Mitigating the Negative Impact of Wind Power on Soaring Birds through Government Restrictions
Abstract
:1. Introduction
2. Background and Methods
2.1. Background
2.2. Methods
3. Results
3.1. Gobi-Type Wind Farms, Restricting the Siting of Wind Farms to Protect Bird Habitat
3.2. Plain-Based Wind Farms, Restricting Generation Times to Avoid Bird Migration
3.3. Mountain-Type Wind Farms, Restricting Ecological Damage and Restoring the Living Environment of Birds
4. Discussion
4.1. Government Restrictions Are an Important Tool for Mitigating the Adverse Effects of Wind Power on Soaring Birds
4.2. Comparative Analysis of the Effects of Three Chinese Models of Mitigating Wind Power on Soaring Birds
4.3. Similarities and Differences between This Study Case and Similar Projects around the World
4.4. Limitations of This Study and the Need for Future Research
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vargas, S.A.; Esteves, G.R.T.; Maçaira, P.M.; Bastos, B.Q.; Oliveira, F.L.C.; Souza, R.C. Wind power generation: A review and a research agenda. J. Clean. Prod. 2019, 218, 850–870. [Google Scholar] [CrossRef]
- Ramadan, H.S. Wind energy farm sizing and resource assessment for optimal energy yield in Sinai Peninsula, Egypt. J. Clean. Prod. 2017, 161, 1283–1293. [Google Scholar] [CrossRef]
- Zhao, X.; Mahendru, M.; Ma, X.; Rao, A.; Shang, Y. Impacts of environmental regulations on green economic growth in China: New guidelines regarding renewable energy and energy efficiency. Renew. Energy 2022, 187, 728–742. [Google Scholar] [CrossRef]
- Wolsink, M. Wind power and the NIMBY-myth: Institutional capacity and the limited significance of public support. Renew. Energy 2000, 21, 49–64. [Google Scholar] [CrossRef]
- IEA. Electricity Market Report. 2023. Available online: https://iea.blob.core.windows.net/assets/255e9cba-da84-4681-8c1f-458ca1a3d9ca/ElectricityMarketReport2023.pdf (accessed on 28 March 2023).
- Leung, D.Y.; Yang, Y. Wind energy development and its environmental impact: A review. Renew. Sustain. Energy Rev. 2012, 16, 1031–1039. [Google Scholar] [CrossRef]
- Feng, Y.; Lin, H.; Ho, S.L.; Yan, J.; Dong, J.; Fang, S.; Huang, Y. Overview of wind power generation in China: Status and development. Renew. Sustain. Energy Rev. 2015, 50, 847–858. [Google Scholar] [CrossRef]
- Saidur, R.; Rahim, N.A.; Islam, M.R.; Solangi, K.H. Environmental impact of wind energy. Renew. Sustain. Energy Rev. 2011, 15, 2423–2430. [Google Scholar] [CrossRef]
- Cabrera-Cruz, S.A.; Villegas-Patraca, R. Response of migrating raptors to an increasing number of wind farms. J. Appl. Ecol. 2016, 53, 1667–1675. [Google Scholar] [CrossRef]
- Martín, B.; Perez-Bacalu, C.; Onrubia, A.; De Lucas, M.; Ferrer, M. Impact of wind farms on soaring bird populations at a migratory bottleneck. Eur. J. Wildl. Res. 2018, 64, 33. [Google Scholar] [CrossRef]
- Dai, K.; Bergot, A.; Liang, C.; Xiang, W.; Huang, Z. Environmental issues associated with wind energy—A review. Renew. Energy 2015, 75, 911–921. [Google Scholar] [CrossRef]
- Desholm, M. Avian sensitivity to mortality: Prioritising migratory bird species for assessment at proposed wind farms. J. Environ. Manag. 2009, 90, 2672–2679. [Google Scholar] [CrossRef]
- Garthe, S.; Hüppop, O. Scaling possible adverse effects of marine wind farms on seabirds: Developing and applying a vulnerability index. J. Appl. Ecol. 2004, 41, 724–734. [Google Scholar] [CrossRef]
- Ferrer, M.; de Lucas, M.; Janss, G.F.; Casado, E.; Munoz, A.R.; Bechard, M.J.; Calabuig, C.P. Weak relationship between risk assessment studies and recorded mortality in wind farms. J. Appl. Ecol. 2012, 49, 38–46. [Google Scholar] [CrossRef]
- Marques, A.T.; Batalha, H.; Rodrigues, S.; Costa, H.; Pereira, M.J.R.; Fonseca, C.; Mascarenhas, M.; Bernardino, J. Understanding bird collisions at wind farms: An updated review on the causes and possible mitigation strategies. Biol. Conserv. 2014, 179, 40–52. [Google Scholar] [CrossRef]
