Thermo-Economic Performance Analysis of Modified Latent Heat Storage System for Residential Heating
Abstract
:1. Introduction
2. Methodology
2.1. Physical Model
2.2. Governing Equations
2.3. Numerical Model
- (1)
- The porous medium is considered isotropic.
- (2)
- The melting paraffin is assumed to be incompressible, abiding by Boussinesq hypothesis.
- (3)
- Volumetric change during the phase-transition course is neglected.
- (4)
- The unit wall and external environment are considered adiabatic, and the heat contact resistance between model constituents is not taken into account.
- (1)
- The “velocity-inlet” boundary condition is set, with the water flowing into the inlet at a temperature of 70 °C.
- (2)
- The HTF outlet is set as a pressure outlet at one atmosphere.
- (3)
- The walls in proximity to the paraffin and water are considered coupled thermal exchange zones.
- (4)
- The outer tube walls are regarded without heat exchange with the external environment.
2.4. Simulation Verification
3. Building Energy Consumption Simulation
3.1. Research Object
3.2. Engineering Data
4. Results and Discussion
4.1. Thermal Assessments
4.2. Economic Analysis
4.2.1. Initial Cost
4.2.2. Operating Cost
4.2.3. Payback Period and Daily Return
4.3. Case Study
5. Discussion
- (1)
- The results reveal that the charging–discharging efficiency of smooth tube TES units is inefficient and does not meet the requirements for engineering applications. However, the introduction of fins, metallic foam, and the metallic foam-finned composite structure effectively enhances heat transfer efficiency. Among them, the metallic foam-finned composite structure achieves the minimum complete melting time of 5800 s, which is 88.3% less compared with the smooth tube. Furthermore, raising the flow rate improves the heat storage effect, with the complete melting time of the four structures decreased by 3.5%, 11.2%, 14.4%, and 15.5%, respectively.
- (2)
- As the flow rate increases from 0.05 m/s to 0.25 m/s, the daily returns of smooth tubes, finned tubes, metallic foam tubes, and metallic foam-finned tubes are enhanced by 3.18%, 11.71%, 13.77%, and 15.34%, respectively. Similarly, the payback period for metallic foam tubes and metallic foam-fin tubes is shortened by 3.08%, 10.48%, 12.1%, and 13.3%, respectively. These findings demonstrate the economic applicability of the metallic foam-finned tube for solar thermal storage systems. Widespread application of the new metallic foam-finned tube composite structure in heat storage is expected to yield even greater economic benefits.
- (3)
- Additionally, the metallic foam-finned tube demonstrates significant economic benefits in practical engineering applications. For residential building heating projects, the metallic foam-finned tube not only requires a low initial investment and occupies a small space, but also has a short payback period of just 13 months. Moreover, the system reduces carbon emissions from the building by approximately 9100 t throughout the heating season. It serves as an effective approach to realize energy-conservation and emission reductions in the building sector.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbols | |
Am | Liquid fraction term |
CE | Inertial coefficient (m−1) |
D | Thickness of the ligaments (mm) |
cd | Drag coefficient |
cp,f | Specific heat of PCM (J·kg−1·K−1) |
cp,s | Specific heat of metal foam (J·kg−1·K−1) |
df | Fiber diameter (m) |
