Measuring Eco-Efficiency of the Global Shipping Sector Based on an Energy and Environmental Approach: A Dynamic Slack-Based Measure Non-Oriented Model
Abstract
:1. Introduction
2. Green Shipping: The Energy Transition, the Challenges Facing the Sector, and the Role of Eco-Efficiency
3. Materials and Methods
3.1. Sample, Data and Variables
3.2. The Estimation of Data Envelopment Analsysis
3.3. The Dynamic Slack-Based Measure (SBM) DEA Non-Oriented Model Method
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
DMUs | Eco Efficiency Score 2022 | Eco Efficiency Score 2021 | Eco Efficiency Score 2020 | Eco Efficiency Score 2019 | Eco Efficiency Score 2018 |
---|---|---|---|---|---|
1 | 0.81 | 0.33 | 0.05 | 0.03 | 0.02 |
2 | 1.00 | 0.66 | 0.42 | 0.23 | 0.22 |
3 | 0.04 | 0.03 | 0.02 | 0.02 | 0.01 |
4 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 |
5 | 0.09 | 0.04 | 0.02 | 0.02 | 0.01 |
6 | 1.00 | 1.00 | 1.00 | 0.01 | 0.00 |
7 | 0.40 | 0.76 | 0.27 | 0.12 | 0.11 |
8 | 0.08 | 0.07 | 0.04 | 0.05 | 0.04 |
9 | 0.04 | 0.04 | 0.01 | 0.02 | 0.01 |
10 | 0.07 | 0.06 | 0.03 | 0.04 | 0.03 |
11 | 0.03 | 0.02 | 0.01 | 0.03 | 0.02 |
12 | 0.07 | 0.05 | 0.02 | 0.02 | 0.01 |
13 | 0.77 | 0.66 | 0.41 | 0.62 | 0.61 |
14 | 0.64 | 0.55 | 0.16 | 0.45 | 0.44 |
15 | 0.50 | 0.49 | 0.16 | 0.64 | 0.63 |
16 | 0.72 | 0.48 | 0.27 | 0.12 | 0.11 |
17 | 0.31 | 0.32 | 0.17 | 0.09 | 0.08 |
18 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 |
19 | 0.66 | 0.58 | 0.16 | 0.32 | 0.31 |
20 | 0.03 | 0.03 | 0.01 | 0.02 | 0.01 |
21 | 0.09 | 0.09 | 0.06 | 0.03 | 0.02 |
22 | 1.00 | 1.00 | 0.37 | 0.09 | 0.08 |
23 | 0.55 | 0.33 | 0.20 | 0.07 | 0.06 |
24 | 0.15 | 0.09 | 0.05 | 0.02 | 0.01 |
25 | 0.60 | 0.51 | 0.43 | 0.25 | 0.24 |
26 | 0.96 | 0.98 | 0.79 | 0.72 | 0.71 |
27 | 0.88 | 0.56 | 0.06 | 0.03 | 0.02 |
28 | 0.08 | 0.07 | 0.04 | 0.04 | 0.03 |
29 | 0.40 | 0.36 | 0.12 | 0.18 | 0.17 |
30 | 0.43 | 0.33 | 0.26 | 0.15 | 0.14 |
31 | 0.16 | 0.16 | 0.04 | 0.03 | 0.02 |
32 | 0.50 | 0.92 | 0.22 | 0.07 | 0.06 |
33 | 0.49 | 0.65 | 0.26 | 0.09 | 0.08 |
34 | 0.02 | 0.02 | 0.01 | 0.01 | 0.00 |
35 | 0.69 | 1.00 | 0.46 | 0.13 | 0.12 |
36 | 0.69 | 0.56 | 0.19 | 0.30 | 0.29 |
37 | 0.48 | 0.43 | 0.16 | 0.22 | 0.21 |
38 | 1.00 | 0.44 | 0.18 | 0.13 | 0.12 |
39 | 0.99 | 0.88 | 0.20 | 0.10 | 0.09 |
40 | 0.94 | 1.00 | 0.29 | 0.12 | 0.11 |
41 | 0.26 | 0.26 | 0.10 | 0.06 | 0.05 |
42 | 0.58 | 0.14 | 0.07 | 0.03 | 0.02 |
43 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 |
44 | 0.52 | 0.47 | 0.25 | 0.36 | 0.35 |
45 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 |
46 | 0.05 | 0.03 | 0.01 | 0.01 | 0.00 |
47 | 0.05 | 0.05 | 0.03 | 0.02 | 0.01 |
48 | 1.00 | 0.52 | 0.16 | 0.06 | 0.05 |
49 | 0.64 | 0.35 | 0.15 | 0.09 | 0.08 |
50 | 0.24 | 0.15 | 0.11 | 0.05 | 0.04 |
51 | 1.00 | 1.00 | 0.24 | 0.19 | 0.18 |
52 | 1.00 | 1.00 | 0.41 | 0.15 | 0.14 |
53 | 0.11 | 0.09 | 0.03 | 0.02 | 0.01 |
54 | 0.74 | 0.33 | 0.10 | 0.04 | 0.03 |
55 | 1.00 | 1.00 | 0.50 | 0.19 | 0.18 |
56 | 0.87 | 0.62 | 0.16 | 0.09 | 0.08 |
57 | 0.90 | 0.76 | 0.29 | 0.18 | 0.17 |
58 | 0.27 | 0.14 | 0.13 | 0.05 | 0.04 |
59 | 0.59 | 0.34 | 0.31 | 0.12 | 0.11 |
60 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 |