- Yang, L.; Li, G.; Zhang, Z.; Ma, X.; Zhao, Y. Operations & maintenance optimization of wind turbines integrating wind and aging information. IEEE Trans. Sustain. Energy 2020, 12, 211–221. [Google Scholar] [CrossRef]
- Li, Z.; Guo, P.; Han, R.; Sun, H. Current status and development trend of wind power generation-based hydrogen production technology. Energy Explor. Exploit. 2019, 37, 5–25. [Google Scholar] [CrossRef]
- Ackermann, T.; Söder, L. Wind energy technology and current status: A review. Renew. Sustain. Energy Rev. 2000, 4, 315–374. [Google Scholar] [CrossRef]
- Marques, A.T.; Santos, C.D.; Hanssen, F.; Muñoz, A.R.; Onrubia, A.; Wikelski, M.; Moreira, F.; Palmeirim, M.; Silva, J.P. Wind turbines cause functional habitat loss for migratory soaring birds. J. Anim. Ecol. 2020, 89, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Langston, R.H. Birds and wind projects across the pond: A UK perspective. Wildl. Soc. Bull. 2013, 37, 5–18. [Google Scholar] [CrossRef]
- Miao, R.; Ghosh, P.N.; Khanna, M.; Wang, W.; Rong, J. Effect of wind turbines on bird abundance: A national scale analysis based on fixed effects models. Energy Policy 2019, 132, 357–366. [Google Scholar] [CrossRef]
- Singh, K.; Baker, E.D.; Lackner, M.A. Curtailing wind turbine operations to reduce avian mortality. Renew. Energy 2015, 78, 351–356. [Google Scholar] [CrossRef]
- De Lucas, M.; Ferrer, M.; Bechard, M.J.; Muñoz, A.R. Griffon vulture mortality at wind farms in southern Spain: Distribution of fatalities and active mitigation measures. Biol. Conserv. 2012, 147, 184–189. [Google Scholar] [CrossRef]
- Dunford, R.W.; Ginn, T.C.; Desvousges, W.H. The use of habitat equivalency analysis in natural resource damage assessments. Ecol. Econ. 2004, 48, 49–70. [Google Scholar] [CrossRef]
- Smallwood, K.S. Mitigation in US wind farms. In Birds of Prey and Wind Farms: Analysis of Problems and Possible Solutions, Proceedings of the Documentation of an International Workshop, Berlin, Germany, 21–22 October 2008; Springer: Cham, Switzerland, 2017; pp. 68–76. [Google Scholar]
- Cole, S.G. Wind power compensation is not for the birds: An opinion from an environmental economist. Restor. Ecol. 2011, 19, 147–153. [Google Scholar] [CrossRef]
- Shen, X.; Lyu, S. Wind power development, government regulation structure, and vested interest groups: Analysis based on panel data of Province of China. Energy Policy 2019, 128, 487–494. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, C.; Yan, S.; Wang, W.; Xue, Y. Alleviating Relative Poverty in Rural China through a Diffusion Schema of Returning Farmer Entrepreneurship. Sustainability 2023, 15, 1380. [Google Scholar] [CrossRef]
- Crowe, S.; Cresswell, K.; Robertson, A.; Huby, G.; Avery, A.; Sheikh, A. The case study approach. BMC Med. Res. Methodol. 2011, 11, 100–108. [Google Scholar] [CrossRef]
- Zhang, J.; He, C.; Chen, L.; Cao, S. Improving food security in China by taking advantage of marginal and degraded lands. J. Clean. Prod. 2018, 171, 1020–1030. [Google Scholar] [CrossRef]
- Zhu, L.; Yang, C.; Zhang, Y.; Xue, Y. Using Marginal Land Resources to Solve the Shortage of Rural Entrepreneurial Land in China. Land 2022, 11, 1035. [Google Scholar] [CrossRef]
- Yan, S.; Yang, C.; Zhu, L.; Xue, Y. The Potential of Understory Production Systems to Improve Laying Hen Welfare. Animals 2022, 12, 2305. [Google Scholar] [CrossRef] [PubMed]
- Baker, L. Observation: A complex research method. Libr. Trends 2006, 55, 171–189. [Google Scholar] [CrossRef]
- Cho, J.Y.; Lee, E. Reducing confusion about grounded theory and qualitative content analysis: Similarities and differences. Qual. Rep. 2014, 19, 1–20. [Google Scholar] [CrossRef]
- Zhao, X.; Li, S.; Zhang, S.; Yang, R.; Liu, S. The effectiveness of China’s wind power policy: An empirical analysis. Energy Policy 2016, 95, 269–279. [Google Scholar] [CrossRef]
- Douding.com. Announcement of Environmental Protection Acceptance Report for the Completion of Guodian Linghai (Qingsong) Wind Farm (49.5 MW). 2019. Available online: https://www.docin.com/p-2260502273.html (accessed on 15 March 2023).
