | 0.0172 | 0.0163 | 0.0169 | 0.0172 |
Indicator | Benchmark | Equation (7) | Equation (8) | Equation (9) | Equation (10) | Equation (11) | ||
---|---|---|---|---|---|---|---|---|
b_cp = 0 | 3 | Utility | 0.0010 | 0.0039 | 0.0038 | 0.0033 | 0.0031 | 0.0048 |
SR | 0.1251 | 0.1696 | 0.1718 | 0.1430 | 0.1284 | 0.2114 | ||
6 | Utility | 0.0009 | 0.0030 | 0.0025 | 0.0023 | 0.0023 | 0.0036 | |
SR | 0.1251 | 0.1749 | 0.1475 | 0.1363 | 0.1361 | 0.2067 | ||
9 | Utility | 0.0009 | 0.0022 | 0.0019 | 0.0019 | 0.0018 | 0.0028 | |
SR | 0.1251 | 0.1651 | 0.1463 | 0.1440 | 0.1348 | 0.1976 | ||
b_cp = 10 | 3 | Utility | 0.0010 | 0.0032 | 0.0031 | 0.0026 | 0.0024 | 0.0040 |
SR | 0.1227 | 0.1393 | 0.1379 | 0.1157 | 0.1011 | 0.1773 | ||
6 | Utility | 0.0009 | 0.0024 | 0.0019 | 0.0018 | 0.0017 | 0.0030 | |
SR | 0.1227 | 0.1433 | 0.1124 | 0.1085 | 0.1048 | 0.1733 | ||
9 | Utility | 0.0009 | 0.0018 | 0.0015 | 0.0016 | 0.0013 | 0.0023 | |
SR | 0.1227 | 0.1326 | 0.1114 | 0.1167 | 0.1031 | 0.1670 | ||
b_cp= 20 | 3 | Utility | 0.0010 | 0.0025 | 0.0024 | 0.0020 | 0.0017 | 0.0032 |
SR | 0.1202 | 0.1087 | 0.1037 | 0.0880 | 0.0735 | 0.1426 | ||
6 | Utility | 0.0009 | 0.0018 | 0.0012 | 0.0013 | 0.0011 | 0.0024 | |
SR | 0.1203 | 0.1114 | 0.0769 | 0.0803 | 0.0730 | 0.1392 | ||
9 | Utility | 0.0009 | 0.0013 | 0.0011 | 0.0012 | 0.0008 | 0.0018 | |
SR | 0.1203 | 0.0998 | 0.0762 | 0.0889 | 0.0709 | 0.1357 |
Panel A: Lag Length Equals to 1 | ||
VAR estimation | ||
−0.0178 (0.0906) | 0.0908 (0.3230) | |
−0.0531 ** (0.0257) | −0.0830 (0.0918) | |
Constant | 0.0027 ** (0.0013) | 0.0233 *** (0.0046) |
0.0345 | 0.0080 | |
Granger Causality test | -statistics | |
Carbon return does not Granger cause Bitcoin attention | 0.079 | |
Bitcoin attention does not Granger cause carbon return | 4.255 ** | |
Panel B: lag length equals to 2 | ||
VAR estimation | ||
0.0093 | 0.0466 | |
(0.0916) | (0.3312) | |
−0.0971 | −0.0205 | |
(0.0895) | (0.3237) | |
−0.0492 * | −0.0873 | |
(0.0256) | (0.0925) | |
0.0257 | −0.0391 | |
(0.0262) | (0.0947) | |
Constant | 0.0020 | 0.0246 *** |
(0.0014) | (0.0052) | |
0.0541 | 0.0092 | |
Granger Causality test | -statistics | |
Carbon return does not Granger cause Bitcoin attention | 0.0242 | |
Bitcoin attention does not Granger cause carbon return | 5.1272 * | |
Panel C: lag length equals to 4 | ||
VAR estimation | ||
0.0029 | 0.1254 | |
(0.0922) | (0.3432) | |
−0.1173 | 0.0147 | |
(0.0908) | (0.3379) | |
−0.1250 | 0.1799 | |
(0.0900) | (0.3350) | |
−0.0105 | 0.3604 | |
(0.0890) | (0.3311) | |
−0.0511 ** | −0.0896 | |
(0.0250) | (0.0929) | |
0.0233 | −0.0337 | |
(0.0257) | (0.0955) | |
−0.0152 | −0.0054 | |
(0.0257) | (0.0958) | |
0.0395 | −0.0074 | |
(0.0257) | (0.0958) | |
Constant | 0.0020 | 0.0239 *** |
(0.0017) | (0.0063) | |
0.0980 | ||
Granger Causality test | -statistics | |
Carbon return does not Granger cause Bitcoin attention | 1.4584 | |
Bitcoin attention does not Granger cause carbon return | 8.3173 * |
−0.0632 (0.0774) | −0.2957 (0.3662) | |
0.0806 (0.0772) | 0.1051 (0.3649) | |
−0.0440 (0.0765) | 0.1405 (0.3616) | |
0.0839 (0.0765) | −0.2934 (0.3618) | |
−0.0087 (0.0164) | −0.2418 (0.0776) | |
−0.0361 ** (0.0168) | −0.2388 (0.0792) | |
−0.0298 * (0.0168) | −0.1177 (0.0796) | |
−0.0403 ** (0.0165) | −0.1809 (0.0780) | |
Constant | 0.0045 (0.0031) | 0.0609 (0.0147) |
0.0823 | 0.1078 | |
14.43241 * | 19.45013 ** | |
Granger Causality test | F-statistics | |
Carbon return does not Granger cause Twitter-based Bitcoin attention | 0.3372 | |
