Estimating In-Situ R-Value of Highly Insulated Building Walls Based on the Measurement of Temperature and Heat Flux Inside the Wall
Abstract
:1. Introduction
2. Methods
2.1. Average Method
2.2. Extended Average Method
3. In situ Measurements
3.1. Test Wall
3.2. Measurement Procedure
4. Results and Discussion
4.1. Thermal Behavior of the Test Wall
4.2. R-Value Obtained by the Average Method of ISO 9869-1
4.3. R-Value Obtained by the Extended Average Method
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Walker, R.; Pavía, S. Thermal performance of a selection of insulation materials suitable for historic buildings. Build. Environ. 2015, 94, 155–165. [Google Scholar] [CrossRef]
- Choi, D.S.; Ko, M.J. Comparison of various analysis methods based on heat flowmeters and infrared thermography measurements for the evaluation of the in situ thermal transmittance of opaque exterior walls. Energies 2017, 10, 1019. [Google Scholar] [CrossRef] [Green Version]
- Bienvenido-Huertas, D.; Moyano, J.; Marín, D.; Fresco-Contreras, R. Review of in situ methods for assessing the thermal transmittance of walls. Renew. Sust. Energy Rev. 2019, 102, 356–371. [Google Scholar] [CrossRef]
- Teni, M.; Krstić, H.; Kosiński, P. Review and comparison of current experimental approaches for in-situ measurements of building walls thermal transmittance. Energy Build. 2019, 203, 109417. [Google Scholar] [CrossRef]
- Soares, N.; Martins, C.; Gonçalves, M.; Santos, P.; Silva, L.S.; Costa, J.J. Laboratory and in-situ non-destructive methods to evaluate the thermal transmittance and behavior of walls, windows, and construction elements with innovative materials: A review. Energy Build. 2019, 182, 88–110. [Google Scholar] [CrossRef]
- ISO 9869-1:2014; Building Elements—In-Situ Measurement of Thermal Resistance and Thermal Transmittance—Part 1: Heat Flow Meter Method. Available online: https://www.iso.org/standard/59697.html (accessed on 26 May 2023).
- Adhikari, R.S.; Lucchi, E.; Pracchi, V. Experimental measurements on thermal transmittance of the opaque vertical walls in the historical buildings. In Proceedings of the 28th International PLEA Conference on Sustainable Architecture + Urban Design, Lima, Peru, 7–9 November 2012. [Google Scholar]
- Evangelisti, L.; Guattari, C.; Gori, P.; Vollaro, R.D.L. In situ thermal transmittance measurements for investigating differences between wall models and actual building performance. Sustainability 2015, 7, 10388–10398. [Google Scholar] [CrossRef] [Green Version]
- Ficco, G.; Iannetta, F.; Ianniello, E.; d’Ambrosio Alfano, F.R.; Dell’Isola, M. U-value in situ measurement for energy diagnosis of existing buildings. Energy Build. 2015, 104, 108–121. [Google Scholar] [CrossRef]
- Choi, D.S.; Ko, M.J. Analysis of convergence characteristics of average method regulated by ISO 9869-1 for evaluating in situ thermal resistance and thermal transmittance of opaque exterior walls. Energies 2019, 12, 1989. [Google Scholar] [CrossRef] [Green Version]
- Gaspar, K.; Casals, M.; Gangolells, M. A comparison of standardized calculation methods for in situ measurements of façades U-value. Energy Build. 2016, 130, 592–599. [Google Scholar] [CrossRef]
- Gaspar, K.; Casals, M.; Gangolells, M. Review of criteria for determining HFM minimum test duration. Energy Build. 2016, 176, 360–370. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Castell, A.; Medrano, M.; Martorell, I.; Perez, G.; Fernandez, I. Experimental study on the performance of insulation materials in Mediterranean construction. Energy Build. 2010, 42, 630–636. [Google Scholar] [CrossRef]
- Albatici, R.; Tonelli, A.M.; Chiogna, M. A comprehensive experimental approach for the validation of quantitative infrared thermography in the evaluation of building thermal transmittance. Appl. Energy 2015, 141, 218–228. [Google Scholar] [CrossRef]
- Krstić, H.; Miličević, I.; Markulak, D.; Domazetović, M. Thermal performance assessment of a wall made of lightweight concrete blocks with recycled brick and ground polystyrene. Buildings 2021, 11, 584. [Google Scholar] [CrossRef]
- Baker, P. U-Value and Traditional Buildings: In Situ Measurements and Their Comparisons to Calculated Values; Technical Paper; Historic Scotland, Conservation Group: Edinburgh, UK, 2011. [Google Scholar]
- Rye, C.; Scott, C. The SPAB Research Report 1: U-Value Report; Society for the Protection of Ancient Buildings: London, UK, 2012; Available online: https://www.spab.org.uk/sites/default/files/documents/MainSociety/Advice/SPABU-valueReport.Nov2012.v2.pdf (accessed on 26 May 2023).