- Douding Building. Environmental Protection Acceptance Monitoring Investigation Report: Environmental Protection Acceptance Investigation Report Form for the Completion of Naomaohu Wind Farm Phase I (49.5 MW) Project. 2017. Available online: https://jz.docin.com/p-1959914705.html (accessed on 15 March 2023).
- National Construction Project Environmental Information Publicity Platform. Announcement of Environmental Protection Acceptance for the Completed Hougu’ao Wind Farm Project in Rucheng County, Chenzhou City, Hunan Province. 2022. Available online: https://www.eiacloud.com/gs/detail/2?id=21011plwA6 (accessed on 15 March 2023).
- Yongzhou Ecological Environment Bureau. Announcement on the Approval Decision for the Environmental Impact Assessment Document of the Majiang Wuxingling Wind Farm Change Project in Shuangpai County. 2022. Available online: http://hbj.yzcity.gov.cn/hbj/031002/202208/82b84eb2b48e4224bc639cfb4b9d5eec.shtml (accessed on 15 March 2023).
- Yongzhou Ecological Environment Bureau. Announcement on the Acceptance of the Environmental Impact Assessment Report Form for the Majiang Wuxingling Wind Farm Change Project in Shuangpai County. 2022. Available online: http://hbj.yzcity.gov.cn//hbj/031002/202208/a12f7c879d1345129acda6114fbc1760.shtml (accessed on 15 March 2023).
- Lu, H.; Wang, X.; Wang, X.; Chang, X.; Zhang, H.; Xu, Z.; Zhang, W.; Wei, H.; Zhang, X.; Yi, S.; et al. Formation and evolution of Gobi Desert in central and eastern Asia. Earth-Sci. Rev. 2019, 194, 251–263. [Google Scholar] [CrossRef]
- Jugder, D.; Shinoda, M.; Sugimoto, N.; Matsui, I.; Nishikawa, M.; Park, S.U.; Chun, Y.S.; Park, M.S. Spatial and temporal variations of dust concentrations in the Gobi Desert of Mongolia. Glob. Planet. Change 2011, 78, 14–22. [Google Scholar] [CrossRef]
- Devereux, C.L.; Denny, M.J.; Whittingham, M.J. Minimal effects of wind turbines on the distribution of wintering farmland birds. J. Appl. Ecol. 2008, 45, 1689–1694. [Google Scholar] [CrossRef]
- Furness, R.W.; Wade, H.M.; Masden, E.A. Assessing vulnerability of marine bird populations to offshore wind farms. J. Environ. Manag. 2013, 119, 56–66. [Google Scholar] [CrossRef]
- May, R.; Reitan, O.; Bevanger, K.; Lorentsen, S.H.; Nygård, T. Mitigating wind-turbine induced avian mortality: Sensory, aerodynamic and cognitive constraints and options. Renew. Sustain. Energy Rev. 2015, 42, 170–181. [Google Scholar] [CrossRef]
- Loss, S.R.; Will, T.; Marra, P.P. Estimates of bird collision mortality at wind facilities in the contiguous United States. Biol. Conserv. 2013, 168, 201–209. [Google Scholar] [CrossRef]
- Carrete, M.; Sánchez-Zapata, J.A.; Benítez, J.R.; Lobón, M.; Donázar, J.A. Large scale risk-assessment of wind-farms on population viability of a globally endangered long-lived raptor. Biol. Conserv. 2009, 142, 2954–2961. [Google Scholar] [CrossRef]
- Drewitt, A.L.; Langston, R.H. Collision effects of wind-power generators and other obstacles on birds. Ann. N. Y. Acad. Sci. 2008, 1134, 233–266. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.Y.; Shen, Z.H.; Cui, H.T. Ecological characteristics of mountains and research issues of mountain ecology. Biodiv. Sci. 2004, 12, 10–19. [Google Scholar] [CrossRef]
- China National People’s Congress website. Environmental Protection Law of the People’s Republic of China. 2014. Available online: http://www.npc.gov.cn/npc/c10134/201404/6c982d10b95a47bbb9ccc7a321bdec0f.shtml (accessed on 15 March 2023).
