Development of Carbon Nanotube Yarn Supercapacitors and Energy Storage for Integrated Structural Health Monitoring
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Preparation of Polydimethylsiloxane (PDMS)
2.3. Preparation of Graphene Oxide
2.4. Preparation Gel Electrolyte
2.5. Fabrication of CNTY-Based Supercapacitors
2.5.1. CNTYs Supercapacitor GO/HCL/CMM
2.5.2. CNTY Supercapacitor GO/Zinc Sulfate-PVA/LiCl/PDMS
2.6. Data Analysis and Interpretation
3. Results and Discussion
3.1. CNTY GO/Zinc Sulfate/PDMS/SCs
3.2. CNTY GO/PVA-LiCl/PDMS/SCs
3.3. CNTY GO/HCl/CMM/SCs
3.4. Capacitance, Energy, and Power Densities
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef]
- Miller, J.R.; Simon, P. Electrochemical Capacitors for Energy Management. Science 2008, 321, 651–652. [Google Scholar] [CrossRef]
- Chen, H.; Cong, T.N.; Yang, W.; Tan, C.; Li, Y.; Ding, Y. Progress in electrical energy storage system: A critical review. Prog. Nat. Sci. 2009, 19, 291–312. [Google Scholar] [CrossRef]
- Skyllaskazacos, M.; Chakrabarti, M.H.; Hajimolana, S.A.; Mjalli, F.S.; Saleem, M. Progress in Flow Battery Research and Development. J. Electrochem. Soc. 2011, 158, R55–R79. [Google Scholar] [CrossRef]
- Janek, J.; Zeier, W.G. A solid future for battery development. Nat. Energy 2016, 1, 16141. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Conway, B.E. Electrochemical Supercapacitors. In Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Springer Science+Business Media: New York, NY, USA, 1999. [Google Scholar] [CrossRef]
- Salanne, M.; Rotenberg, B.; Naoi, K.; Kaneko, K.; Taberna, P.-L.; Grey, C.P.; Dunn, B.; Simon, P. Efficient storage mechanisms for building better supercapacitors. Nat. Energy 2016, 1, 16070. [Google Scholar] [CrossRef]
- Saito, R.; Dresselhaus, G.; Dresselhaus, M.S. Physical Properties of Carbon Nanotubes; World Scientific: Singapore, 1998. [Google Scholar] [CrossRef]
- Wu, A.S.; Nie, X.; Hudspeth, M.C.; Chen, W.W.; Chou, T.-W.; Lashmore, D.S.; Schauer, M.W.; Tolle, E.; Rioux, J. Strain rate-dependent tensile properties and dynamic electromechanical response of carbon nanotube fibers. Carbon 2012, 50, 3876–3881. [Google Scholar] [CrossRef]
- Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M.S. Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 1992, 60, 2204–2206. [Google Scholar] [CrossRef]
- Cullinan, M.A.; Culpepper, M.L. Carbon nanotubes as piezoresistive microelectromechanical sensors: Theory and experiment. Phys. Rev. B 2010, 82, 115428. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef]
- Cao, J.; Wang, Q.; Dai, H. Electromechanical Properties of Metallic, Quasimetallic, and Semiconducting Carbon Nanotubes under Stretching. Phys. Rev. Lett. 2003, 90, 157601. [Google Scholar] [CrossRef]
- Chang, N.-K.; Su, C.-C.; Chang, S.-H. Fabrication of single-walled carbon nanotube flexible strain sensors with high sensitivity. Appl. Phys. Lett. 2008, 92, 063501. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, K.; Feng, C.; Liu, P.; Zhang, L.; Kong, J.; Zhang, T.; Li, Q.; Fan, S. Spinning and Processing Continuous Yarns from 4-Inch Wafer Scale Super-Aligned Carbon Nanotube Arrays. Adv. Mater. 2006, 18, 1505–1510. [Google Scholar] [CrossRef]
- Behabtu, N.; Green, M.J.; Pasquali, M. Carbon nanotube-based neat fibers. Nano Today 2008, 3, 24–34. [Google Scholar] [CrossRef]
- Kang, I.; Schulz, M.J.; Kim, J.H.; Shanov, V.; Shi, D. A carbon nanotube strain sensor for structural health monitoring. Smart Mater. Struct. 2006, 15, 737–748. [Google Scholar] [CrossRef]
