Phenomenological Material Model for First-Order Electrocaloric Material
Abstract
1. Introduction
2. Methods and Material
2.1. Methods
2.2. Material
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
COP | Coefficient of Performance |
DSC | Differential Scanning Calorimetry |
FOM | Figure of Merit |
PST | Lead Scandium Tantalate |
References
- IEA (International Energy Agency). World Energy Outlook 2022; IEA: Paris, France, 2022.
- Goetzler, W.; Zogg, R.; Young, J.; Johnson, C. Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies; Prepared for US Department of Energy; Navigant Consulting Inc.: Chicago, IL, USA, 2014. [Google Scholar]
- McLinden, M.O.; Brown, J.S.; Brignoli, R.; Kazakov, A.F.; Domanski, P.A. Limited options for low-global-warming-potential refrigerants. Nat. Commun. 2017, 8, 14476. [Google Scholar] [CrossRef] [PubMed]
- Umweltbundesamt. Fluorinated Greenhouse Gases and Fully Halogenated CFCs. Available online: https://www.umweltbundesamt.de/en/topics/climate-energy/fluorinated-greenhouse-gases-fully-halogenated-cfcs (accessed on 22 March 2022).
- Takeuchi, I.; Sandeman, K. Solid-state cooling with caloric materials. Phys. Today 2015, 68, 48–54. [Google Scholar] [CrossRef]
- Fähler, S.; Pecharsky, V.K. Caloric effects in ferroic materials. MRS Bull. 2018, 43, 264–268. [Google Scholar] [CrossRef]
- Raveendran, P.S.; Sekhar, S.J. Exergy analysis of a domestic refrigerator with brazed plate heat exchanger as condenser. J. Therm. Anal. Calorim. 2017, 127, 2439–2446. [Google Scholar] [CrossRef]
- Chaudron, J.B.; Muller, C.; Hittinger, M.; Risser, M.; Lionte, S. Performance measurements on a large-scale magnetocaloric cooling application at room temperature. In Proceedings of the Thermag VIII International Conference on Caloric Cooling, Darmstadt, Germany, 16–20 September 2018. [Google Scholar] [CrossRef]
- Kitanovski, A.; Tušek, J.; Tomc, U.; Plaznik, U.; Ožbolt, M.; Poredoš, A. Magnetocaloric Energy Conversion: From Theory to Applications; Green Energy and Technology; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Torelló, A.; Lheritier, P.; Usui, T.; Nouchokgwe, Y.; Gérard, M.; Bouton, O.; Hirose, S.; Defay, E. Giant temperature span in electrocaloric regenerator. Science 2020, 370, 125–129. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Usui, T.; Benedict, M.; Hirose, S.; Lee, J.; Kalb, J.; Schwartz, D. A high-performance solid-state electrocaloric cooling system. Science 2020, 370, 129–133. [Google Scholar] [CrossRef]
- Bachmann, N.; Schwarz, D.; Bach, D.; Schäfer-Welsen, O.; Koch, T.; Bartholomé, K. Modeling of an Elastocaloric Cooling System for Determining Efficiency. Energies 2022, 15, 5089. [Google Scholar] [CrossRef]
- Bonnot, E.; Romero, R.; Mañosa, L.; Vives, E.; Planes, A. Elastocaloric effect associated with the martensitic transition in shape-memory alloys. Phys. Rev. Lett. 2008, 100, 125901. [Google Scholar] [CrossRef]
- Grácia-Condal, A.; Stern-Taulats, E.; Planes, A.; Vives, E.; Mañosa, L. The Giant Elastocaloric Effect in a Cu-Zn-Al Shape-Memory Alloy: A Calorimetric Study. Phys. Status Solidi (b) 2018, 255, 1700422. [Google Scholar] [CrossRef]
- Pataky, G.J.; Ertekin, E.; Sehitoglu, H. Elastocaloric cooling potential of NiTi, Ni2FeGa, and CoNiAl. Acta Mater. 2015, 96, 420–427. [Google Scholar] [CrossRef]
- Xiao, F.; Fukuda, T.; Kakeshita, T. Significant elastocaloric effect in a Fe-31.2Pd (at. %) single crystal. Appl. Phys. Lett. 2013, 102, 161914. [Google Scholar] [CrossRef]
- Tušek, J.; Engelbrecht, K.; Mañosa, L.; Vives, E.; Pryds, N. Understanding the Thermodynamic Properties of the Elastocaloric Effect Through Experimentation and Modelling. Shape Mem. Superelast. 2016, 2, 317–329. [Google Scholar] [CrossRef]