- China Power Tendering and Procurement Network. Bidding announcement for the ecological governance project of roads in the 50 MW wind power project site. 2022. Available online: http://www.dlztb.com/news/202203/14/35878.html (accessed on 15 March 2023).
- Electric Power Tendering Network. State Power Investment Group Hunan Rucheng Shuguang Wind Farm Landslide Treatment Project Bidding Announcement. 2022. Available online: https://www.dlzb.com/d-zb-27613127.html (accessed on 15 March 2023).
- Kumar, Y.; Ringenberg, J.; Depuru, S.S.; Devabhaktuni, V.K.; Lee, J.W.; Nikolaidis, E.; Andersen, B.; Afjeh, A. Wind energy: Trends and enabling technologies. Renew. Sustain. Energy Rev. 2016, 53, 209–224. [Google Scholar] [CrossRef]
- National Energy Administration. Notice on Issuing the Interim Measures for the Management of Land Use and Environmental Protection in Wind Farm Engineering Construction. 2012. Available online: http://www.nea.gov.cn/2012-01/04/c_131260309.htm (accessed on 18 March 2023).
- Zhang, Z. Effective environmental protection in the context of government decentralization. Int. Econ. Econ. Policy 2012, 9, 53–82. [Google Scholar] [CrossRef]
- Fan, W.; Wang, S.; Gu, X.; Zhou, Z.; Zhao, Y.; Huo, W. Evolutionary game analysis on industrial pollution control of local government in China. J. Environ. Manag. 2021, 298, 113499. [Google Scholar] [CrossRef]
- Peng, H.; Shen, N.; Ying, H.; Wang, Q. Can environmental regulation directly promote green innovation behavior?—Based on situation of industrial agglomeration. J. Clean. Prod. 2021, 314, 128044. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, L.; Sun, J.; He, P. Can public participation constraints promote green technological innovation of Chinese enterprises? The moderating role of government environmental regulatory enforcement. Technol. Forecast. Soc. Change 2022, 174, 121198. [Google Scholar] [CrossRef]
- Şekercioğlu, Ç.H.; Daily, G.C.; Ehrlich, P.R. Ecosystem consequences of bird declines. Proc. Natl. Acad. Sci. USA 2004, 101, 18042–18047. [Google Scholar] [CrossRef]
- Smeraldo, S.; Bosso, L.; Fraissinet, M.; Bordignon, L.; Brunelli, M.; Ancillotto, L.; Russo, D. Modelling risks posed by wind turbines and power lines to soaring birds: The black stork (Ciconia nigra) in Italy as a case study. Biodivers. Conserv. 2020, 29, 1959–1976. [Google Scholar] [CrossRef]
- Rediske, G.; Burin, H.P.; Rigo, P.D.; Rosa, C.B.; Michels, L.; Siluk, J.C.M. Wind power plant site selection: A systematic review. Renew. Sustain. Energy Rev. 2021, 148, 111293. [Google Scholar] [CrossRef]
- Wiser, R.; Lantz, E.; Mai, T.; Zayas, J.; DeMeo, E.; Eugeni, E.; Lin-Powers, J.; Tusing, R. Wind vision: A new era for wind power in the United States. Electr. J. 2015, 28, 120–132. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, X.; Zhao, D.; Post, S.; Chen, J. Overview of the development and application of wind energy in New Zealand. Energy Built Environ. 2022, 4, 725–742. [Google Scholar] [CrossRef]
- Johansen, K. Blowing in the wind: A brief history of wind energy and wind power technologies in Denmark. Energy Policy 2021, 152, 112139. [Google Scholar] [CrossRef]
- Bento, N.; Fontes, M. The construction of a new technological innovation system in a follower country: Wind energy in Portugal. Technol. Forecast. Soc. Change 2015, 99, 197–210. [Google Scholar] [CrossRef]
