Sweet Sorghum as a Potential Fallow Crop in Sugarcane Farming for Biomethane Production in Queensland, Australia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Agronomic Practices
2.2. Substrate and Inoculum
2.3. Biochemical Methane Potential Assays
2.4. Kinetic Modelling
2.5. Analysis
2.6. Statistical Analyses
3. Results and Discussions
3.1. Chemical Composition of Sweet Sorghum Cultivars
3.2. Biochemical Methane Potential Yields
3.3. Chemical Composition of Digestate
3.4. Kinetics of Methane Production during the Anaerobic Digestion of Sweet Sorghum Cultivars
3.5. Correlation of Chemical Composition and Methane Yields Using Principal Component Analysis
3.6. Energy Production Calculations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.H.P. Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J. Ind. Microbiol. Biotechnol. 2008, 35, 367–375. [Google Scholar] [CrossRef]
- Chakravorty, U.; Hubert, M.-H.; Nøstbakken, L. Fuel Versus Food. Annu. Rev. Resour. Econ. 2009, 1, 645–663. [Google Scholar] [CrossRef]
- Gerbens-Leenes, W.; Hoekstra Arjen, Y.; van der Meer Theo, H. The water footprint of bioenergy. Proc. Natl. Acad. Sci. USA 2009, 106, 10219–10223. [Google Scholar] [CrossRef] [PubMed]
- Muscat, A.; de Olde, E.M.; de Boer, I.J.M.; Ripoll-Bosch, R. The battle for biomass: A systematic review of food-feed-fuel competition. Glob. Food Secur. 2020, 25, 100330. [Google Scholar] [CrossRef]
- Da Cunha Dias, T.A.; Lora, E.E.S.; Maya, D.M.Y.; del Olmo, O.A. Global potential assessment of available land for bioenergy projects in 2050 within food security limits. Land Use Policy 2021, 105, 105346. [Google Scholar]
- Morton, C.; Thompson, R. Global Potential of Biogas; World Biogas Association: London, UK, 2019. [Google Scholar]
- Gustafsson, M.; Ammenberg, J.; Murphy, J.D. IEA Bioenergy Task 37–Country Reports Summaries 2019. 2020. Available online: https://task37.ieabioenergy.com/wp-content/uploads/sites/32/2022/02/IEA_Task_37_Country_Report_Summaries_2019.pdf (accessed on 23 June 2023).
- Chen, Z.-M.; Chen, G. An overview of energy consumption of the globalized world economy. Energy Policy 2011, 39, 5920–5928. [Google Scholar] [CrossRef]
- IEA. World Energy Outlook 2018. 2018. Available online: https://www.iea.org/reports/world-energy-outlook-2018 (accessed on 21 June 2023).
- Lima, I.; Bigner, R.; Wright, M. Conversion of Sweet Sorghum Bagasse into Value-Added Biochar. Sugar Tech 2017, 19, 553–561. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Sokólski, M.M.; Dubis, B.; Załuski, D.; Szempliński, W. Sweet sorghum—Biomass production and energy balance at different levels of agricultural inputs. A six-year field experiment in north-eastern Poland. Eur. J. Agron. 2020, 119, 126119. [Google Scholar] [CrossRef]
- Dar, R.; Dar, E.; Kaur, A.; Phutela, U. Sweet sorghum-a promising alternative feedstock for biofuel production. Renew. Sustain. Energy Rev. 2017, 82, 4070–4090. [Google Scholar]
- Zegada-Lizarazu, W.; Monti, A. Are we ready to cultivate sweet sorghum as a bioenergy feedstock? A review on field management practices. Biomass Bioenergy 2012, 40, 1–12. [Google Scholar] [CrossRef]
- Regassa, T.H.; Wortmann, C.S. Sweet sorghum as a bioenergy crop: Literature review. Biomass Bioenergy 2014, 64, 348–355. [Google Scholar] [CrossRef]
- Koçar, G.; Civaş, N. An overview of biofuels from energy crops: Current status and future prospects. Renew. Sustain. Energy Rev. 2013, 28, 900–916. [Google Scholar] [CrossRef]
- Reddy, B.; Ramesh, S.; Reddy, P.; Ashok Kumar, A.; Sharma, K.; Chetty, S.K.; Palaniswamy, A. Sweet Sorghum: Food, Feed, Fodder and Fuel Crop; International Crops Research Institute for the Semi-Arid Tropics: Patancheru, India, 2006. [Google Scholar]
- Von Cossel, M.; Wagner, M.; Lask, J.; Magenau, E.; Bauerle, A.; Von Cossel, V.; Warrach-Sagi, K.; Elbersen, B.; Staritsky, I.; Van Eupen, M. Prospects of bioenergy cropping systems for a more social-ecologically sound bioeconomy. Agronomy 2019, 9, 605. [Google Scholar] [CrossRef]
- Igliński, B.; Buczkowski, R.; Cichosz, M. Biogas production in Poland—Current state, potential and perspectives. Renew. Sustain. Energy Rev. 2015, 50, 686–695. [Google Scholar] [CrossRef]
- Martínez-Pérez, N.; Cherryman, S.J.; Premier, G.C.; Dinsdale, R.M.; Hawkes, D.L.; Hawkes, F.R.; Kyazze, G.; Guwy, A.J. The potential for hydrogen-enriched biogas production from crops: Scenarios in the UK. Biomass Bioenergy 2007, 31, 95–104. [Google Scholar] [CrossRef]
- Australian Government Department of Agriculture. Australia Crop Report: February Edition; Department of Agriculture and Fisheries. 2021. Available online: https://www.agriculture.gov.au/abares/research-topics/agricultural-outlook/australian-crop-report/queensland (accessed on 21 June 2023).