61 | 0.07 | 0.05 | 0.03 | 0.02 | 0.01 |
62 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 |
63 | 0.54 | 0.41 | 0.54 | 0.18 | 0.17 |
64 | 0.46 | 0.39 | 0.34 | 0.17 | 0.16 |
65 | 0.25 | 0.25 | 0.07 | 0.04 | 0.03 |
66 | 0.02 | 0.05 | 0.03 | 0.02 | 0.01 |
67 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 |
68 | 1.00 | 1.00 | 1.00 | 1.01 | 1.00 |
69 | 0.04 | 0.04 | 0.02 | 0.02 | 0.01 |
70 | 1.00 | 1.00 | 0.75 | 0.26 | 0.25 |
71 | 0.26 | 0.17 | 0.02 | 0.02 | 0.01 |
72 | 1.00 | 0.16 | 0.13 | 0.06 | 0.05 |
73 | 0.07 | 0.05 | 0.02 | 0.02 | 0.01 |
74 | 0.57 | 0.50 | 0.30 | 0.20 | 0.19 |
75 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 |
76 | 0.79 | 0.98 | 0.06 | 1.01 | 1.00 |
77 | 0.19 | 0.16 | 0.10 | 0.08 | 0.07 |
78 | 1.00 | 1.00 | 1.00 | 1.01 | 1.00 |
79 | 0.09 | 0.08 | 0.03 | 0.03 | 0.02 |
80 | 0.58 | 0.62 | 0.56 | 0.24 | 0.23 |
81 | 0.14 | 0.11 | 0.07 | 0.03 | 0.02 |
82 | 0.07 | 0.06 | 0.05 | 0.04 | 0.03 |
83 | 0.06 | 0.05 | 0.03 | 0.03 | 0.02 |
84 | 0.08 | 0.39 | 0.09 | 0.04 | 0.03 |
85 | 0.21 | 0.18 | 0.09 | 0.05 | 0.04 |
86 | 0.11 | 0.10 | 0.02 | 0.02 | 0.01 |
87 | 0.24 | 0.07 | 0.02 | 0.02 | 0.01 |
88 | 0.13 | 0.13 | 0.06 | 0.04 | 0.03 |
89 | 0.43 | 0.19 | 0.14 | 0.07 | 0.06 |
90 | 0.68 | 0.20 | 0.09 | 0.02 | 0.01 |
91 | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 |
92 | 0.06 | 0.03 | 0.02 | 0.34 | 0.33 |
93 | 0.26 | 0.11 | 1.00 | 0.58 | 0.57 |
References
- Zhou, Y.; Li, X.; Yuen, K.F. Sustainable shipping: A critical review for a unified framework and future research agenda. Mar. Policy 2023, 148, 105478. [Google Scholar] [CrossRef]
- Müller-Casseres, E.; Szklo, A.; Fonte, C.; Carvalho, F.; Portugal-Pereira, J.; Baptista, L.B.; Maia, P.; Rochedo, P.R.R.; Draeger, R.; Schaeffer, R. Are there synergies in the decarbonization of aviation and shipping? An integrated perspective for the case of Brazil. iScience 2022, 25, 105248. [Google Scholar] [CrossRef] [PubMed]
- Spengler, T.; Tovar, B. Environmental valuation of in-port shipping emissions per shipping sector on four Spanish ports. Mar. Pollut. Bull. 2022, 178, 113589. [Google Scholar] [CrossRef]
- Strange, S.; Holland, R. International shipping and the developing countries. World Dev. 1976, 4, 241–251. [Google Scholar] [CrossRef]
- Xue, Y.; Lai, K.H. Responsible shipping for sustainable development: Adoption and performance value. Transp. Policy 2023, 130, 89–99. [Google Scholar] [CrossRef]
- Sueur, M.; Rüger, C.P.; Maillard, J.F.; Lavanant, H.; Zimmermann, R.; Afonso, C. Selective characterization of petroporphyrins in shipping fuels and their corresponding emissions using electron-transfer matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry. Fuel 2023, 332, 126283. [Google Scholar] [CrossRef]
- Kumar, S.; Baalisampang, T.; Arzaghi, E.; Garaniya, V.; Abbassi, R.; Salehi, F. Synergy of green hydrogen sector with offshore industries: Opportunities and challenges for a safe and sustainable hydrogen economy. J. Clean. Prod. 2023, 384, 135545. [Google Scholar] [CrossRef]
- Latapí, M.; Davíðsdóttir, B.; Jóhannsdóttir, L. Drivers and barriers for the large-scale adoption of hydrogen fuel cells by Nordic shipping companies. Int. J. Hydrogen Energy 2023, 48, 6099–6119. [Google Scholar] [CrossRef]
