PV Powered High Voltage Pulse Converter with Switching Cells for Food Processing Application
Abstract
:1. Introduction
Processing Kinds | Advantages | Limitations |
---|---|---|
Irradiation [20,21,22] |
|
|
UV radiation [6,7] |
|
|
Super critical carbon dioxide [3,22] |
|
|
HPP(high pressure processing) [22,23] |
|
|
PEF(pulsed electric field) [20,21] |
|
|
- (i)
- Single switch topology;
- (ii)
- Scalable;
- (iii)
- Regulated output voltage;
- (iv)
- High efficiency;
- (v)
- Less stress on semiconductor devices;
- (vi)
- High voltage output.
2. Passive Switched Inductor Switched Capacitor (PSLSC) Converter
3. PSLSC Converter CCM Analysis
3.1. Operating Modes of Converter Proposed in CCM
3.2. Derivation of PSLSC Converter Voltage Gain
4. Analysis of PSLSC Converter in DCM (Discontinuous Conduction Mode)
5. Analysis of PSLSC Converter Topology in BCM (Boundary Conduction Mode)
6. Design of PSLSC Converter and Stress Analysis
- a
- Inductors Design
- b
- Capacitor Design
- c
- PSLSC converter Switch Stresses
7. Dynamic Analysis of PSLSC Converter
8. Efficiency Analysis
9. Comparative Study
Converter | Voltage Gain | Component Count | Extendable | Single Switch Topology | |||
---|---|---|---|---|---|---|---|
Sw | D | L | C | ||||
Proposed converter | 1 | 2(MSL + MSc) | MSL + 2 | 1 + MSL + 2MSc | Yes | ✓ | |
APIC converter [54] | n + 2 | 2n | n + 2 | 1 | Yes | X | |
ASLPSC converter [55] | 2 | 2 | 3 | 3 | No | X | |
Modified sepic [52] | 2 | 2 | 3 | 3 | No | X | |
SH-SLC converter [56] | 2 | 7 | 4 | 1 | No | X | |
Switched inductor [51] | 2 | 3 | 2 | 3 | No | X | |
Boost with VM cell [53] | 1 | 4 | 2 | 5 | No | ✓ |
10. Simulation Results
11. Experimental Results
12. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Vg | Input Voltage |
VO | Output Voltage |
VL | Inductor Voltage |
VC | Capacitor Voltage |
ΔVC | Capacitor Voltage Ripple |
ΔIL | Inductor Current Ripple |
RL | Load Resistance |
D | Duty Ratio |
Pin | Input Power |
PO | Output Power |
PLOSS | Power Loss |
PSW | Power Loss on switch |
PD | Power Loss on diode |
PL | Power Loss on inductor |
PC | Power Loss on capacitor |
SC | Switched capacitor |
SL | Switched inductor |
RfDSL1, RfDSL2, RfDSC1, RfDSC2 | Parasitic resistance of inductor |
RLSL1,RL1, RL0 | Parasitic resistance of capacitors |
RCSC1, RCSC2, R0 | Parasitic resistance of diodes |
H | Efficiency |
References
- Niu, D.; Zeng, X.-A.; Ren, E.-F.; Xu, F.-Y.; Li, J.; Wang, M.-S.; Wang, R. Review of the application of pulsed electric fields (PEF) technology for food processing in China. Food Res. Int. 2020, 137, 109715. [Google Scholar] [CrossRef]
- Pataro, G.; Falcone, M.; Donsì, G.; Ferrari, G. Metal release from stainless steel electrodes of a PEF treatment chamber: Effects of electrical parameters and food composition. Innov. Food Sci. Emerg. Technol. 2014, 21, 58–65. [Google Scholar] [CrossRef]
- Syed, A.I.Q.A.; Rahman, S.A.U.U.; Shukat, R. Pulsed Electric Field Technology in Food Preservation: A Review. J. Nutr. Health Food Eng. 2017, 6, 168–172. [Google Scholar] [CrossRef] [Green Version]