dp | Pore diameter (m) |
fm | Melting fraction |
g | Gravitational acceleration (m·s−2) |
G | Shape function for metallic ligaments |
H | Height (m) |
h | Thickness (m) |
hsf | Heat transfer coefficient between internal ligament of metal foam and paraffin (W·m−1·K−1) |
K | Permeability (m−2) |
L | Latent heat of fusion of PCM (kJ·kg−1) |
Pr | Prandtl number |
R | Radius of the heat storage tube (m) |
Re | Reynolds number |
t | Time (s) |
T | Temperature (K) |
Tm1 | Melting temperature of PCM liquid point (°C) |
Tm2 | Melting temperature of PCM solid point (°C) |
Velocity vector (m·s−1) | |
Greek symbols | |
α | Filling ratio of metal foam |
αsf | Specific area (m−2) |
γ | Thermal expansion coefficient (K−1) |
ε | Porosity |
δ | Numerical constant, 10−4 |
λe | Effective thermal conductivity (W·m−1·K−1) |
λfe | Thermal conductivity of paraffin (W·m−1·K−1) |
λlig | Thermal conductivity of metal framework (W·m−1·K−1) |
λse | Effective thermal conductivity of metal foam (W·m−1·K−1) |
μ | Dynamic viscosity of paraffin (kg·m−1·s−1) |
ρl | Density of paraffin (kg·m−3) |
ρs | Density of metal foam(kg·m−3) |
σ | Liquid fraction liquid in the metal foam |
ψ | Paste zone coefficient, take 108 |
χ | Flow tortuosity |
ω | Pore density |
Subscript | |
f | PCM in fluid phase |
fe | Paraffin |
m | Melting |
s | PCM in solid phase |
se | Metal foam |
References
- Hou, Z.; Luo, J.; Xie, Y.; Wu, L.; Huang, L.; Xiong, Y. Carbon Circular Utilization and Partially Geological Sequestration: Potentialities, Challenges, and Trends. Energies 2023, 16, 324. [Google Scholar] [CrossRef]
- Xie, Y.; Qi, J.; Zhang, R.; Jiao, X.; Shirkey, G.; Ren, S. Toward a Carbon-Neutral State: A Carbon–Energy–Water Nexus Perspective of China’s Coal Power Industry. Energies 2022, 15, 4466. [Google Scholar] [CrossRef]
- Wei, X.T.; Qiu, R.; Liang, Y.T.; Liao, Q.; Klemes, J.J.; Xue, J.J.; Zhang, H. Roadmap to carbon emissions neutral industrial parks: Energy, economic and environmental analysis. Energy 2022, 238, 121732. [Google Scholar] [CrossRef]
- Yu, X.; Chen, H.B.; Wang, B.; Wang, R.; Shan, Y.L. Driving forces of CO2 emissions and mitigation strategies of China’s National low carbon pilot industrial parks. Appl. Energy 2018, 212, 1553–1562. [Google Scholar] [CrossRef]
- Bouyer, J.; Inard, C.; Musy, M. Microclimatic coupling as a solution to improve building energy simulation in an urban context. Energy Build. 2011, 43, 1549–1559. [Google Scholar] [CrossRef]
- Cai, Y.Y.; Newth, D.; Finnigan, J.; Gunasekera, D. A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation. Appl. Energy 2015, 148, 381–395. [Google Scholar] [CrossRef]
- Huebner, G.M.; Hamilton, I.; Chalabi, Z.; Shipworth, D.; Oreszczyn, T. Explaining domestic energy consumption—The comparative contribution of building factors, socio-demographics, behaviours and attitudes. Appl. Energy 2015, 159, 589–600. [Google Scholar] [CrossRef]
- Brzezińska, D.; Brzezińska, M. Performance-Based Solutions of Thermal and Smoke Control Ventilation in Industrial Power Plant Buildings. Energies 2023, 15, 7396. [Google Scholar] [CrossRef]
- Huang, L.; Hou, Z.; Fang, Y.; Liu, J.; Shi, T. Evolution of CCUS Technologies Using LDA Topic Model and Derwent Patent Data. Energies 2023, 16, 2556. [Google Scholar] [CrossRef]
- Khadka, S.; Rijal, H.B.; Amano, K.; Saito, T.; Imagawa, H.; Uno, T.; Genjo, K.; Takata, H.; Tsuzuki, K.; Nakaya, T.; et al. Study on Winter Comfort Temperature in Mixed Mode and HVAC Office Buildings in Japan. Energies 2022, 15, 7331. [Google Scholar] [CrossRef]