- Hong, B.; Wang, C.; Zhang, K.; Lim, J.S.; Varbanov, P.S.; Jia, X.; Ji, M.; Tao, H.; Li, Z.; Wang, B. Carbon pinch emission analysis for shipping fuel planning considering multiple period and fuel conversion rates. J. Clean. Prod. 2023, 415, 137759. [Google Scholar] [CrossRef]
- Caldeira dos Santos, M.; Pereira, F.H. ESG performance scoring method to support responsible investments in port operations. Case Stud. Transp. Policy 2022, 10, 664–673. [Google Scholar] [CrossRef]
- Bergek, A.; Hansen, T.; Hanson, J.; Mäkitie, T.; Steen, M. Complexity challenges for transition policy: Lessons from coastal shipping in Norway. Environ. Innov. Soc. Transit 2023, 46, 100687. [Google Scholar] [CrossRef]
- Heikkurinen, P.; Young, C.W.; Morgan, E. Business for sustainable change: Extending eco-efficiency and eco-sufficiency strategies to consumers. J. Clean. Prod. 2019, 218, 656–664. [Google Scholar] [CrossRef]
- Munim, Z.H.; Chowdhury, M.M.H.; Tusher, H.M.; Notteboom, T. Towards a prioritization of alternative energy sources for sustainable shipping. Mar. Policy 2023, 152, 105579. [Google Scholar] [CrossRef]
- Oloruntobi, O.; Mokhtar, K.; Gohari, A.; Asif, S.; Chuah, L.F. Sustainable transition towards greener and cleaner seaborne shipping industry: Challenges and opportunities. Clean. Eng. Technol. 2023, 13, 100628. [Google Scholar] [CrossRef]
- Vardopoulos, I. Critical sustainable development factors in the adaptive reuse of urban industrial buildings. A fuzzy DEMATEL approach. Sustain. Cities Soc. 2019, 50, 101684. [Google Scholar] [CrossRef]
- Kavouras, S.; Vardopoulos, I.; Mitoula, R.; Zorpas, A.A.; Kaldis, P. Occupational Health and Safety Scope Significance in Achieving Sustainability. Sustainability 2022, 14, 2424. [Google Scholar] [CrossRef]
- Vardopoulos, I.; Tsilika, E.; Sarantakou, E.; Zorpas, A.A.; Salvati, L.; Tsartas, P. An Integrated SWOT-PESTLE-AHP Model Assessing Sustainability in Adaptive Reuse Projects. Appl. Sci. 2021, 11, 7134. [Google Scholar] [CrossRef]
- Stavroulakis, P.J.; Koutsouradi, M.; Kyriakopoulou-Roussou, M.-C.; Manologlou, E.-A.; Tsioumas, V.; Papadimitriou, S. Decarbonization and sustainable shipping in a post COVID-19 world. Sci. Afr. 2023, 21, e01758. [Google Scholar]
- Tadros, M.; Ventura, M.; Soares, C.G. Review of current regulations, available technologies, and future trends in the green shipping industry. Ocean. Eng. 2023, 280, 114670. [Google Scholar] [CrossRef]
- Bilgili, F.; Zarali, F.; Ilgün, M.F.; Dumrul, C.; Dumrul, Y. The evaluation of renewable energy alternatives for sustainable development in Turkey using intuitionistic fuzzy-TOPSIS method. Renew. Energy 2022, 189, 1443–1458. [Google Scholar] [CrossRef]
- Fluch, J.; Brunner, C.; Grubbauer, A. Potential for energy efficiency measures and integration of renewable energy in the European food and beverage industry based on the results of implemented projects. Energy Procedia 2017, 123, 148–155. [Google Scholar] [CrossRef]