- Ricci, A.; Parpinello, G.P.; Versari, A. Recent Advances and Applications of Pulsed Electric Fields (PEF) to Improve Polyphenol Extraction and Color Release during Red Winemaking. Beverages 2018, 4, 18. [Google Scholar] [CrossRef] [Green Version]
- Kirawanich, P.; Satusap, P.; Chavasit, V.; Islam, N.E. Microorganism Inactivation by Nano second Pulsed Electric Fields: Full-wave Analysis and Experiment. In Proceedings of the International Conference on Food Engineering and Biotechnology, Bangkok, Thailand, 7–9 May 2011. [Google Scholar]
- Dastgheib, A.M.; Buntat, Z.; Sidik, M.A.B. Chemical Analysis on the Effect of Pulsed Electric Fields in Pineapple Juices Preservation. Appl. Mech. Mater. 2014, 554, 588–592. [Google Scholar] [CrossRef]
- Noci, F.; Riener, J.; Walkling-Ribeiro, M.; Cronin, D.; Morgan, D.; Lyng, J. Ultraviolet irradiation and pulsed electric fields (PEF) in a hurdle strategy for the preservation of fresh apple Juice. J. Food Eng. 2008, 85, 141–146. [Google Scholar] [CrossRef]
- Pataro, G.; Carullo, D.; Siddique, M.A.B.; Falcone, M.; Donsì, F.; Ferrari, G. Improved extractability of carotenoids from tomato peels as side benefits of PEF treatment of tomato fruit for more energy-efficient steam-assisted peeling. J. Food Eng. 2018, 233, 65–73. [Google Scholar] [CrossRef]
- Timmermans, R.; Mastwijk, H.; Berendsen, L.; Nederhoff, A.; Matser, A.; Van Boekel, M.; Groot, M.N. Moderate intensity Pulsed Electric Fields (PEF) as alternative mild preservation technology for fruit juice. Int. J. Food Microbiol. 2019, 298, 63–73. [Google Scholar] [CrossRef]
- Tylewicz, U.; Tappi, S.; Genovese, J.; Mozzon, M.; Rocculi, P. Metabolic response of organic strawberries and kiwifruit subjected to PEF assisted-osmotic dehydration. Innov. Food Sci. Emerg. Technol. 2019, 56, 102190. [Google Scholar] [CrossRef]
- Evrendilek, G.A.; Agcam, E.; Akyildiz, A. Effects of pulsed electric fields on sour cherry juice properties and formations of furfural and hydroxymethylfurfural. Int. J. Food Eng. 2020, 17, 217–226. [Google Scholar] [CrossRef]
- Ribas-Agustí, A.; Martín-Belloso, O.; Soliva-Fortuny, R.; Elez-Martínez, P. Influence of pulsed electric fields processing on the bioaccessible and non-bioaccessible fractions of apple phenolic compounds. J. Funct. Foods 2019, 59, 206–214. [Google Scholar] [CrossRef]
- Velickova, E.; Tylewicz, U.; Rosa, M.D.; Winkelhausen, E.; Kuzmanova, S.; Romani, S. Effect of pulsed electric field coupled with vacuum infusion on quality parameters of frozen/thawed strawberries. J. Food Eng. 2018, 233, 57–64. [Google Scholar] [CrossRef]
- Taiwo, K.A.; Eshtiaghi, M.N.; Ade-Omowaye, B.I.; Knorr, D. Osmotic dehydration of strawberry halves: Influence of osmotic agents and pretreatment methods on mass transfer and product characteristics. Int. J. Food Sci. Technol. 2003, 38, 693–707. [Google Scholar] [CrossRef]
- Angersbach, A.; Knorr, D. High intensity electric field pulses as pretreatment for affecting dehydration characteristics and rehydration properties of potato cubes. Nahrung-Food 1997, 41, 194–200. [Google Scholar] [CrossRef]