- GRD Corporation. 2022 NVT Sorghum Harvest Report; GRD Corporation: Kingston, Australia, 2022. [Google Scholar]
- O’Hara, I.M.; Kent, G.; Albertson, P.; Harrison, M.D.; Hobson, P.; McKenzie, N.; Moghaddam, L.; Moller, D.; Rainey, T.J.; Stolz, W. Sweet Sorghum: Opportunities for a New, Renewablefuel and Food Industry in Australia; Rural Industries Research and Development Corporation: Brisbane, Australia, 2013. [Google Scholar]
- Stamenković, O.S.; Siliveru, K.; Veljković, V.B.; Banković-Ilić, I.B.; Tasić, M.B.; Ciampitti, I.A.; Đalović, I.G.; Mitrović, P.M.; Sikora, V.Š.; Prasad, P.V.V. Production of biofuels from sorghum. Renew. Sustain. Energy Rev. 2020, 124, 109769. [Google Scholar] [CrossRef]
- Umakanth, A.V.; Kumar, A.A.; Vermerris, W.; Tonapi, V.A. Chapter 16—Sweet Sorghum for Biofuel Industry. In Breeding Sorghum for Diverse End Uses; Aruna, C., Visarada, K.B.R.S., Bhat, B.V., Tonapi, V.A., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 255–270. [Google Scholar]
- Jiang, D.; Hao, M.; Fu, J.; Liu, K.; Yan, X. Potential bioethanol production from sweet sorghum on marginal land in China. J. Clean. Prod. 2019, 220, 225–234. [Google Scholar] [CrossRef]
- Ratnavathi, C.V.; Komala, V.V.; Lavanya, U. Chapter 4—Sorghum Uses—Ethanol. In Sorghum Biochemistry; Ratnavathi, C.V., Patil, J.V., Chavan, U.D., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 181–252. [Google Scholar]
- Islam, M.S.; Guo, C.; Liu, C.-Z. Enhanced hydrogen and volatile fatty acid production from sweet sorghum stalks by two-steps dark fermentation with dilute acid treatment in between. Int. J. Hydrog. Energy 2018, 43, 659–666. [Google Scholar] [CrossRef]
- Wang, Q.; Nnanna, P.C.; Shen, F.; Huang, M.; Tian, D.; Hu, J.; Zeng, Y.; Yang, G.; Deng, S. Full utilization of sweet sorghum for bacterial cellulose production: A concept of material crop. Ind. Crops Prod. 2021, 162, 113256. [Google Scholar] [CrossRef]
- Woods, J. The potential for energy production using sweet sorghum in southern Africa. Energy Sustain. Dev. 2001, 5, 31–38. [Google Scholar] [CrossRef]
- Paulose, P.; Kaparaju, P. Anaerobic mono-digestion of sugarcane trash and bagasse with and without pretreatment. Ind. Crops Prod. 2021, 170, 113712. [Google Scholar] [CrossRef]
- Yu, L.; Wensel, P.C.; Ma, J.; Chen, S. Mathematical modeling in anaerobic digestion (AD). J. Bioremediation Biodegrad. 2013, 4, 003. [Google Scholar] [CrossRef]
- Kafle, G.K.; Chen, L. Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models. Waste Manag. 2016, 48, 492–502. [Google Scholar] [CrossRef]
- Tjørve, K.M.C.; Tjørve, E. The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family. PLoS ONE 2017, 12, e0178691. [Google Scholar] [CrossRef] [PubMed]
- APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 1985. [Google Scholar]
- Brummer, Y.; Cui, S.W. Understanding Carbohydrate Analysis; CRC Press: Boca Raton, FL, USA, 2005; p. 38. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of structural carbohydrates and lignin in biomass. Lab. Anal. Proced. 2008, 1617, 1–16. [Google Scholar]