- Wang, F.; Swinbourn, R.; Li, C. Shipping Australian sunshine: Liquid renewable green fuel export. Int. J. Hydrogen Energy 2023, 48, 14763–14784. [Google Scholar] [CrossRef]
- Al-Aboosi, F.Y.; El-Halwagi, M.M.; Moore, M.; Nielsen, R.B. Renewable ammonia as an alternative fuel for the shipping industry. Curr. Opin. Chem. Eng. 2021, 31, 100670. [Google Scholar] [CrossRef]
- Hassankhani dolatabadi, S.; Ölçer, A.I.; Vakili, S. The Application of Hybrid Energy system (Hydrogen Fuel cell, wind, and solar) in shipping. Renew. Energy Focus 2023, 46, 197–206. [Google Scholar] [CrossRef]
- Karagiannis, I.; Vouros, P.; Sioutas, N.; Evangelinos, K. Mapping the maritime CSR agenda: A cross-sectoral materiality analysis of sustainability reporting. J. Clean. Prod. 2022, 338, 130139. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; El-Emam, R.S.; Khalid, F. Climate action for the shipping industry: Some perspectives on the role of nuclear power in maritime decarbonization. E-Prime–Adv. Electr. Eng. Electron. Energy 2023, 4, 100132. [Google Scholar] [CrossRef]
- Nuttall, P.; Newell, A.; Prasad, B.; Veitayaki, J.; Holland, E. A review of sustainable sea-transport for Oceania: Providing context for renewable energy shipping for the Pacific. Mar. Policy 2014, 43, 283–287. [Google Scholar] [CrossRef]
- Chen, S.; Zheng, S.; Sys, C. Policies focusing on market-based measures towards shipping decarbonization: Designs, impacts and avenues for future research. Transp. Policy 2023, 137, 109–124. [Google Scholar]
- Choudhary, D.; Kumar, A.; Huo, B. Examination of sustainability risk in freight shipping based on the theory of planned behavior with temporal analysis. Transp. Res. E Logist. Transp. Rev. 2023, 176, 103191. [Google Scholar] [CrossRef]
- Figge, F.; Thorpe, A.S. Circular economy, operational eco-efficiency, and sufficiency. An integrated view. Ecol. Econ. 2023, 204, 107692. [Google Scholar] [CrossRef]
- Cui, S.; Wang, Z. The impact and transmission mechanisms of financial agglomeration on eco-efficiency: Evidence from the organization for economic co-operation and development economies. J. Clean. Prod. 2023, 392, 136219. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, R. Research on eco-efficiency measurement, spatiotemporal analysis and prosperity warning based on the three-stage chain network SBM and MS-DDFM. Heliyon 2023, 9, e13079. [Google Scholar] [CrossRef] [PubMed]
- Kouchaki-Penchah, H.; Alizadeh, M.R.; Karbalaei Aghamolki, M.T. Measuring eco-efficiency of rice cropping systems in Iran: An integrated economic and environmental approach. Sustain. Energy Technol. Assess. 2023, 57, 103281. [Google Scholar] [CrossRef]
- Wang, F.; Wu, M.; Du, X. Does industrial upgrading improve eco-efficiency? Evidence from China’s industrial sector. Energy Econ. 2023, 124, 106774. [Google Scholar] [CrossRef]
- Muthu, S.S. Ways of measuring the environmental impact of textile processing: An overview. In Assessing the Environmental Impact of Textiles and the Clothing Supply Chain; Woodhead Publishing: Sawston, UK, 2020; pp. 33–56. [Google Scholar]
- Cheng, P.; Jin, Q.; Jiang, H.; Hua, M.; Ye, Z. Efficiency assessment of rural domestic sewage treatment facilities by a slacked-based DEA model. J Clean Prod. 2020, 267, 122111. [Google Scholar] [CrossRef]