Twitter-based Bitcoin attention does not Granger cause carbon return | 2.5307 ** |
Equation (15) | Equation (16) | Equation (17) | Equation (18) | |
---|---|---|---|---|
−0.0546 (0.0411) | −0.0574 (0.0411) | −0.0565 (0.0412) | −0.0744 * (0.0410) | |
0.0755 * (0.0406) | 0.0775 * (0.0408) | 0.0751 * (0.0407) | 0.0642 (0.0405) | |
−0.0282 (0.0405) | −0.0245 (0.0406) | −0.0275 (0.0406) | −0.0307 (0.0402) | |
0.0590 (0.0404) | 0.0601 (0.0406) | 0.0599 (0.0404) | 0.0579 (0.0404) | |
0.0024 (0.0080) | 0.0039 (0.0080) | 0.0022 (0.0081) | 0.0056 (0.0080) | |
−0.0163 ** (0.0080) | −0.0162 ** (0.0080) | −0.0153 * (0.0081) | −0.0191 ** (0.0080) | |
−0.0146 * (0.0080) | −0.0163 ** (0.0080) | −0.0147 * (0.0081) | −0.0196 ** (0.0080) | |
−0.0174 ** (0.0080) | −0.0178 ** (0.0081) | −0.0173 * (0.0081) | −0.0220 *** (0.0081) | |
−0.0053 (0.0052) | −0.0054 (0.0053) | |||
0.0022 (0.0054) | 0.0035 (0.0055) | |||
−0.0132 ** (0.0054) | −0.0127 ** (0.0055) | |||
−0.0034 (0.0052) | −0.0031 (0.0053) | |||
0.0002 (0.0044) | −0.0012 (0.0045) | |||
−0.0053 (0.0045) | −0.0033 (0.0046) | |||
−0.0012 (0.0045) | 0.0013 (0.0046) | |||
−0.0040 (0.0044) | −0.0010 (0.0045) | |||
−0.0002 (0.0335) | ||||
−0.0443 (0.0335) | ||||
−0.0178 (0.0336) | ||||
−0.0078 (0.0337) | ||||
0.0160 (0.0240) | ||||
−0.0593 ** (0.0239) | ||||
−0.0621 ** (0.0240) | ||||
−0.0533 ** (0.0242) | ||||
Constant | 0.0023 * (0.0012) | 0.0023 * (0.0012) | 0.0025 ** (0.0012) | 0.0025 * (0.0012) |
0.0522 | 0.0420 | 0.0558 | 0.0702 | |
F-statistic | 2.70 *** | 2.14 ** | 2.15 *** | 2.75 *** |
Mean | Min | Max | |
---|---|---|---|
Value | −0.0330 | −0.3343 | 0.1834 |
0.3195 *** (0.0919) | −0.1049 (0.1770) | |
0.1197 (0.0952) | 0.0933 (0.1833) | |
0.0086 (0.0948) | −0.0807 (0.1826) | |
0.1053 (0.0900) | −0.1294 (0.1734) | |
0.1294 *** (0.0481) | −0.0916 (0.0927) | |
0.0714 (0.0498) | −0.0318 (0.0959) | |
−0.0662 (0.0503) | −0.0140 (0.0968) | |
0.0588 (0.0503) | −0.0345 (0.0969) | |
Constant | 0.0208 *** (0.0074) | 0.0382 *** (0.0142) |
0.2477 | 0.0236 | |
38.1981 *** | 2.8044 | |
Granger Causality test | F-statistics | |
Realized volatility does not Granger cause Bitcoin attention | 0.3826 | |
Bitcoin attention does not Granger cause realized volatility | 2.9860 ** |
Coefficient | Standard Error | |
---|---|---|
0.3403 *** | 0.0926 | |
0.1410 | 0.0960 | |
−0.1556 | 0.0957 | |
0.1887 ** | 0.0812 | |
−0.1335 ** | 0.0604 | |
0.1175 * | 0.0617 | |
−0.1100 * | 0.0609 | |
−0.0282 | 0.0617 | |
2.9213 *** | 0.4679 | |
−0.5571 | 0.5333 | |
0.3980 | 0.5329 | |
1.4290 *** | 0.5265 | |
Constant | 0.0202 *** | 0.0066 |
0.4885 | ||
F-statistic | 8.20 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Q.; Zhu, P.; Zhang, Y. Contagion Spillover from Bitcoin to Carbon Futures Pricing: Perspective from Investor Attention. Energies 2023, 16, 929. https://doi.org/10.3390/en16020929
Zhou Q, Zhu P, Zhang Y. Contagion Spillover from Bitcoin to Carbon Futures Pricing: Perspective from Investor Attention. Energies. 2023; 16(2):929. https://doi.org/10.3390/en16020929
Chicago/Turabian StyleZhou, Qingjie, Panpan Zhu, and Yinpeng Zhang. 2023. "Contagion Spillover from Bitcoin to Carbon Futures Pricing: Perspective from Investor Attention" Energies 16, no. 2: 929. https://doi.org/10.3390/en16020929
APA StyleZhou, Q., Zhu, P., & Zhang, Y. (2023). Contagion Spillover from Bitcoin to Carbon Futures Pricing: Perspective from Investor Attention. Energies, 16(2), 929. https://doi.org/10.3390/en16020929