- Liu, R.; Li, J.; Shen, F. Refining bioethanol from stalk juice of sweet sorghum by immobilized yeast fermentation. Renew. Energy 2008, 33, 1130–1135. [Google Scholar] [CrossRef]
- Triolo, J.M.; Pedersen, L.; Qu, H.; Sommer, S.G. Biochemical methane potential and anaerobic biodegradability of non-herbaceous and herbaceous phytomass in biogas production. Bioresour. Technol. 2012, 125, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Sambusiti, C.; Monlau, F.; Ficara, E.; Musatti, A.; Rollini, M.; Barakat, A.; Malpei, F. Comparison of various post-treatments for recovering methane from agricultural digestate. Fuel Process. Technol. 2015, 137, 359–365. [Google Scholar] [CrossRef]
- Sambusiti, C.; Ficara, E.; Malpei, F.; Steyer, J.-P.; Carrère, H. Benefit of sodium hydroxide pretreatment of ensiled sorghum forage on the anaerobic reactor stability and methane production. Bioresour. Technol. 2013, 144, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Lacoste, R.; Venable, S.; Stone, J. Modified 4-aminoantipyrine colorimetric method for phenols. Application to acrylic monomer. Anal. Chem. 1959, 31, 1246–1249. [Google Scholar] [CrossRef]
- Oduor, W.W.; Wandera, S.M.; Murunga, S.I.; Raude, J.M. Enhancement of anaerobic digestion by co-digesting food waste and water hyacinth in improving treatment of organic waste and bio-methane recovery. Heliyon 2022, 8, 10580. [Google Scholar] [CrossRef]
- Macias-Corral, M.A.; Cueto-Wong, J.A.; Morán-Martínez, J.; Reynoso-Cuevas, L. Effect of different initial C/N ratio of cow manure and straw on microbial quality of compost. Int. J. Recycl. Org. Waste Agric. 2019, 8, 357–365. [Google Scholar] [CrossRef]
- Hobson, P.N.; Bousfield, S.; Summers, R. Methane Production From Agricultural and Domestic Wastes; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Burks, P.S.; Kaiser, C.M.; Hawkins, E.M.; Brown, P.J. Genomewide association for sugar yield in sweet sorghum. Crop Sci. 2015, 55, 2138–2148. [Google Scholar] [CrossRef]
- Felderhoff, T.; Murray, S.; Klein, P.; Sharma, A.; Hamblin, M.; Kresovich, S.; Vermerris, W.; Rooney, W. QTLs for energy-related traits in a sweet× grain sorghum [Sorghum bicolor (L.) Moench] mapping population. Crop Sci. 2012, 52, 2040–2049. [Google Scholar] [CrossRef]
- Shukla, S.; Felderhoff, T.J.; Saballos, A.; Vermerris, W. The relationship between plant height and sugar accumulation in the stems of sweet sorghum (Sorghum bicolor (L.) Moench). Field Crops Res. 2017, 203, 181–191. [Google Scholar] [CrossRef]
- Lingle, S.E. Sugar metabolism during growth and development in sugarcane internodes. Crop Sci. 1999, 39, 480–486. [Google Scholar] [CrossRef]
- Qazi, H.A.; Paranjpe, S.; Bhargava, S. Stem sugar accumulation in sweet sorghum–activity and expression of sucrose metabolizing enzymes and sucrose transporters. J. Plant Physiol. 2012, 169, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Dun, B.-Q.; Zhao, X.-N.; Yue, M.-Q.; Lu, M.; Li, G.-Y. Correlation analysis between the key enzymes activies and sugar content in sweet sorghum (‘Sorghum bicolor’L. Moench) stems at physiological maturity state. Aust. J. Crop Sci. 2013, 7, 84–92. [Google Scholar]