- Liu, S.; Park, S.-H.; Choi, Y.-S.; Yeo, G.-T. Efficiency evaluation of major container terminals in the top three cities of the Pearl River Delta using SBM-DEA and undesirable DEA. Asian J. Shipp. Logist. 2022, 38, 99–106. [Google Scholar] [CrossRef]
- Chao, S.L.; Yu, M.M.; Hsieh, W.F. Evaluating the efficiency of major container shipping companies: A framework of dynamic network DEA with shared inputs. Transp. Res. Part A Policy Pract. 2018, 117, 44–57. [Google Scholar] [CrossRef]
- Saldivia, M.; Kristjanpoller, W.; Olson, J.E. Energy consumption and GDP revisited: A new panel data approach with wavelet decomposition. Appl. Energy 2020, 272, 115207. [Google Scholar] [CrossRef]
- Mohsin, M.; Naseem, S.; Sarfraz, M.; Azam, T. Assessing the effects of fuel energy consumption, foreign direct investment and GDP on CO2 emission: New data science evidence from Europe & Central Asia. Fuel 2022, 314, 123098. [Google Scholar] [CrossRef]
- Tran, B.L.; Chen, C.C.; Tseng, W.C. Causality between energy consumption and economic growth in the presence of GDP threshold effect: Evidence from OECD countries. Energy 2022, 251, 123902. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, J.; Han, J.; Liu, H.; Zhao, Z. Allocation and reallocation of ship emission permits for liner shipping. Ocean. Eng. 2022, 266, 112976. [Google Scholar] [CrossRef]
- Braidotti, L.; Bertagna, S.; Rappoccio, R.; Utzeri, S.; Bucci, V.; Marinò, A. On the inconsistency and revision of Carbon Intensity Indicator for cruise ships. Transp. Res. D Transp. Environ. 2023, 118, 103662. [Google Scholar] [CrossRef]
- Kim, Y.-R.; Steen, S.; Kramel, D.; Muri, H.; Strømman, A.H. Modelling of ship resistance and power consumption for the global fleet: The MariTEAM model. Ocean Eng. 2023, 281, 114758. [Google Scholar] [CrossRef]
- Adhikari, T.; Whelan, K. Did raising doing business scores boost GDP? J. Comp. Econ. 2023, 51, 1011–1030. [Google Scholar] [CrossRef]
- Komaki, Y. Why is the forecast error of quarterly GDP in Japan so large?–From an international comparison of quarterly GDP forecast situation. Jpn. World Econ. 2023, 66, 101192. [Google Scholar] [CrossRef]
- Gagnon, J.E.; Kamin, S.B.; Kearns, J. The impact of the COVID-19 pandemic on global GDP growth. J. Jpn. Int. Econ 2023, 68, 101258. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, U.; Mohammed, K.S.; Schneider, N.; Faggioni, F.; Papa, A. GDP responses to supply chain disruptions in a post-pandemic era: Combination of DL and ANN outputs based on Google Trends. Technol. Forecast. Soc. Chang. 2023, 192, 122512. [Google Scholar] [CrossRef]
- Molthan-Hill, P.; Robinson, Z.P.; Hope, A.; Dharmasasmita, A.; McManus, E. Reducing carbon emissions in business through Responsible Management Education: Influence at the micro-, meso- and macro-levels. Int. J. Manag. Educ. 2020, 18, 100328. [Google Scholar] [CrossRef]
- Quinn, B.; Gallagher, R.; Kuosmanen, T. Lurking in the shadows: The impact of CO2 emissions target setting on carbon pricing in the Kyoto agreement period. Energy Econ. 2023, 118, 106338. [Google Scholar] [CrossRef]