- Gaspar, K.; Casals, M.; Gangolells, M. In situ measurement of façades with a low U-value: Avoiding deviations. Energy Build. 2018, 170, 61–73. [Google Scholar] [CrossRef]
- Asdrubali, F.; D’Alessandro, F.; Baldinelli, G.; Bianchi, F. Evaluating in situ thermal transmittance of green buildings masonries—A case study. Case Stud. Constr. Mater. 2014, 1, 53–59. [Google Scholar] [CrossRef]
- Bros-Williamson, J.; Carnier, C.; Currie, J.I. A longitudinal building fabric and energy performance analysis of two homes built to different energy principles. Energy Build. 2016, 130, 578–591. [Google Scholar] [CrossRef] [Green Version]
- Samardzioska, T.; Apostolska, R. Measurement of heat-flux of new type façade walls. Sustainability 2016, 8, 1031. [Google Scholar] [CrossRef] [Green Version]
- O’Hegarty, R.; Kinnane, O.; Lennon, D.; Colclough, S. In-situ U-value monitoring of highly insulated building envelopes: Review and experimental investigation. Energy Build. 2021, 252, 111447. [Google Scholar] [CrossRef]
- Rasooli, A.; Itard, L. In-situ characterization of walls’ thermal resistance: An extension to the ISO 9869 standard method. Energy Build. 2018, 179, 374–383. [Google Scholar] [CrossRef]
- ISO 6946:2017; Building Components and Building Elements—Thermal Resistance and Thermal Transmittance—Calculation Method. Available online: https://www.iso.org/standard/65708.html (accessed on 26 May 2023).
- ISO/IEC Guide 98–3:2008; Uncertainty of Measurement—Part 3: Guide to the Expression of Uncertainty in Measurement. Available online: https://www.iso.org/standard/50461.html (accessed on 26 May 2023).
- Gaspar, K.; Casals, M.; Gangolells, M. Influence of HFM thermal contact on the accuracy of in situ measurements of façades’ U-value in operational stage. Appl. Sci. 2021, 11, 979. [Google Scholar] [CrossRef]
- Ahmad, A.; Maslehuddin, M.; Al-Hadhrami, L.M. In situ measurement of thermal transmittance and thermal resistance of hollow reinforced precast concrete walls. Energy Build. 2014, 84, 132–141. [Google Scholar] [CrossRef]
- Desogus, G.; Mura, S.; Ricciu, R. Comparing different approaches to in situ measurement of building components thermal resistance. Energy Build. 2011, 43, 2613–2620. [Google Scholar] [CrossRef]
No. Layer | Material Layer (Inside–Outside) | Thickness (m) | Thermal Conductivity (W/m·K) | Thermal Resistance (m2·K/W) |
---|---|---|---|---|
1 | Wall paper | 0.005 | 0.170 | 0.029 |
2 | Gypsum board | 0.020 | 0.180 | 0.111 |
3 | Polyisocyanurate (PIR) insulation | 0.130 | 0.020 | 6.500 |
4 | Reinforced concrete | 0.200 | 2.300 | 0.087 |
5 | Cement mortar | 0.010 | 1.400 | 0.007 |
Period | Start Date | End Date | Duration (Days) | Daily Internal Air Temperature, Tai,1 (°C) | Daily External Air Temperature, Tae,9 (°C) | ||||
---|---|---|---|---|---|---|---|---|---|
Min. | Mean | Max. | Min. | Mean | Max. | ||||
Period 1 | 17 July 2021 | 1 August 2021 | 16 | 24.56 | 24.79 | 24.98 | 26.85 | 29.05 | 30.55 |
Period 2 | 24 August 2021 | 4 October 2021 | 42 | 23.10 | 23.53 | 23.91 | 20.39 | 23.19 | 25.73 |
Period 3 | 26 November 2021 | 8 December 2021 | 13 | 21.56 | 22.39 | 23.06 | −0.56 | 4.49 | 8.39 |
Parameter | Instrument | Range | Accuracy |
---|---|---|---|
Internal air temperature | RTD-806, Omega Engineering Inc., Norwalk, CT, USA | −50–230 °C | ±0.15 °C |