- Hoffmann-Thoma, G.; Hinkel, K.; Nicolay, P.; Willenbrink, J. Sucrose accumulation in sweet sorghum stem internodes in relation to growth. Physiol. Plant. 1996, 97, 277–284. [Google Scholar] [CrossRef]
- Zhu, Y.J.; Komor, E.; Moore, P.H. Sucrose accumulation in the sugarcane stem is regulated by the difference between the activities of soluble acid invertase and sucrose phosphate synthase. Plant Physiol. 1997, 115, 609–616. [Google Scholar] [CrossRef]
- McBee, G.G.; Miller, F. Carbohydrates in Sorghum Culms as Influenced by Cultivars, Spacing, and Maturity over a Diurnal Period 1. Crop Sci. 1982, 22, 381–385. [Google Scholar] [CrossRef]
- Wannasek, L.; Ortner, M.; Amon, B.; Amon, T. Sorghum, a sustainable feedstock for biogas production? Impact of climate, variety and harvesting time on maturity and biomass yield. Biomass Bioenergy 2017, 106, 137–145. [Google Scholar] [CrossRef]
- Sambusiti, C.; Ficara, E.; Malpei, F.; Steyer, J.; Carrère, H. Effect of sodium hydroxide pretreatment on physical, chemical characteristics and methane production of five varieties of sorghum. Energy 2013, 55, 449–456. [Google Scholar] [CrossRef]
- Mahmood, A.; Honermeier, B. Chemical composition and methane yield of sorghum cultivars with contrasting row spacing. Field Crops Res. 2012, 128, 27–33. [Google Scholar] [CrossRef]
- Mahmood, A.; Ullah, H.; Ijaz, M.; Javaid, M.; Shahzad, A.; Honermeier, B. Evaluation of sorghum hybrids for biomass and biogas production. Aust. J. Crop Sci. 2013, 7, 1456–1462. [Google Scholar]
- Barbanti, L.; Di Girolamo, G.; Grigatti, M.; Bertin, L.; Ciavatta, C. Anaerobic digestion of annual and multi-annual biomass crops. Ind. Crops Prod. 2014, 56, 137–144. [Google Scholar] [CrossRef]
- Zahan, Z.; Georgiou, S.; Muster, T.H.; Othman, M.Z. Semi-continuous anaerobic co-digestion of chicken litter with agricultural and food wastes: A case study on the effect of carbon/nitrogen ratio, substrates mixing ratio and organic loading. Bioresour. Technol. 2018, 270, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Dutta, A. Challenges and opportunities of lignocellulosic biomass for anaerobic digestion. Resour. Conserv. Recycl. 2018, 130, 164–174. [Google Scholar] [CrossRef]
- Aboudi, K.; Gómez-Quiroga, X.; Álvarez-Gallego, C.J.; Romero-García, L.I. Insights into Anaerobic Co-Digestion of Lignocellulosic Biomass (Sugar Beet By-Products) and Animal Manure in Long-Term Semi-Continuous Assays. Appl. Sci. 2020, 10, 5126. [Google Scholar] [CrossRef]
- Ibro, M.K.; Ancha, V.R.; Lemma, D.B. Impacts of Anaerobic Co-Digestion on Different Influencing Parameters: A Critical Review. Sustainability 2022, 14, 9387. [Google Scholar] [CrossRef]
- Kamusoko, R.; Jingura, R.M.; Parawira, W.; Chikwambi, Z. Characterization of lignocellulosic crop residues for potential biogas production in Zimbabwe. Biofuels Bioprod. Biorefining 2022, 16, 1165–1171. [Google Scholar] [CrossRef]
- Angelidaki, I.; Ahring, B. Thermophilic anaerobic digestion of livestock waste: The effect of ammonia. Appl. Microbiol. Biotechnol. 1993, 38, 560–564. [Google Scholar] [CrossRef]