- Chin, M.Y.; Lee, C.T.; Woon, K.S. Policy-driven municipal solid waste management assessment using relative quadrant eco-efficiency: A case study in Malaysia. J. Environ. Manag. 2022, 323, 116238. [Google Scholar] [CrossRef]
- Calvo, N.; Monje-Amor, A.; Villarreal, O. When your value proposition is to improve others’ energy efficiency: Analyzing the internationalization dilemma of eco-innovations in SMEs. Technol. Forecast. Soc. Chang. 2022, 185, 122069. [Google Scholar] [CrossRef]
- Sgroi, F.; Sciancalepore, V.D. Dynamics of structural change in agriculture, transaction cost theory and market efficiency: The case of cultivation contracts between agricultural enterprises and the food industry. J. Agric. Food Res. 2022, 10, 100396. [Google Scholar] [CrossRef]
- WBCSD. Eco-Efficiency: Creating More Value with Less Impact; WBCSD: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Liu, J.; Huang, C.; Song, J.; Du, P.; Jin, F.; Chen, H. Group decision making based on the modified probability calculation method and DEA cross-efficiency with probabilistic hesitant fuzzy preference relations. Comput. Ind. Eng. 2021, 156, 107262. [Google Scholar] [CrossRef]
- Zhu, N.; Zhu, C.; Emrouznejad, A. A combined machine learning algorithms and DEA method for measuring and predicting the efficiency of Chinese manufacturing listed companies. J. Manag. Sci. Eng. 2021, 6, 435–448. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, Y.; Zhou, L.; Jin, F.; Chen, H. A novel probabilistic linguistic decision-making method with consistency improvement algorithm and DEA cross-efficiency. Eng. Appl. Artif. Intell. 2021, 99, 104108. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, S.; Liu, D. Regret-based cross efficiency evaluation method in a general two-stage DEA system. Comput. Ind. Eng. 2023, 175, 108828. [Google Scholar] [CrossRef]
- Yeşilyurt, M.E.; Şahin, E.; Elbi, M.D.; Kızılkaya, A.; Koyuncuoğlu, M.U.; Akbaş-Yeşilyurt, F. A novel method for computing single output for DEA with application in hospital efficiency. Socioecon. Plan. Sci. 2021, 76, 100995. [Google Scholar] [CrossRef]
- Song, M.; Peng, J.; Wang, J.; Zhao, J. Environmental efficiency and economic growth of China: A Ray slack-based model analysis. Eur. J. Oper. Res. 2018, 269, 51–63. [Google Scholar]
- Meng, M.; Pang, T. Operational efficiency analysis of China’s electric power industry using a dynamic network slack-based measure model. Energy 2022, 251, 123898. [Google Scholar] [CrossRef]
- Rezaee, M.J.; Yousefi, S.; Baghery, M.; Chakrabortty, R.K. An intelligent strategy map to evaluate improvement projects of auto industry using fuzzy cognitive map and fuzzy slack-based efficiency model. Comput. Ind. Eng. 2021, 151, 106920. [Google Scholar] [CrossRef]
- Long, R.; Ouyang, H.; Guo, H. Super-slack-based measuring data envelopment analysis on the spatial–temporal patterns of logistics ecological efficiency using global Malmquist Index model. Environ. Technol. Innov. 2020, 18, 100770. [Google Scholar] [CrossRef]
- WWF Canada. What This Means for Canada’s Maritime Industry. 2020. Available online: www.dnvgl.com (accessed on 18 June 2023).