- Ade-Omowaye, B.I.O.; Rastogi, N.K.; Angersbach, A.; Knorr, D. Combined effects of pulsed electric field pre-treatment and partial osmotic dehydration on air drying behaviour of red bell pepper. J. Food Eng. 2003, 60, 89–98. [Google Scholar] [CrossRef]
- Tedjo, W.; Taiwo, K.A.; Eshtiaghi, M.N.; Knorr, D. Comparison of pretreatment methods on water and solid diffusion kinetics of osmotically dehydrated mangos. J. Food Eng. 2002, 53, 133–142. [Google Scholar] [CrossRef]
- Taiwo, K.A.; Angersbach, A.; Ade-Omowaye, B.I.O.; Knorr, D. Effects of pretreatments on the diffusion kinetics and some quality parameters of osmotically dehydrated apple slices. J. Agric. Food Chem. 2001, 49, 2804–2811. [Google Scholar] [CrossRef]
- Rastogi, N.K.; Eshtiaghi, M.N.; Knorr, D. Accelerated mass transfer during osmotic dehydration of high intensity electrical field pulse pretreated carrots. J. Food Sci. 1999, 64, 1020–1023. [Google Scholar] [CrossRef]
- Kasri, N.F.; Piah, M.A.M.; Adzis, Z. Compact High-Voltage Pulse Generator for Pulsed Electric Field Applications: Lab-Scale Development. J. Electr. Comput. Eng. 2020, 2020, 6525483. [Google Scholar] [CrossRef]
- Song, H.-J.; Lee, J.-H.; Bin Song, K. Effects of irradiation and fumaric acid treatment on the inactivation of Listeria monocytogenes and Salmonella typhimurium inoculated on sliced ham. Radiat. Phys. Chem. 2011, 80, 1291–1293. [Google Scholar] [CrossRef]
- Navamani, J.D.; Lavanya, A.; Vijayakumar, K. Modified SEPIC converter with high boosting capability. Electron. Lett. 2019, 55, 759–761. [Google Scholar] [CrossRef]
- Kumar, Y.; Patel, K.; Kumar, V. Pulsed Electric Field Processing in FoodTechnology. Int. J. Eng. Stud. Tech. Approach 2015, 1, 6–17. [Google Scholar]
- Shtiaghi, M.N.; Knorr, D. High electric field pulse pretreatment: Potential for sugar beet processing. J. Food Eng. 2002, 52, 265–272. [Google Scholar] [CrossRef]
- Lebovka, N.I.; Praporscic, L.; Vorobiev, E. Enhanced expression of juice from soft vegetable tissues by pulsed electric fields: Consolidation stages analysis. J. Food Eng. 2003, 59, 309–317. [Google Scholar] [CrossRef]
- Ade-Omowaye, B.I.O.; Angersbach, A.; Eshtiaghi, N.M.; Knorr, D. Impact of high intensity electric field pulses on cell permeabilisation and as pre-processing step in coconut processing. Innov. Food Sci. Emerg. 2001, 1, 203–209. [Google Scholar] [CrossRef]
- Ade-Omowaye, B.I.O.; Angersbach, A.; Taiwo, K.A.; Knorr, D. The use of pulsed electric fields in producing juice from paprika (Capsicum annuum L.). J. Food Process. Preserv. 2001, 25, 353–365. [Google Scholar] [CrossRef]
- Knorr, D.; Geulen, M.; Grahl, T.; Sitzmann, W. Food application of high-electric-field pulses. Trends Food Sci. Technol. 1994, 5, 71–75. [Google Scholar] [CrossRef]
- Bazhal, M.I.; Lebovka, N.I.; Vorobiev, E. Pulsed electric field treatment of apple tissue during compression for juice extraction. J. Food Eng. 2001, 50, 129–139. [Google Scholar] [CrossRef]
- Gachovska, T.K.; Adedeji, A.A.; Ngadi, M.O. Influence of pulsed electric field energy on the damage degree in alfalfa tissue. J. Food Eng. 2009, 95, 558–563. [Google Scholar] [CrossRef]
- Forouzesh, M.; Siwakoti, Y.P.; Gorji, S.A.; Blaabjerg, F.; Lehman, B. Step-Up DC–DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications. IEEE Trans. Power Electron. 2017, 32, 9143–9178. [Google Scholar] [CrossRef]