- Pitchaimuthu, S.; Sridharan, K.; Nagarajan, S.; Ananthraj, S.; Robertson, P.; Kuehnel, M.F.; Irabien, A.; Maroto-Valer, M. Solar Hydrogen Fuel Generation from Wastewater—Beyond Photoelectrochemical Water Splitting: A Perspective. Energies 2022, 15, 7399. [Google Scholar] [CrossRef]
- Estami, M.; Bahrami, M.A. Sensible and latent thermal energy storage with constructal fins. Int. J. Hydrog. Energy 2017, 42, 17681–17691. [Google Scholar]
- Kasper, L.; Pernsteiner, D.; Koller, M.; Schirrer, A.; Jakubek, S.; Hofmann, R. Numerical studies on the influence of natural convection under inclination on optimal aluminium proportions and fin spacings in a rectangular aluminium finned latent-heat thermal energy storage. Appl. Therm. Eng. 2021, 190, 116448. [Google Scholar] [CrossRef]
- Gasia, J.; Maldonado, J.M.; Galati, F.; De Simone, M.; Cabeza, L.F. Experimental evaluation of the use of fins and metal wool as heat transfer enhancement techniques in a latent heat thermal energy storage system. Energy Convers. Manag. 2019, 184, 530–538. [Google Scholar] [CrossRef]
- Khan, L.A.; Khan, M.M. Role of orientation of fins in performance enhancement of a latent thermal energy storage unit. Appl. Therm. Eng. 2020, 175, 115408. [Google Scholar] [CrossRef]
- Li, W.; Wang, M.; Meng, F.; Zhang, Y.; Zhang, B. A Review on the Effects of Pretreatment and Process Parameters on Properties of Pellets. Energies 2022, 15, 7303. [Google Scholar] [CrossRef]
- Cheng, F.; Xu, Y.; Zhang, J.; Wang, L.; Zhang, H.; Wan, Q.; Xu, S.; Li, W.; Wang, L.; Huang, Z. A novel flexible carbon fiber with carbon nanotubes growing in-situ via chemical vapor deposition to impregnate paraffin for thermal energy application. J. Energy Storage 2023, 68, 107718. [Google Scholar] [CrossRef]
- Faraj, K.; Khaled, M.; Faraj, J.; Hachem, F.; Chahine, K.; Castelain, C. Energetic and economic analyses of integrating enhanced macro-encapsulated PCM’s with active underfloor hydronic heating system. Energy Rep. 2022, 8, 848–862. [Google Scholar] [CrossRef]
- Larwa, B.; Cesari, S.; Bottarelli, M. Study on thermal performance of a PCM enhanced hydronic radiant floor heating system. Energy 2021, 225, 120245. [Google Scholar] [CrossRef]
- Mekrisuh, K.U.; Giri, S.; Udayraj Singh, D.; Rakshit, D. Optimal design of the phase change material based thermal energy storage systems: Efficacy of fins and/or nanoparticles for performance enhancement. J. Energy Storage 2021, 33, 102126. [Google Scholar] [CrossRef]
- Mohamed, F.; Eames, P.C. Thermal performance evaluation of a latent heat thermal energy storage unit with an embedded multi-tube finned copper heat exchanger. Exp. Heat Transf. 2023, 36, 143–162. [Google Scholar]
- Mozafari, M.; Hooman, K.; Lee, A.; Cheng, S. Numerical study of a dual-PCM thermal energy storage unit with an optimized low-volume fin structure. Appl. Therm. Eng. 2022, 215, 119026. [Google Scholar] [CrossRef]
- Gao, X.; Wei, P.; Yu, J.; Huang, X.; Yang, X.; Sundén, B. Design and assessments on graded metal foam in heat storage tank: An experimental and numerical study. Int. Commun. Heat Mass Transf. 2023, 146, 106902. [Google Scholar] [CrossRef]
- Li, Y.; Huang, X.; Huang, X.; Gao, X.; Hu, R.; Yang, X.; Sunden, B. Machine learning and multilayer perceptron enhanced CFD approach for improving design on latent heat storage tank. Appl. Energy 2023, 347, 121458. [Google Scholar] [CrossRef]