- Window, A.L. Strain Gauge Technology; Elsevier Applied Science: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Liu, C. Foundations of MEMS: Pearson International Edition; Prentice Hall: Hoboken, NJ, USA, 2012. [Google Scholar]
- Dally, J.W.; Riley, W. Experimental Stress Analysis; McGraw-Hill: New York, NY, USA, 1991. [Google Scholar]
- Zheng, C.; Qian, W.; Cui, C.; Xu, G.; Zhao, M.; Tian, G.; Wei, F. Carbon nanotubes for supercapacitors: Consideration of cost and chemical vapor deposition techniques. J. Nat. Gas Chem. 2012, 21, 233–240. [Google Scholar] [CrossRef]
- Huang, G.; Hou, C.; Shao, Y.; Zhu, B.; Jia, B.; Wang, H.; Zhang, Q.; Li, Y. High-performance all-solid-state yarn supercapacitors based on porous graphene ribbons. Nano Energy 2015, 12, 26–32. [Google Scholar] [CrossRef]
- Xie, P.; Yuan, W.; Liu, X.; Peng, Y.; Yin, Y.; Li, Y.; Wu, Z. Advanced carbon nanomaterials for state-of-the-art flexible supercapacitors. Energy Storage Mater. 2020, 36, 56–76. [Google Scholar] [CrossRef]
- Abot, J.L.; Alosh, T.; Strain, K.B. Dependence of Electrical Resistance in Carbon Nanotube Yarns. Carbon 2014, 70, 95–102. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, X.; Li, L.; Hu, T.; Yang, Y.; Zhang, J. Facile preparation of polydimethylsiloxane/carbon nanotubes modified melamine solar evaporators for efficient steam generation and desalination. J. Colloid Interface Sci. 2021, 584, 602–609. [Google Scholar] [CrossRef]
- Khan, M.; Tahir, M.N.; Adil, S.F.; Khan, H.U.; Siddiqui, M.R.H.; Al-Warthan, A.A.; Tremel, W. Graphene based metal and metal oxide nanocomposites: Synthesis, properties and their applications. J. Mater. Chem. A 2015, 3, 18753–18808. [Google Scholar] [CrossRef]
- Ashraf, M.; Shah, S.S.; Khan, I.; Aziz, A.; Ullah, N.; Khan, M.; Adil, S.F.; Liaqat, Z.; Usman, M.; Tremel, W.; et al. A High-Performance Asymmetric Supercapacitor Based on Tungsten Oxide Nanoplates and Highly Reduced Graphene Oxide Electrodes. Chem. A Eur. J. 2021, 27, 6973–6984. [Google Scholar] [CrossRef]
- Saleh, B.D.; Abdulwahhab, G.H.; Ahmed, S.M.R. Preparation and characterization of graphene oxide nanoparticles derived from wheat straw. Mater. Today Proc. 2023, 80, 860–869. [Google Scholar] [CrossRef]
- Hiraoka, T.; Izadi-Najafabadi, A.; Yamada, T.; Futaba, D.N.; Yasuda, S.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S.; Hata, K. Compact and Light Supercapacitor Electrodes from a Surface-Only Solid by Opened Carbon Nanotubes with 2 200 m2g−1 Surface Area. Adv. Funct. Mater. 2010, 20, 422–428. [Google Scholar] [CrossRef]
- Chua, C.K.; Pumera, M. Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chem. Soc. Rev. 2014, 43, 291–312. [Google Scholar] [CrossRef]
- Zhou, G.; Yang, L.; Li, W.; Chen, C.; Liu, Q. A Regenerable Hydrogel Electrolyte for Flexible Supercapacitors. iScience 2020, 23, 101502. [Google Scholar] [CrossRef]
- Joseph, K.M.; Kasparian, H.J.; Shanov, V. Carbon Nanotube Fiber-Based Wearable Supercapacitors—A Review on Recent Advances. Energies 2022, 15, 6506. [Google Scholar] [CrossRef]
- Qi, Z.; Ye, J.; Chen, W.; Biener, J.; Duoss, E.B.; Spadaccini, C.M.; Worsley, M.A.; Zhu, C. 3D-Printed, Superelastic Polypyrrole–Graphene Electrodes with Ultrahigh Areal Capacitance for Electrochemical Energy Storage. Adv. Mater. Technol. 2018, 3, 1800053. [Google Scholar] [CrossRef]
- Shi, P.; Li, L.; Hua, L.; Qian, Q.; Wang, P.; Zhou, J.; Sun, G.; Huang, W. Design of Amorphous Manganese Oxide@Multiwalled Carbon Nanotube Fiber for Robust Solid-State Supercapacitor. ACS Nano 2016, 11, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Deng, J.; Chen, X.; Ren, J.; Peng, H. A Highly Stretchable, Fiber-Shaped Supercapacitor. Angew. Chem. Int. Ed. 2013, 52, 13453–13457. [Google Scholar] [CrossRef] [PubMed]