- Mas’ ud, A.A.; Wirba, A.V.; Ardila-Rey, J.A.; Albarracín, R.; Muhammad-Sukki, F.; Jaramillo Duque, Á.; Bani, N.A.; Munir, A.B. Wind power potentials in Cameroon and Nigeria: Lessons from South Africa. Energies 2017, 10, 443. [Google Scholar] [CrossRef]
- Tellería, J.L. Potential impacts of wind farms on migratory birds crossing Spain. Bird Conserv. Int. 2009, 19, 131–136. [Google Scholar] [CrossRef]
- Grünkorn, T.; Blew, J.; Krüger, O.; Potiek, A.; Reichenbach, M.; von Rönn, J.; Timmermann, H.; Weitekamp, S.; Nehls, G. A Large-Scale, Multispecies Assessment of Avian Mortality Rates at Land-Based Wind Turbines in Northern Germany. In Wind Energy and Wildlife Interactions; Köppel, J., Ed.; Springer: Cham, Switzerland, 2017; pp. 43–64. [Google Scholar] [CrossRef]
- Bright, J.; Langston, R.; Bullman, R.; Evans, R.; Gardner, S.; Pearce-Higgins, J. Map of bird sensitivities to wind farms in Scotland: A tool to aid planning and conservation. Biol. Conserv. 2008, 141, 2342–2356. [Google Scholar] [CrossRef]
- Smallwood, K.S.; Thelander, C. Bird mortality in the Altamont Pass wind resource area, California. J. Wildl. Manag. 2008, 72, 215–223. [Google Scholar] [CrossRef]
- Alemzero, D.; Acheampong, T.; Huaping, S. Prospects of wind energy deployment in Africa: Technical and economic analysis. Renew. Energy 2021, 179, 652–666. [Google Scholar] [CrossRef]
- Zárate-Toledo, E.; Wood, P.; Patiño, R. In search of wind farm sustainability on the Yucatan coast: Deficiencies and public perception of Environmental Impact Assessment in Mexico. Energy Policy 2021, 158, 112525. [Google Scholar] [CrossRef]
- Han, J.; Mol, A.P.; Lu, Y.; Zhang, L. Onshore wind power development in China: Challenges behind a successful story. Energy Policy 2009, 37, 2941–2951. [Google Scholar] [CrossRef]
- Canale, M.; Fagiano, L.; Milanese, M. High altitude wind energy generation using controlled power kites. IEEE Trans. Control. Syst. Technol. 2009, 18, 279–293. [Google Scholar] [CrossRef]
- DeCarolis, J.F.; Keith, D.W. The economics of large-scale wind power in a carbon constrained world. Energy Policy 2006, 34, 395–410. [Google Scholar] [CrossRef]
- Holttinen, H.; Meibom, P.; Orths, A.; Lange, B.; O’Malley, M.; Tande, J.O.; Estanqueiro, A.; Gomez, E.; Söder, L.; Strbac, G.; et al. Impacts of large amounts of wind power on design and operation of power systems, results of IEA collaboration. Wind Energy 2011, 14, 179–192. [Google Scholar] [CrossRef]
- Bolinger, M.; Wiser, R. Understanding wind turbine price trends in the US over the past decade. Energy Policy 2012, 42, 628–641. [Google Scholar] [CrossRef]
- Lovich, J.E.; Ennen, J.R. Assessing the state of knowledge of utility-scale wind energy development and operation on non-volant terrestrial and marine wildlife. Appl. Energy 2013, 103, 52–60. [Google Scholar] [CrossRef]
- Hein, C.D.; Shirmacher, M.R. Impact of Wind Energy on Bats: A Summary of our Current Knowledge. Hum.–Wildl. Interact. 2016, 10, 4. [Google Scholar] [CrossRef]
- Madsen, J.; Boertmann, D. Animal behavioral adaptation to changing landscapes: Spring-staging geese habituate to wind farms. Landsc. Ecol. 2008, 23, 1007–1011. [Google Scholar] [CrossRef]