- Han, Y.; Green, H.; Tao, W. Reversibility of propionic acid inhibition to anaerobic digestion: Inhibition kinetics and microbial mechanism. Chemosphere 2020, 255, 126840. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xing, W.; Li, R. Real-time recovery strategies for volatile fatty acid-inhibited anaerobic digestion of food waste for methane production. Bioresour. Technol. 2018, 265, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Aide, M.; Mueller, W. Nutrient uptake patterns of five sweet sorghum varieties to estimate harvest removal rates. Int. J. Appl. Agric. Res. 2016, 11, 159–171. [Google Scholar]
- Fertlisers, I.P. Quick Guide to Sorghum Nutrition This Summer; Incitec Pivot Fertlisers: Murrarie, Australia, 2019. [Google Scholar]
- Orner, K.D.; Smith, S.J.; Breunig, H.M.; Scown, C.D.; Nelson, K.L. Fertilizer demand and potential supply through nutrient recovery from organic waste digestate in California. Water Res. 2021, 206, 117717. [Google Scholar] [CrossRef]
- Qi, G.; Pan, Z.; Andriamanohiarisoamanana, F.J.; Yamashiro, T.; Iwasaki, M.; Ihara, I.; Umetsu, K. Effect of solid–liquid separation on anaerobic digestion of dairy manure in semi-continuous stirred tank reactors: Process performance and digestate characteristics. Anim. Sci. J. 2020, 91, e13393. [Google Scholar] [CrossRef]
- Samoraj, M.; Mironiuk, M.; Izydorczyk, G.; Witek-Krowiak, A.; Szopa, D.; Moustakas, K.; Chojnacka, K. The challenges and perspectives for anaerobic digestion of animal waste and fertilizer application of the digestate. Chemosphere 2022, 295, 133799. [Google Scholar] [CrossRef]
- Gomes, C.S.; Strangfeld, M.; Meyer, M. Diauxie studies in biogas production from gelatin and adaptation of the modified Gompertz model: Two-phase Gompertz model. Appl. Sci. 2021, 11, 1067. [Google Scholar] [CrossRef]
- Pardilhó, S.; Pires, J.C.; Boaventura, R.; Almeida, M.; Dias, J.M. Biogas production from residual marine macroalgae biomass: Kinetic modelling approach. Bioresour. Technol. 2022, 359, 127473. [Google Scholar] [CrossRef]
- Budiyono, I.S.; Sumardiono, S. Kinetic model of biogas yield production from vinasse at various initial pH: Comparison between modified Gompertz model and first order kinetic model. Res. J. Appl. Sci. Eng. Technol. 2014, 7, 2798–2805. [Google Scholar]
- Kaparaju, P.; Serrano, M.; Bjerre, A.; Kongjan, P.; Angelidaki, I. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour. Technol. 2009, 100, 2562–2568. [Google Scholar] [CrossRef] [PubMed]
- Priharto, N.; Ronsse, F.; Yildiz, G.; Heeres, H.J.; Deuss, P.J.; Prins, W. Fast pyrolysis with fractional condensation of lignin-rich digested stillage from second-generation bioethanol production. J. Anal. Appl. Pyrolysis 2020, 145, 104756. [Google Scholar] [CrossRef]
Substrate | TS (% w/w) | VS (% w/w) | Moisture (%) | VS/TS | C (%TS) | N (%TS) | C/N | TKN (gN/kgTS) | TKP (gP/kgTS) |
---|---|---|---|---|---|---|---|---|---|
Inoculum | 2.98 | 2.07 | 97.02 | 0.70 | 34.54 | 6.25 | 5.53 | 55.91 | 26.87 |
SE-1 | 20.31 | 19.32 | 79.69 | 0.95 | 48.80 | 0.60 | 81.33 | 4.79 | 1.59 |