- Bi, H.; Wang, P.; Che, Y. A Capacitor Clamped H-Type Boost DC-DC Converter with Wide Voltage-Gain Range for Fuel Cell Vehicles. IEEE Trans. Veh. Technol. 2019, 68, 276–290. [Google Scholar] [CrossRef]
- Yang, L.-S.; Liang, T.-J.; Chen, J.-F. Transformerless DC–DC Converters with High Step-Up Voltage Gain. IEEE Trans. Ind. Electron. 2009, 56, 3144–3152. [Google Scholar] [CrossRef]
- Aiswarya, T.M.; Prabhakar, M. An Efficient High Gain DC-DC Converter for Automotive Applications. Int. J. Power Electron. Drive Syst. 2015, 6, 242. [Google Scholar] [CrossRef]
- Sayed, K.; Almutairi, A.; Albagami, N.; Alrumayh, O.; Abo-Khalil, A.G.; Saleeb, H. A Review of DC-AC Converters for Electric Vehicle Applications. Energies 2022, 15, 1241. [Google Scholar] [CrossRef]
- Lopatkin, N.; Zinoviev, G.S.; Zotov, L.G. Bi-directional high-voltage DC-DC-converter for advanced railway locomotives. In Proceedings of the 2010 IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 20–24 September 2010; pp. 1123–1128. [Google Scholar] [CrossRef]
- Al Sakka, M.; Van Mierlo, J.; Gualous, H. DC/DC Converters for Electric Vehicles; InTech: Rijeka, Croatia, 2011. [Google Scholar] [CrossRef] [Green Version]
- Shaneh, M.; Niroomand, M.; Adib, E. Non-isolated interleaved bidirectional DC–DC converter with high step voltage ratio and minimum number of switches. IET Power Electron. 2019, 12, 1510. [Google Scholar] [CrossRef]
- Pourfarzad, H.; Pourfarzad, H.; Saremi, M.; Saremi, M.; Jalilzadeh, T.; Jalilzadeh, T. An extended high-voltage-gain DC–DC converter with reduced voltage stress on switches/diodes. Electr. Eng. 2020, 102, 2435–2452. [Google Scholar] [CrossRef]
- Koç, Y.; Birbir, Y.; Bodur, H. Non-isolated high step-up DC/DC converters—An overview. Alex. Eng. J. 2021, 61, 1091–1132. [Google Scholar] [CrossRef]
- Mirzaei, A.; Rezvanyvardom, M. High voltage gain soft switching full bridge interleaved Flyback DC-DC converter for PV applications. Sol. Energy 2020, 196, 217–227. [Google Scholar] [CrossRef]
- Tom, D.; Balapattabi, S. Coupled-inductor based high gain dc-dc converter. Int. J. Technol. Res. Eng. 2015, 2, 2347–4718. [Google Scholar]
- Guangqun, N.; Xue, H. Novel Full-bridge ZVS DC-DC Converter with an Clamp Diodes. Phys. Procedia 2012, 33, 1964–1970. [Google Scholar] [CrossRef]
- Prabhakar, M. High Gain DC-DC Converter using Active Clamp Circuit. Int. J. Eng. 2013, 27, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Zaid, M.; Ahmad, J.; Sarwar, A.; Sarwer, Z.; Tariq, M.; Alam, A. A Transformerless Quadratic Boost High Gain DC-DC Converter. In Proceedings of the 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, 16–19 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Krishnakumar, V.; Anbarasan, P.; Thamizharasan, S.; Vasanprabhu, V. An Integrated Non-Isolated DC-DC converter with Voltage Multiplier Cell for Microgrid Applications. In Proceedings of the 2019 2nd International Conference on Power and Embedded Drive Control (ICPEDC), Chennai, India, 21–23 August 2019; pp. 421–426. [Google Scholar] [CrossRef]