- Lyu, X.; Su, F.; Miao, M. Two-ply yarn supercapacitor based on carbon nanotube/stainless steel core-sheath yarn electrodes and ionic liquid electrolyte. J. Power Sources 2016, 307, 489–495. [Google Scholar] [CrossRef]
- Zhang, D.H.; Miao, M.H.; Niu, H.T.; Wei, Z.X. Core-Spun Carbon Nanotube Yarn Supercapacitors for Wearable Electronic Textiles. Acs Nano 2014, 8, 4571–4579. [Google Scholar] [CrossRef]
- Dalton, A.B.; Collins, S.; Muñoz, E.; Razal, J.M.; Ebron, V.H.; Ferraris, J.P.; Coleman, J.N.; Kim, B.G.; Baughman, R.H. Su-per-tough carbon-nanotube fibres. Nature 2003, 423, 703. [Google Scholar] [CrossRef]
- Chen, X.; Lin, H.; Deng, J.; Zhang, Y.; Sun, X.; Chen, P.; Fang, X.; Zhang, Z.; Guan, G.; Peng, H. Electrochromic Fiber-Shaped Supercapacitors. Adv. Mater. 2014, 26, 8126–8132. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Fang, X.; Chen, P.; Doo, S.-G.; Son, I.H.; Huang, X.; Zhang, Y.; Weng, W.; Zhang, Z.; Deng, J.; et al. Designing one-dimensional supercapacitors in a strip shape for high performance energy storage fabrics. J. Mater. Chem. A 2015, 3, 19304–19309. [Google Scholar] [CrossRef]
Study | Material | Potential (V) | Capacitance | Energy Density | Power Density | References |
---|---|---|---|---|---|---|
CNTY SC | GO-zinc sulfate-PDMS | 0.0–2.7 | 490.53 F/g at 1.75 A/g | 3.9 {Wh/kg] | 8 [W/kg] | |
CNTY SC | GO-PVA-LiCl-PDMS | 0.0–2.7 | 557.53 F/g at 1.75 A/g | 5.2 [Wh/kg] | 10.6 [W/kg} | |
CNTY SC | GO-HCl-CMM | 0.0–2.7 | 636.75 F/g at 1.75 A/g | 6.7 [Wh/kg] | 13.20 [W/kg] | |
MnO2@MWCNTs SSLSc | PVA-LiCl | 0.0–1.0 | 8.5 F/cm3 at 1 A/cm3 | 0.96 [Wh/cm3] | 2.5 [W/cm3] | [36] |
Elastic SC based on CNTs sheet + rubber fiber | PVA-H3PO4 | 0.0–0.8 | 19.2 [F/g] at 0.1 A/g | 0.363 [Wh/kg] | 421 [W/kg] | [37] |
CNTs/SS core–sheath SC | PVDF-HFP-EMIMBF4 (IL) | 0.0–2.7 | 263.31 [F/cm3] at 0.1 V/s | 66.7 [mW h/cm3] | 8.89 [W/cm3] | [38] |
Pt filament-based CNTs symmetric SC | PVA-H3PO4 | 0.0–1.0 | 241.3 [µF/cm] at 5 mV/s 86.2 [F/g] at 5 mV/s | 35.27 Wh/kg | 10.69 kW/kg | [39] |
SWCNTs yarn SC | PVA-H3PO4 | 0.0–1.0 | 5 F/g | 0.6 Wh/kg | - | [40] |
Electrochromic SC based on CNT/PANI + Elastic rubber FSSC | PVA-H3PO4 | 0.0–1.0 | 255.5 [F/g] at 1 A/g | 12.75 [Wh/kg] | 1494 [W/kg] | [41] |
Strip-shape CNT/PANI SC | PVA-H3PO4 | 0.0–1.0 | 421.7 [F/cm3] at 0.5 A/cm | 9.6 [mWh/cm3] | 2.91 [W/cm3] | [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Binfaris, A.S.; Zestos, A.G.; Abot, J.L. Development of Carbon Nanotube Yarn Supercapacitors and Energy Storage for Integrated Structural Health Monitoring. Energies 2023, 16, 5736. https://doi.org/10.3390/en16155736
Binfaris AS, Zestos AG, Abot JL. Development of Carbon Nanotube Yarn Supercapacitors and Energy Storage for Integrated Structural Health Monitoring. Energies. 2023; 16(15):5736. https://doi.org/10.3390/en16155736
Chicago/Turabian StyleBinfaris, Abdulrahman S., Alexander G. Zestos, and Jandro L. Abot. 2023. "Development of Carbon Nanotube Yarn Supercapacitors and Energy Storage for Integrated Structural Health Monitoring" Energies 16, no. 15: 5736. https://doi.org/10.3390/en16155736
APA StyleBinfaris, A. S., Zestos, A. G., & Abot, J. L. (2023). Development of Carbon Nanotube Yarn Supercapacitors and Energy Storage for Integrated Structural Health Monitoring. Energies, 16(15), 5736. https://doi.org/10.3390/en16155736