SE-5 | 15.24 | 14.29 | 84.76 | 0.94 | 48.70 | 0.70 | 69.57 | 5.99 | 1.53 |
SE-23 | 12.05 | 10.71 | 87.95 | 0.89 | 47.00 | 1.00 | 47.00 | 8.55 | 2.50 |
SE-35 | 14.25 | 13.11 | 85.75 | 0.92 | 47.80 | 1.10 | 43.45 | 6.06 | 1.86 |
SE-42 | 19.67 | 18.54 | 80.33 | 0.94 | 47.00 | 0.90 | 52.22 | 5.27 | 2.34 |
SE-45 | 18.26 | 17.24 | 81.74 | 0.94 | 47.70 | 1.10 | 43.36 | 6.92 | 1.52 |
SE-81 | 19.36 | 18.25 | 80.64 | 0.94 | 48.40 | 0.80 | 60.50 | 6.03 | 2.22 |
SE-86 | 19.61 | 18.54 | 80.39 | 0.95 | 47.30 | 0.80 | 59.13 | 5.75 | 1.78 |
Mega Sweet | 21.40 | 19.83 | 78.60 | 0.93 | 47.50 | 1.00 | 47.50 | 7.11 | 2.35 |
Substrate | Plant Height (m) | Number of Leaves | Harvest Time (DAP) | Fresh Biomass (t/ha) | Total Soluble Sugars | Cellulose (%TS) | Xylan (%TS) | Arabinan (%TS) | Galactan (%TS) | Lignin (%TS) | Ash (%TS) | Total Soluble Sugars (t/ha) | Total Insoluble Sugars (t/ha) | Total Sugars (t/ha) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SE-1 | 1.86 | 11 | 65 | 67.0 | 12.3 | 33.2 | 18.2 | 1.6 | 2.4 | 19.2 | 1.5 | 8.24 | 37.12 | 45.36 |
SE-5 | 2.8 | 14 | 65 | 57.4 | 1.4 | 31.8 | 18.4 | 1.5 | 2.4 | 24.5 | 2.7 | 0.80 | 31.05 | 31.86 |
SE-23 | 1.96 | 12 | 65 | 78.4 | 1.4 | 35.5 | 19.3 | 1.1 | 1.7 | 22.3 | 1.4 | 1.10 | 45.16 | 46.26 |
SE-35 | 2.56 | 12 | 65 | 82.3 | 3.1 | 30.3 | 17 | 0 | 2.1 | 24.4 | 2.7 | 2.55 | 40.66 | 43.21 |
SE-42 | 3.93 | 14 | 65 | 67 | 2.1 | 37.5 | 21.1 | 1.4 | 2.3 | 25.1 | 1.4 | 1.41 | 41.74 | 43.15 |
SE-45 | 3.58 | 14 | 65 | 58.4 | 11.9 | 28.1 | 16.4 | 1.2 | 2.1 | 23.2 | 1.2 | 6.95 | 27.92 | 34.86 |
SE-81 | 3.12 | 14 | 65 | 77.5 | 9.2 | 25.8 | 14.4 | 1 | 1.8 | 23.2 | 2.7 | 7.13 | 33.33 | 40.46 |
SE-86 | 3.26 | 13 | 65 | 70.8 | 13.5 | 27.5 | 15.6 | 1.1 | 2 | 22.8 | 1.6 | 9.56 | 32.71 | 42.27 |
Mega Sweet | 2.88 | 13 | 65 | 46.9 | 9.6 | 26.9 | 15.3 | 1.3 | 1.9 | 24.1 | 0.4 | 4.50 | 21.29 | 25.80 |
Cultivar | Cum Methane Yields (NmL CH4/gVSadded) | Cum Methane Yields (m3/t FM) | VS Removal (%) |
---|---|---|---|
SE-1 | 175.93 ± 15.10 | 33.98 | 69.22 |
SE-5 | 208.05 ± 9.81 | 29.73 | 70.69 |
SE-23 | 198.37 ± 9.50 | 21.24 | 62.01 |
SE-35 | 227.48 ± 12.86 | 29.83 | 69.26 |
SE-42 | 179.66 ± 20.84 | 33.32 | 76.98 |
SE-45 | 214.30 ± 11.08 | 36.94 | 72.06 |
SE-81 | 216.31 ± 11.35 | 39.47 | 78.74 |
SE-86 | 213.75 ± 12.20 | 39.63 | 80.83 |
Mega Sweet | 207.47 ± 14.89 | 41.15 | 63.59 |
Sewage Sludge | 92.90 ± 0.80 | 1.93 | 13.03 |
Cultivar | SE-1 | SE-5 | SE-23 | SE-35 | SE-42 | SE-45 | SE-81 | SE-86 | Mega Sweet | Inoculum | Cellulose |
---|---|---|---|---|---|---|---|---|---|---|---|
Total VFA | 73.68 | 48.48 | 29.59 | 41.92 | 42.71 | 48.68 | 48.97 | 59.39 | 51.24 | 53.09 | 55.16 |
Acetic acid | 34.79 | 35.28 | 22.7 | 28.84 | 29.04 | 29.09 | 31.01 | 35.2 | 32.63 | 29.92 | 32.36 |
Propionic acid | 4.58 | 4.75 | 4.04 | 4.86 | 4.26 | 6.76 | 6.6 | 10.46 | 7.09 | 6.09 | 7.13 |
iso-Butyric acid | 1.49 | 1.75 | 1.47 | 1.56 | 1.4 | 2.63 | 2.32 | 2.55 | 2.55 | 2.41 | 2.34 |
Butyric acid | 23.9 | 1.69 | 1.38 | 1.62 | 1.33 | 2.44 | 3.05 | 2.11 | 1.96 | 2.21 | 2.01 |
iso-Valeric acid | 2.65 | 2.17 | 0 | 2.2 | 2.48 | 3.91 | 2.87 | 3.32 | 4.08 | 3.62 | 3.29 |