- Chen, H.; Xiao, F.; Liang, X.; Li, Z.; Li, Z.; Jin, X.; Fukuda, T. Giant elastocaloric effect with wide temperature window in an Al-doped nanocrystalline Ti–Ni–Cu shape memory alloy. Acta Mater. 2019, 177, 169–177. [Google Scholar] [CrossRef]
- Franco, V.; Blázquez, J.S.; Conde, A. Field dependence of the magnetocaloric effect in materials with a second order phase transition: A master curve for the magnetic entropy change. Appl. Phys. Lett. 2006, 89, 222512. [Google Scholar] [CrossRef]
- Lei, T.; Engelbrecht, K.; Nielsen, K.K.; Neves Bez, H.; Bahl, C.R.H. Study of multi-layer active magnetic regenerators using magnetocaloric materials with first and second order phase transition. J. Phys. D Appl. Phys. 2016, 49, 345001. [Google Scholar] [CrossRef]
- Gao, R.; Shi, X.; Wang, J.; Huang, H. Understanding electrocaloric cooling of ferroelectrics guided by phase–field modeling. J. Am. Ceram. Soc. 2022, 105, 3689–3714. [Google Scholar] [CrossRef]
- Gong, J.; McGaughey, A.J.H. Device–level thermodynamic model for an electrocaloric cooler. Int. J. Energy Res. 2020, 44, 5343–5359. [Google Scholar] [CrossRef]
- Hess, T.; Vogel, C.; Maier, L.M.; Barcza, A.; Vieyra, H.P.; Schäfer-Welsen, O.; Wöllenstein, J.; Bartholomé, K. Phenomenological model for a first-order magnetocaloric material. Int. J. Refrig. 2020, 109, 128–134. [Google Scholar] [CrossRef]
- Hess, T.; Maier, L.M.; Bachmann, N.; Corhan, P.; Schäfer-Welsen, O.; Wöllenstein, J.; Bartholomé, K. Thermal hysteresis and its impact on the efficiency of first-order caloric materials. J. Appl. Phys. 2020, 127, 075103. [Google Scholar] [CrossRef]
- Bachmann, N.; Fitger, A.; Unmüßig, S.; Bach, D.; Schäfer-Welsen, O.; Koch, T.; Bartholomé, K. Phenomenological model for first-order elastocaloric materials. Int. J. Refrig. 2022, 136, 245–253. [Google Scholar] [CrossRef]
- Moya, X.; Kar-Narayan, S.; Mathur, N.D. Caloric materials near ferroic phase transitions. Nat. Mater. 2014, 13, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Nouchokgwe, Y.; Lheritier, P.; Hong, C.H.; Torelló, A.; Faye, R.; Jo, W.; Bahl, C.R.H.; Defay, E. Giant electrocaloric materials energy efficiency in highly ordered lead scandium tantalate. Nat. Commun. 2021, 12, 3298. [Google Scholar] [CrossRef] [PubMed]
- Zarnetta, R.; Takahashi, R.; Young, M.L.; Savan, A.; Furuya, Y.; Thienhaus, S.; Maaß, B.; Rahim, M.; Frenzel, J.; Brunken, H.; et al. Identification of Quaternary Shape Memory Alloys with Near-Zero Thermal Hysteresis and Unprecedented Functional Stability. Adv. Funct. Mater. 2010, 20, 1917–1923. [Google Scholar] [CrossRef]
Model Parameter | Value ± Error | Parameter Unit |
---|---|---|
K | ||
J/kg/K | ||
J/kg/K | ||
K | ||
Kµm/V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Unmüßig, S.; Bach, D.; Nouchokgwe, Y.; Defay, E.; Bartholomé, K. Phenomenological Material Model for First-Order Electrocaloric Material. Energies 2023, 16, 5837. https://doi.org/10.3390/en16155837
Unmüßig S, Bach D, Nouchokgwe Y, Defay E, Bartholomé K. Phenomenological Material Model for First-Order Electrocaloric Material. Energies. 2023; 16(15):5837. https://doi.org/10.3390/en16155837
Chicago/Turabian StyleUnmüßig, Sabrina, David Bach, Youri Nouchokgwe, Emmanuel Defay, and Kilian Bartholomé. 2023. "Phenomenological Material Model for First-Order Electrocaloric Material" Energies 16, no. 15: 5837. https://doi.org/10.3390/en16155837
APA StyleUnmüßig, S., Bach, D., Nouchokgwe, Y., Defay, E., & Bartholomé, K. (2023). Phenomenological Material Model for First-Order Electrocaloric Material. Energies, 16(15), 5837. https://doi.org/10.3390/en16155837