- Alzahrani, A.; Shamsi, P.; Ferdowsi, M. An interleaved non-isolated DC-DC boost converter with diode-capacitor cells. In Proceedings of the 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), San Diego, CA, USA, 5–8 November 2017; pp. 216–221. [Google Scholar] [CrossRef]
- Faridpak, B.; Bayat, M.; Nasiri, M.; Samanbakhsh, R.; Farrokhifar, M. Improved Hybrid Switched Inductor/Switched Capacitor DC–DC Converters. IEEE Trans. Power Electron. 2021, 36, 3053–3062. [Google Scholar] [CrossRef]
- Varesi, K.; Hosseini, S.H.; Sabahi, M.; Babaei, E. Modular non-isolated multi-input high step-up dc–dc converter with reduced normalised voltage stress and component count. IET Power Electron. 2018, 11, 1092–1100. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, B.; Li, Z.; Ran, L. Extended Switched-Boost DC-DC Converters Adopting Switched-Capacitor/Switched-Inductor Cells for High Step-up Conversion. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 5, 1020–1030. [Google Scholar] [CrossRef]
- Tang, Y.; Fu, D.; Wang, T.; Xu, Z. Hybrid Switched-Inductor Converters for High Step-Up Conversion. IEEE Trans. Ind. Electron. 2015, 62, 1480–1490. [Google Scholar] [CrossRef]
- Ismail, E.H.; Al-Saffar, M.A.; Sabzali, A.J.; Fardoun, A.A. A Family of Single-Switch PWM Converters with High Step-Up Conversion Ratio. IEEE Trans. Circuits Syst. I Regul. Pap. 2008, 55, 1159–1171. [Google Scholar] [CrossRef]
- Maheri, H.M.; Babaei, E.; Sabahi, M.; Hosseini, S.H. High Step-Up DC–DC Converter with Minimum Output Voltage Ripple. IEEE Trans. Ind. Electron. 2017, 64, 3568–3575. [Google Scholar] [CrossRef]
- Ansari, S.A.; Moghani, J.S. A Novel High Voltage Gain Noncoupled Inductor SEPIC Converter. IEEE Trans. Ind. Electron. 2019, 66, 7099–7108. [Google Scholar] [CrossRef]
- Salvador, M.A.; Lazzarin, T.B.; Coelho, R.F. High Step-Up DC–DC Converter with Active Switched-Inductor and Passive Switched-Capacitor Networks. IEEE Trans. Ind. Electron. 2017, 65, 5644–5654. [Google Scholar] [CrossRef]
- Jambari, H.; Azli, N.; Piah, M.; Afendi, M. Comparison of Pulsed Electric Field Generation Techniques for Microbial Inactivation Application. J. Theor. Appl. Inf. Technol. 2011, 33, 22–31. [Google Scholar]
- Khan, S.; Zaid, M.; Mahmood, A.; Ahmad, J.; Alam, A. A Single Switch High Gain DC-DC converter with Reduced Voltage Stress. In Proceedings of the 2020 IEEE 7th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Prayagraj, India, 27–29 November 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Navamani, J.D.; Vijayakumar, K.; Jegatheesan, R. Non-isolated high gain DC-DC converter by quadratic boost converter and voltage multiplier cell. Ain Shams Eng. J. 2016, 9, 1397–1406. [Google Scholar] [CrossRef] [Green Version]
- Navamani, J.D.; Vijayakumar, K.; Jegatheesan, R.; Lavanya, A. High Step-up DC-DC Converter by Switched Inductor and Voltage Multiplier Cell for Automotive Applications. J. Electr. Eng. Technol. 2016, 12, 189–197. [Google Scholar] [CrossRef]
Switched-inductor ell (MSL) | Number of SL Cell | Voltage Ratio | Switch Stress in Terms of Vg | Switch Stress in Terms of Vo |
1 | ||||
2 | ||||
3 | ||||