Valeric acid | 4.43 | 2.85 | 0 | 2.84 | 4.21 | 3.86 | 3.12 | 3.46 | 2.94 | 3.54 | 3.62 |
4-Methyl valeric acid | 1.84 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3.25 | 3.19 |
Hexanoic acid | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.3 | 0 | 2.05 | 1.22 |
Cultivar/Nutrients | SE-1 | SE-5 | SE-23 | SE-35 | SE-42 | SE-45 | SE-81 | SE-86 | Mega Sweet |
---|---|---|---|---|---|---|---|---|---|
Al | 7.57 | 17.44 | 15.05 | 9.75 | 9.02 | 3.81 | 18.06 | 5.92 | 14.57 |
As | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
B | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Ca | 488.43 | 472.85 | 535.37 | 507.27 | 720.42 | 533.53 | 545.51 | 459.01 | 871.98 |
Cd | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Co | 0.38 | 0.29 | 0.23 | 0.00 | 0.34 | 0.31 | 0.00 | 0.35 | 0.42 |
Cr | 3.08 | 2.49 | 2.25 | 1.54 | 2.08 | 1.37 | 1.94 | 2.06 | 1.96 |
Cu | 0.97 | 0.74 | 0.68 | 0.81 | 1.06 | 0.85 | 0.88 | 0.83 | 1.64 |
Fe | 18.72 | 19.62 | 18.55 | 12.59 | 15.88 | 9.25 | 17.89 | 12.42 | 17.69 |
Hg | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
K | 2920.51 | 2256.72 | 3666.05 | 3468.23 | 3413.90 | 2943.51 | 2414.42 | 2720.89 | 3177.04 |
Mg | 313.93 | 303.69 | 291.07 | 254.09 | 355.74 | 314.20 | 368.50 | 261.92 | 366.46 |
Mn | 7.87 | 4.48 | 4.16 | 5.83 | 4.96 | 3.25 | 4.50 | 3.45 | 9.39 |
Mo | 0.00 | 0.00 | 0.22 | 0.26 | 0.00 | 0.00 | 0.32 | 0.00 | 0.00 |
Na | 18.57 | 12.10 | 9.66 | 7.58 | 23.33 | 12.17 | 22.79 | 13.01 | 13.92 |
P | 290.85 | 248.72 | 298.31 | 273.48 | 441.35 | 361.08 | 364.95 | 300.91 | 504.35 |
Pb | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
S | 141.64 | 107.40 | 115.04 | 110.85 | 175.14 | 128.36 | 138.99 | 120.52 | 202.29 |
Si | 10.43 | 0 | 5.15 | 6.11 | 0 | 0 | 7.26 | 7.46 | 9.66 |
Se | 0.90 | 0.00 | 0.00 | 0.77 | 0.00 | 0.00 | 0.00 | 0.00 | 1.39 |
Zn | 4.09 | 2.88 | 2.29 | 2.63 | 3.90 | 2.86 | 3.27 | 2.97 | 4.17 |
TKP | 65.57 | 35.54 | 36.31 | 37.78 | 90.50 | 50.67 | 83.19 | 68.45 | 107.64 |
TKN | 197.55 | 139.15 | 124.18 | 123.08 | 203.82 | 230.69 | 225.97 | 221.13 | 325.66 |
N:P:K:S | 1:0.3:14.8:0.7 | 1:0.3:16.2:0.8 | 1:0.3:29.5:0.9 | 1:0.3:28.2:0.9 | 1:0.4:16.7:0.9 | 1:0.2:12.8:0.6 | 1:0.4:10.7:0.6 | 1:0.3:12.3:0.5 | 1:0.3:9.8:0.6 |
Substrate | Exp BMP | First order Kinetics | Modified Gompertz | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B0 | t-delay | khyd | R2 | RMSE % | % Difference | Rmax | λ | G0 | R2 | RMSE % | % Difference | T90 | Teff | ||
Units | (NmL CH4/g-VSadded) | (NmL CH4/gVSadded) | (d) | (d−1) | (%) | (%) | (NmL CH4/gVSadded d−1) | (d−1) | (NmLCH4/gVSadded) | (%) | (%) | (d) | (d) | ||
SE-1 | 175.93 | 188.61 | 1.22 | 0.07 | 0.997 | 4.09 | 2.80 | 9.61 | 0.93 | 166.62 | 0.983 | 10.17 | 6.96 | 28.30 | 27.37 |
SE-5 | 208.05 | 214.27 | 0.46 | 0.09 | 0.998 | 2.90 | 2.74 | 12.69 | 0.10 | 194.88 | 0.986 | 7.96 | 7.21 | 26.99 | 26.89 |
SE-23 | 198.37 | 206.90 | 0.32 | 0.09 | 0.999 | 2.44 | 1.35 | 12.29 | 0.00 | 188.81 | 0.990 | 6.59 | 5.60 | 24.32 | 24.32 |
SE-35 | 227.48 | 238.40 | 0.75 | 0.08 | 0.999 | 2.69 | 1.95 | 13.93 | 0.58 | 214.51 | 0.990 | 7.01 | 6.61 | 27.05 | 26.46 |