- Government of Canada. Canadian Green Shipping Corridors Framework. 2022. Available online: https://tc.canada.ca/en/marine-transportation/marine-pollution-environmental-response/canadian-green-shipping-corridors-framework (accessed on 18 June 2023).
- Hua, J.; Wu, Y.; Chen, H.L. Alternative fuel for sustainable shipping across the Taiwan Strait. Transp. Res. D Transp. Environ. 2017, 52, 254–276. [Google Scholar] [CrossRef]
- Ashrafi, M.; Lister, J.; Gillen, D. Toward a harmonization of sustainability criteria for alternative marine fuels. Marit. Transp. Res. 2022, 3, 100052. [Google Scholar] [CrossRef]
- Bilgili, L. A systematic review on the acceptance of alternative marine fuels. Renew. Sustain. Energy Rev. 2023, 182, 113367. [Google Scholar] [CrossRef]
- Aoki-Suzuki, C.; Dente, S.M.R.; Hashimoto, S. Assessing economy-wide eco-efficiency of materials produced in Japan. Resour. Conserv. Recycl. 2023, 194, 106981. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, T. Urban shrinkage and eco-efficiency: The mediating effects of industry, innovation and land-use. Environ. Impact. Assess. Rev. 2023, 98, 106921. [Google Scholar] [CrossRef]
- Embassy of the Kingdom of the Netherland in Panama. Maritime & Logistics Investment Opportunities in the Panamanian Maritime and Logistics Sector 2020 Panama in the Global Market. 2020. Available online: https://www.prensa.com/economia/Panama- (accessed on 18 June 2023).
- Kingdom of the Netherlands in Panama. Logistics in Panama Challenges and Opportunities; Kingdom of the Netherlands in Panama: Panama City, Panama, 2021. [Google Scholar]
- Piniella, F.; Alcaide, J.I.; Rodríguez-Díaz, E. The Panama Ship Registry: 1917–2017. Mar. Policy 2017, 77, 13–22. [Google Scholar] [CrossRef]
- United Nations Conference on Trade and Development. Review of Maritime Transport 2022. 2022. Available online: https://shop.un.org/ (accessed on 18 June 2023).
- MWANI Qatar Port Regulation; MWANI Qatar: Mesaieed, Qatar, 2017.
- Papandreou, A.; Koundouri, P.; Papadaki, L. Sustainable Shipping: Levers of Change; Athens University of Economics and Business: Athina, Greece, 2020. [Google Scholar]
- Ford, J.H.; Wilcox, C. Shedding light on the dark side of maritime trade–A new approach for identifying countries as flags of convenience. Mar. Policy 2019, 99, 298–303. [Google Scholar] [CrossRef]
- Vardopoulos, I.; Konstantopoulos, I.; Zorpas, A.A.; Limousy, L.; Bennici, S.; Inglezakis, V.J.; Voukkali, I. Sustainable metropolitan areas perspectives through assessment of the existing waste management strategies. Environ. Sci. Pollut. Res. 2021, 28, 24305–24320. [Google Scholar] [CrossRef] [PubMed]
- Luoma, E.; Nevalainen, L.; Altarriba, E.; Helle, I.; Lehikoinen, A. Developing a conceptual influence diagram for socio-eco-technical systems analysis of biofouling management in shipping–A Baltic Sea case study. Mar. Pollut. Bull. 2021, 170, 112614. [Google Scholar] [CrossRef]
- Cui, Y.; Qiu, K.; Li, G.; Jiang, H.; Kong, L. Spatiotemporal differentiation of energy eco-efficiency of shipbuilding industry in China. Ocean Coast Manag. 2022, 230, 106347. [Google Scholar] [CrossRef]
- Christodoulou, A.; Cullinane, K. Potential alternative fuel pathways for compliance with the ‘FuelEU Maritime Initiative’. Transp. Res. D Transp. Environ. 2022, 112, 103492. [Google Scholar] [CrossRef]
- Thanopoulou, H.A. Chapter 2 A Fleet for the 21st Century: Modern Greek Shipping. Res. Transp. Econ. 2007, 21, 23–61. [Google Scholar] [CrossRef]
- Goulielmos, A.M. A critical review of contemporary Greek shipping policy 1981–1996. Transp. Policy 1997, 4, 247–255. [Google Scholar] [CrossRef]
- Gratsos, G.A. Greek Shipping and the Maritime Economy. 2014. Available online: www.eesc.europa.eu (accessed on 18 June 2023).