- El Idi, M.M.; Karkri, M. Heating and cooling conditions effects on the kinetic of phase change of PCM embedded in metal foam. Case Stud. Therm. Eng. 2020, 21, 100716. [Google Scholar] [CrossRef]
- Behi, H.; Karimi, D.; Gandoman, F.H.; Akbarzadeh, M.; Khaleghi, S.; Kalogiannis, T.; Hosen, M.S.; Jaguemont, J.; Van Mierlo, J.; Berecibar, M. PCM assisted heat pipe cooling system for the thermal management of an LTO cell for high-current profiles. Case Stud. Therm. Eng. 2021, 25, 100920. [Google Scholar] [CrossRef]
- Diallo, T.M.O.; Yu, M.; Zhou, J.Z.; Zhao, X.D.; Shittu, S.; Li, G.Q.; Ji, J.; Hardy, D. Energy performance analysis of a novel solar PVT loop heat pipe employing a microchannel heat pipe evaporator and a PCM triple heat exchanger. Energy 2019, 167, 866–888. [Google Scholar] [CrossRef]
- Mathew, A.A.; Thangavel, V. A novel thermal storage integrated evacuated tube heat pipe solar air heater: Energy, exergy, economic and environmental impact analysis. Sol. Energy 2021, 220, 828–842. [Google Scholar] [CrossRef]
- Acharya, N. On the hydrothermal behavior and entropy analysis of buoyancy driven magnetohydrodynamic hybrid nanofluid flow within an octagonal enclosure fitted with fins: Application to thermal energy storage. J. Energy Storage 2022, 53, 105198. [Google Scholar] [CrossRef]
- Hosseinzadeh, K.; Mogharrebi, A.R.; Asadi, A.; Paikar, M.; Ganji, D.D. Effect of fin and hybrid nano-particles on solid process in hexagonal triplex Latent Heat Thermal Energy Storage System. J. Mol. Liq. 2020, 300, 112347. [Google Scholar] [CrossRef]
- Laouer, A.; Teggar, M.; Tuncbilek, E.; Hachani, L.; Arici, M.; Ismail, K.A.R. Melting of hybrid nano-enhanced phase change material in an inclined finned rectangular cavity for cold energy storage. J. Energy Storage 2022, 50, 104185. [Google Scholar] [CrossRef]
- Li, Y.; Niu, Z.; Gao, X.; Guo, J.; Yang, X.; He, Y.-L. Effect of filling height of metal foam on improving energy storage for a thermal storage tank. Appl. Therm. Eng. 2023, 229, 120584. [Google Scholar] [CrossRef]
- Bazri, S.; Badruddin, I.A.; Usmani, A.Y.; Anwar Khan, S.; Kamangar, S.; Naghavi, M.S.; Mallah, A.R.; Abdelrazek, A.H. Thermal hysteresis analysis of finned-heat-pipe-assisted latent heat thermal energy storage application for solar water heater system. Case Stud. Therm. Eng. 2022, 40, 102490. [Google Scholar] [CrossRef]
- Liu, Z.; Yan, X.; Liu, Z.; Xiao, T.; Huang, X.; Yang, X.; Sunden, B. Effect of phase change heat storage tank with gradient fin structure on solar energy storage: A numerical study. Int. J. Heat Mass Transf. 2023, 215, 124384. [Google Scholar] [CrossRef]
- Krane, P.; Ziviani, D.; Braun, J.E.; Jain, N.; Marconnet, A. Techno-economic analysis of metal-hydride energy storage to enable year-round load-shifting for residential heat pumps. Energy Build. 2022, 256, 111700. [Google Scholar] [CrossRef]
- Liu, G.; Li, Y.; Wei, P.; Xiao, T.; Meng, X.; Yang, X. Thermo-Economic Assessments on a Heat Storage Tank Filled with Graded Metal Foam. Energies 2022, 15, 7213. [Google Scholar] [CrossRef]
- Pelella, F.; Zsembinszki, G.; Viscito, L.; William Mauro, A.; Cabeza, L.F. Thermo-economic optimization of a multi-source (air/sun/ground) residential heat pump with a water/PCM thermal storage. Appl. Energy 2023, 331, 120398. [Google Scholar] [CrossRef]