SE-42 | 179.66 | 236.25 | 0.07 | 0.04 | 0.996 | 4.92 | 0.36 | 8.16 | 0.42 | 181.05 | 0.994 | 5.97 | 3.67 | 28.49 | 28.07 |
SE-45 | 214.30 | 273.84 | 0.71 | 0.05 | 0.998 | 3.32 | 0.11 | 10.03 | 1.00 | 214.02 | 0.993 | 6.87 | 4.19 | 28.54 | 27.53 |
SE-81 | 216.31 | 245.53 | 0.24 | 0.06 | 0.999 | 2.06 | 0.61 | 11.08 | 0.08 | 210.83 | 0.991 | 6.73 | 4.71 | 27.05 | 26.97 |
SE-86 | 213.75 | 242.33 | 0.20 | 0.06 | 0.998 | 3.46 | 1.72 | 10.57 | 0.00 | 206.51 | 0.986 | 8.57 | 5.84 | 28.03 | 28.03 |
Mega Sweet | 207.47 | 255.18 | 0.00 | 0.05 | 0.998 | 3.12 | 1.83 | 9.18 | 0.00 | 206.28 | 0.988 | 8.15 | 5.01 | 28.86 | 28.86 |
Parameter | SE-1 | SE-5 | SE-23 | SE-35 | SE-42 | SE-45 | SE-81 | SE-86 | Mega Sweet |
---|---|---|---|---|---|---|---|---|---|
Plant Population (per ha) | 151,151 | 130,104 | 172,197 | 135,844 | 130,104 | 107,145 | 166,457 | 170,284 | 116,711 |
Fresh biomass (t/ha) | 67.00 | 57.40 | 78.40 | 82.30 | 67.00 | 58.40 | 77.50 | 70.80 | 46.90 |
Cum methane production (NmL CH4/gVSadded) | 175.93 | 208.05 | 198.37 | 227.48 | 179.66 | 214.30 | 216.31 | 213.75 | 207.47 |
Methane production (Nm3/t FM) | 33.98 | 29.73 | 21.24 | 29.83 | 33.32 | 36.94 | 39.47 | 39.63 | 41.15 |
Biomethane (Nm3/ha) | 2276.86 | 1706.67 | 1664.88 | 2454.84 | 2232.28 | 2157.34 | 3059.18 | 2805.89 | 1929.73 |
Biomethane (m3) | 56,921.59 | 42,666.84 | 41,622.11 | 61,370.98 | 55,806.99 | 53,933.58 | 76,479.44 | 70,147.21 | 48,243.26 |
Gross energy potential (MWh/ha/a) | 566.94 | 424.96 | 414.56 | 611.25 | 555.84 | 537.18 | 761.74 | 698.67 | 480.50 |
CHP-Electrical production (kWel/ha/a) | 240.38 | 180.18 | 175.77 | 259.17 | 235.68 | 227.76 | 322.98 | 296.23 | 203.73 |
CHP-Heat production (kWhth/ha/a) | 241.52 | 181.03 | 176.60 | 260.39 | 236.79 | 228.84 | 324.50 | 297.63 | 204.69 |
BioCNG production (Nm3/ha/a) | 55,783.16 | 41,813.51 | 40,789.67 | 60,143.56 | 54,690.85 | 52,854.91 | 74,949.85 | 68,744.27 | 47,278.40 |
Fuel for passenger cars | 70.67 | 52.97 | 51.68 | 76.20 | 69.29 | 66.96 | 94.96 | 87.09 | 59.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathias, D.J.; Edwiges, T.; Ketsub, N.; Singh, R.; Kaparaju, P. Sweet Sorghum as a Potential Fallow Crop in Sugarcane Farming for Biomethane Production in Queensland, Australia. Energies 2023, 16, 6497. https://doi.org/10.3390/en16186497
Mathias DJ, Edwiges T, Ketsub N, Singh R, Kaparaju P. Sweet Sorghum as a Potential Fallow Crop in Sugarcane Farming for Biomethane Production in Queensland, Australia. Energies. 2023; 16(18):6497. https://doi.org/10.3390/en16186497
Chicago/Turabian StyleMathias, Divya Joslin, Thiago Edwiges, Napong Ketsub, Rajinder Singh, and Prasad Kaparaju. 2023. "Sweet Sorghum as a Potential Fallow Crop in Sugarcane Farming for Biomethane Production in Queensland, Australia" Energies 16, no. 18: 6497. https://doi.org/10.3390/en16186497
APA StyleMathias, D. J., Edwiges, T., Ketsub, N., Singh, R., & Kaparaju, P. (2023). Sweet Sorghum as a Potential Fallow Crop in Sugarcane Farming for Biomethane Production in Queensland, Australia. Energies, 16(18), 6497. https://doi.org/10.3390/en16186497