- Gibson, L.; Wilman, E.N.; Laurance, W.F. How green is ‘green’energy? Trends. Ecol. Evol. 2017, 32, 922–935. [Google Scholar] [CrossRef]
- Aksoy, T.; Cetin, M.; Cabuk, S.N.; Senyel Kurkcuoglu, M.A.; Bilge Ozturk, G.; Cabuk, A. Impacts of wind turbines on vegetation and soil cover: A case study of Urla, Cesme, and Karaburun Peninsulas, Turkey. Clean Technol. Environ. Policy 2023, 25, 51–68. [Google Scholar] [CrossRef]
- Torres Contreras, G.A. Twenty-five years under the wind turbines in La Venta, Mexico: Social difference, land control and agrarian change. J. Peasant. Stud. 2022, 49, 865–883. [Google Scholar] [CrossRef]
- Enevoldsen, P.; Jacobson, M.Z. Data investigation of installed and output power densities of onshore and offshore wind turbines worldwide. Energy Sustain. Dev. 2021, 60, 40–51. [Google Scholar] [CrossRef]
- Tiffany, J. A Treatise on Government, and Constitutional Law: Being an Inquiry into the Source and Limitation of Governmental Authority, According to the American Theory; BoD–Books on Demand: Norderstedt, Germany, 2021. [Google Scholar]
- Sidney, M.S. Policy formulation: Design and tools. In Handbook of Public Policy Analysis; Routledge: Oxfordshire, UK, 2017; pp. 105–114. [Google Scholar]
- Steins, N.A.; Veraart, J.A.; Klostermann, J.E.; Poelman, M. Combining offshore wind farms, nature conservation and seafood: Lessons from a Dutch community of practice. Mar. Policy 2021, 126, 104371. [Google Scholar] [CrossRef]
Name | Naomao Lake Wind Farm | Qingsong Wind Farm | Hougu’ao Wind Farm |
---|---|---|---|
Geographic location | Western China | Eastern China | Central China |
Type | Gobi | Plain | Mountain |
Topographic features | Gobi Desert | Plain grassland | Mountain forest |
Permanent land area | 76,568 m2 | 69,067 m2 | 17,150 m2 |
Number of wind turbines | 33 | 30 | 20 |
Proportion of environmental protection investment in total investment | 0.23% | 0.46% | 0.88% |
Timing of government restrictions | Before construction | In operation | After destruction |
Government-restricted programs | Restricted construction location | Limit power generation time | Requires ecological restoration |
Strength of government restrictions | Guide | Recommend | Mandatory |
Effects of government restrictions | Reduce the occupation of bird habitats | Does not hinder and assists bird migration | Good restoration of birds’ living environment |
Policies and regulations |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Yang, C.; Zhang, Y.; Xue, Y. Mitigating the Negative Impact of Wind Power on Soaring Birds through Government Restrictions. Energies 2023, 16, 6584. https://doi.org/10.3390/en16186584
Liang X, Yang C, Zhang Y, Xue Y. Mitigating the Negative Impact of Wind Power on Soaring Birds through Government Restrictions. Energies. 2023; 16(18):6584. https://doi.org/10.3390/en16186584
Chicago/Turabian StyleLiang, Xiaomeng, Chenyujing Yang, Yuanyuan Zhang, and Yongji Xue. 2023. "Mitigating the Negative Impact of Wind Power on Soaring Birds through Government Restrictions" Energies 16, no. 18: 6584. https://doi.org/10.3390/en16186584
APA StyleLiang, X., Yang, C., Zhang, Y., & Xue, Y. (2023). Mitigating the Negative Impact of Wind Power on Soaring Birds through Government Restrictions. Energies, 16(18), 6584. https://doi.org/10.3390/en16186584