- Saravanan, M.; Arul Selvan, S.; Radhakrishnan, N.; Srinivasa Rao, S.; Sharma, V.; Madhavarao, S.; Chandran, S.S. Improving the thermal efficiency of a solar water heater by using PCM. Mater. Today Proc. 2023, 7, 233. [Google Scholar] [CrossRef]
- Gao, X.; Niu, Z.; Huang, X.; Yang, X.; Yan, J. Thermo-economic assessments on building heating by a thermal energy storage system with metal foam. Case Stud. Therm. Eng. 2023, 49, 103307. [Google Scholar] [CrossRef]
- Zukauskas, A. Some aspects of heat transfer from tubes in crossflow. Heat Transf. Sci. Technol. 1996, 1996, 82–93. [Google Scholar]
- Yang, X.H.; Bai, J.X.; Yan, H.B.; Kuang, J.J.; Lu, T.J.; Kim, T. An Analytical Unit Cell Model for the Effective Thermal Conductivity of High Porosity Open-Cell Metal Foams. Transp. Porous Media 2014, 102, 403–426. [Google Scholar] [CrossRef]
- Georgiadis, J.G.; Catton, I. Dispersion in Cellular Thermal-Convection in Porous Layers. Int. J. Heat Mass Transf. 1988, 31, 1081–1091. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Calmidi, V.V.; Mahajan, R.L. Thermophysical properties of high porosity metal foams. Int. J. Heat Mass Transf. 2002, 45, 1017–1031. [Google Scholar] [CrossRef]
- Fourie, J.G.; Du Plessis, J.P. Pressure drop modelling in cellular metallic foams. Chem. Eng. Sci. 2002, 57, 2781–2789. [Google Scholar] [CrossRef]
Material | Variable | Value |
---|---|---|
Paraffin | Density (kg·m−3) | 850 (solid)/800 (liquid) |
Specific heat capacity (J·kg−1·K−1) | 2000 | |
Thermal conductivity (W·m−1·K−1) | 0.2 (solid)/0.1 (liquid) | |
Latent heat of fusion (kJ·kg−1) | 200 | |
Melting temperature range (°C) | 46~55 | |
Thermal expansion coefficient (K−1) | 7.5 × 10−4 | |
Dynamic viscosity (kg·m−1·s−1) | 2.51 × 10−3 | |
Copper | Density (kg·m−3) | 8920 |
Specific heat capacity (J·kg−1·K−1) | 380 | |
Thermal conductivity (W·m−1·K−1) | 401 | |
Water | Density (kg·m−3) | 1000 |
Specific heat capacity (J·kg−1·K−1) | 4202 | |
Thermal conductivity (W·m−1·K−1) | 0.56 | |
Dynamic viscosity (kg·m−1·s−1) | 2.51 × 10−3 |
Structure | Flow Rate (m/s) | ||||
---|---|---|---|---|---|
0.05 | 0.10 | 0.15 | 0.20 | 0.25 | |
PCM-P | Case1 | Case2 | Case3 | Case4 | Case5 |
PCM-F | Case6 | Case7 | Case8 | Case9 | Case10 |
PCM-M | Case11 | Case12 | Case13 | Case14 | Case15 |
PCM-MF | Case16 | Case17 | Case18 | Case19 | Case20 |
Building Envelope | External Wall | External Window | Partition | Roof | Floor | External Door |
---|---|---|---|---|---|---|
Heat transfer coefficient (W·m−2·K−1) | 0.35 | 2.35 | 0.92 | 0.25 | 0.35 | 1.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Li, Z.; Yu, J.; Gao, J.; Yang, X.; Sundén, B. Thermo-Economic Performance Analysis of Modified Latent Heat Storage System for Residential Heating. Energies 2023, 16, 6915. https://doi.org/10.3390/en16196915
Gao X, Li Z, Yu J, Gao J, Yang X, Sundén B. Thermo-Economic Performance Analysis of Modified Latent Heat Storage System for Residential Heating. Energies. 2023; 16(19):6915. https://doi.org/10.3390/en16196915
Chicago/Turabian StyleGao, Xinyu, Ze Li, Jiabang Yu, Jiayi Gao, Xiaohu Yang, and Bengt Sundén. 2023. "Thermo-Economic Performance Analysis of Modified Latent Heat Storage System for Residential Heating" Energies 16, no. 19: 6915. https://doi.org/10.3390/en16196915
APA StyleGao, X., Li, Z., Yu, J., Gao, J., Yang, X., & Sundén, B. (2023). Thermo-Economic Performance Analysis of Modified Latent Heat Storage System for Residential Heating. Energies, 16(19), 6915. https://doi.org/10.3390/en16196915