N |
Switched-capacitor cell (MSC) | Number of SC Cell | Voltage Gain | Switch Stress in Terms of Vg | Switch Stress in Terms of Vo |
1 | ||||
2 | ||||
3 | ||||
n odd | ||||
n even |
Parameters | PSLSC Converter | |
---|---|---|
Voltage stress of the diodes in switched inductor cell | DSL1 | |
DSL2 | ||
Voltage stress of the diodes in switched capacitor cell | DSC1 | |
DSC2 | ||
Voltage stress on switch | SW | |
RMS current of diodes in SL cell | DSL1 | |
DSL2 | ||
RMS current of the diodes in SC cell | DSC1 | |
DSC2 | ||
RMS current of the switch | SW | |
RMS value inductor current of the PSLSC topology | L | |
LSL1 | ||
L0 | ||
RMS value capacitor current of the PSLSC topology | CSL1 | |
CSC1 | ||
CSC2 | ||
C0 | ||
Average load current | RL |
Sno | Parameters | Values |
---|---|---|
High gain converter-Specifications | ||
1 | Input voltage | 300 V |
2 | Output voltage | 1.8 kV |
3 | Duty cycle | 0.5 |
4 | Switching frequency | 50 kHz |
5 | Gain | 6 |
6 | Inductor | 2 mH, 10 mH |
7 | Capacitor | 10 µF |
8 | Load resistance | 500 Ω |
HV switch specification | ||
9 | Switching frequency | 300 V |
10 | Pulse width | 1.8 kV |
11 | Repetitive pulse rate | 0.5 |
12 | Duty cycle | 50 kHz |
Sno | Parameters | Theoretical Formulae | Theoretical Results | Simulation Result |
---|---|---|---|---|
1 | Output voltage | 1.8 kV | 1.8 kV | |
2 | Switched capacitor voltage | 1.2 kV | 1.19 kV | |
3 | Switch voltage | 1.2 kV | 1.19 kV | |
4 | Capacitor in switched inductor cell | 300 V | 299.6 V | |
5 | Average diode voltage in switched inductor cell | 300 V | 299.6 V | |
6 | Average diode voltage in switched capacitor cell | 600 V | 603 V |
Sl.no | Parameters | Values | Prototype Tested |
---|---|---|---|
PSLSC converter-Specifications | |||
1 | Input voltage | 10 V | |
2 | Output voltage | 42 V | |
3 | Duty cycle | 0.4 | |
4 | Switching frequency | 50 kHz | |
5 | Gain | 4.2 | |
6 | Inductor | 15 µH, 50 µH | |
7 | Capacitor | 10 µF | |
8 | Power rating | 40 W | |
HV switch specification | |||
9 | Switching frequency | 50 kHz | |
10 | Pulse width | 10 µs | |
11 | Repetitive pulse rate | 50,000/s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sumathy, P.; Navamani, J.D.; Lavanya, A.; Sathik, J.; Zahira, R.; Essa, F.A. PV Powered High Voltage Pulse Converter with Switching Cells for Food Processing Application. Energies 2023, 16, 1010. https://doi.org/10.3390/en16021010
Sumathy P, Navamani JD, Lavanya A, Sathik J, Zahira R, Essa FA. PV Powered High Voltage Pulse Converter with Switching Cells for Food Processing Application. Energies. 2023; 16(2):1010. https://doi.org/10.3390/en16021010
Chicago/Turabian StyleSumathy, P., J. Divya Navamani, A. Lavanya, Jagabar Sathik, R. Zahira, and Fadl A. Essa. 2023. "PV Powered High Voltage Pulse Converter with Switching Cells for Food Processing Application" Energies 16, no. 2: 1010. https://doi.org/10.3390/en16021010
APA StyleSumathy, P., Navamani, J. D., Lavanya, A., Sathik, J., Zahira, R., & Essa, F. A. (2023). PV Powered High Voltage Pulse Converter with Switching Cells for Food Processing Application. Energies, 16(2), 1010. https://doi.org/10.3390/en16021010