- Union of Greek Shipowners. Greek Shipping a Major EU Export Industry of Strategic Importance. 2019. Available online: https://en.sse.net.cn/indices/cdfinew.jsp (accessed on 18 June 2023).
- Theotokas, I. Chapter 3 On Top of World Shipping: Greek Shipping Companies’ Organization and Management. Res. Transp. Econ. 2007, 21, 63–93. [Google Scholar] [CrossRef]
- Jones, C.; Temouri, Y.; Kirollos, K.; Du, J. Tax havens and emerging market multinationals: The role of property rights protection and economic freedom. J. Bus Res 2023, 155, 113373. [Google Scholar] [CrossRef]
- Fuest, C.; Hugger, F.; Neumeier, F. Corporate profit shifting and the role of tax havens: Evidence from German country-by-country reporting data. J. Econ. Behav. Organ. 2022, 194, 454–477. [Google Scholar] [CrossRef]
- Ayesu, E.K. Does shipping cause environmental emissions? Evidence from African countries. Transp. Res. Interdiscip. Perspect. 2023, 21, 100873. [Google Scholar] [CrossRef]
Type | Variable | Definition | Units of Measurement |
---|---|---|---|
Inputs | Full-time employees | This metric denotes the total count of both full-time workers and the equivalent number of full-time employees derived from part-time or temporary employees, as reported and recorded at the conclusion of the fiscal period. | Metric employees |
Energy Use Total | The aggregate utilization of both direct and indirect energy in terms of gigajoules. | Metric tonnes | |
Fixed Assets | A durable asset or piece of machinery that is owned and utilized by a firm for the purpose of generating revenue in its operational activities. | Metric dollars | |
Revenue | Net operating revenue is the financial metric that encompasses the total revenue generated by a company’s operational endeavors, accounting for any deductions made for sales adjustments and their corresponding counterparts. | Metric dollars | |
Output | CO2 emissions | The emissions discussed below are a direct consequence of energy utilization within the transportation industry. These encompass emissions arising from the burning of fossil fuels as well as carbon dioxide emissions resulting from the combustion of solid, liquid, and gaseous fuels. | Metric tonnes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parris, D.; Spinthiropoulos, K.; Ragazou, K.; Kanavas, V.; Tsanaktsidis, C. Measuring Eco-Efficiency of the Global Shipping Sector Based on an Energy and Environmental Approach: A Dynamic Slack-Based Measure Non-Oriented Model. Energies 2023, 16, 6997. https://doi.org/10.3390/en16196997
Parris D, Spinthiropoulos K, Ragazou K, Kanavas V, Tsanaktsidis C. Measuring Eco-Efficiency of the Global Shipping Sector Based on an Energy and Environmental Approach: A Dynamic Slack-Based Measure Non-Oriented Model. Energies. 2023; 16(19):6997. https://doi.org/10.3390/en16196997
Chicago/Turabian StyleParris, Dimitrios, Konstantinos Spinthiropoulos, Konstantina Ragazou, Vasileios Kanavas, and Constantinos Tsanaktsidis. 2023. "Measuring Eco-Efficiency of the Global Shipping Sector Based on an Energy and Environmental Approach: A Dynamic Slack-Based Measure Non-Oriented Model" Energies 16, no. 19: 6997. https://doi.org/10.3390/en16196997
APA StyleParris, D., Spinthiropoulos, K., Ragazou, K., Kanavas, V., & Tsanaktsidis, C. (2023). Measuring Eco-Efficiency of the Global Shipping Sector Based on an Energy and Environmental Approach: A Dynamic Slack-Based Measure Non-Oriented Model. Energies, 16(19), 6997. https://doi.org/10.3390/en16196997