Surface temperature | SA1-RTD, Omega Engineering Inc., Norwalk, CT, USA | −73–260 °C | ±0.15 °C |
Insertion temperature | HSRTD, Omega Engineering Inc., Norwalk, CT, USA | −60–250 °C | ±0.15 °C |
Heat flux | HFP01, Hukseflux, Delft, The Netherlands | ±2000 W/m2 | ±5% |
External air temperature | HD 52.3D, DeltaOHM, Caselle, PD, Italy | −40–60 °C | ±0.15 °C |
Data logger | GL-820, Graphtec America, Inc., Irvine, CA, USA | 20–50,000 mV | ±0.1% of reading |
Start Date | End Date | Heat Flux on Surface 2, qsi,2 (W/m2) | Heat Flux on Surface 4, qsm,4 (W/m2) | Heat Flux on Surface 8, qse,8 (W/m2) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Min. | Mean | Max. | Min. | Mean | Max. | Min. | Mean | Max. | ||
24 July 2021 | 25 July 2021 | −3.79 | −1.58 | 0.66 | −3.38 | −1.67 | −0.17 | −72.08 | −7.45 | 72.95 |
12 September 2021 | 13 September 2021 | −2.14 | −0.19 | 1.15 | −1.86 | −0.28 | 0.84 | −36.04 | −1.07 | 71.04 |
5 December 2021 | 6 December 2021 | 0.16 | 3.06 | 6.59 | 2.37 | 3.51 | 4.39 | −31.36 | 0.33 | 72.60 |
Period | Duration (Days) | RCM (m2·K/W) | RAM (m2·K/W) | Deviation between RAM and RCM (%) | Average Surface Temperature Difference (°C) | Convergence Criteria Compliant |
---|---|---|---|---|---|---|
Period 1 | 16 | 6.735 | 5.195 ± 0.066 | −22.86 | −7.13 | No |
Period 2 | 42 | 6.735 | −1.661 ± 0.353 | −124.66 | 0.20 | No |
Period 3 | 13 | 6.735 | 7.349 ± 0.044 | 9.12 | 20.84 | Yes |
Period | Average Surface Temperature (°C) | Average Heat Flux (W/m2) | Thermal Resistance (m2·K/W) | |||||
---|---|---|---|---|---|---|---|---|
Surface 2, Tsi,2 | Surface 4, Tsm,4 | Surface 8, Tse,8 | Surface 2, qsi,2 | Surface 4, qsm,4 | Surface 8, qse,8 * | REXAM_in | REXAM_out | |
Period 1 | 24.70 | 31.74 | 31.83 | −1.37 | −1.45 | 7.97 | 4.996 ± 0.062 | −0.025 ± 0.029 |
Period 2 | 23.28 | 23.19 | 23.08 | −0.12 | −0.10 | 3.28 | −0.782 ± 0.383 | 0.071 ± 0.027 |
Period 3 | 22.85 | 3.03 | 2.01 | 2.84 | 3.26 | 4.12 | 6.498 ± 0.031 | 0.278 ± 0.003 |
Period | Duration (Days) | RCM (m2·K/W) | RAM (m2·K/W) | REXAM (m2·K/W) | Deviation between RAM and RCM (%) | Deviation between REXAM and RCM (%) |
---|---|---|---|---|---|---|
Period 1 | 16 | 6.735 | 5.195 ± 0.066 | 4.970 ± 0.109 | −22.86 | −26.20 |
Period 2 | 42 | 6.735 | −1.661 ± 0.353 | −0.711 ± 0.452 | −124.66 | −110.6 |
Period 3 | 13 | 6.735 | 7.349 ± 0.044 | 6.776 ± 0.031 | 9.12 | 0.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, D.-S.; Lee, Y.-J.; Moon, J.-H.; Kim, Y.-S.; Ko, M.-J. Estimating In-Situ R-Value of Highly Insulated Building Walls Based on the Measurement of Temperature and Heat Flux Inside the Wall. Energies 2023, 16, 5714. https://doi.org/10.3390/en16155714
Choi D-S, Lee Y-J, Moon J-H, Kim Y-S, Ko M-J. Estimating In-Situ R-Value of Highly Insulated Building Walls Based on the Measurement of Temperature and Heat Flux Inside the Wall. Energies. 2023; 16(15):5714. https://doi.org/10.3390/en16155714
Chicago/Turabian StyleChoi, Doo-Sung, Ye-Ji Lee, Ji-Hoon Moon, Yong-Shik Kim, and Myeong-Jin Ko. 2023. "Estimating In-Situ R-Value of Highly Insulated Building Walls Based on the Measurement of Temperature and Heat Flux Inside the Wall" Energies 16, no. 15: 5714. https://doi.org/10.3390/en16155714
APA StyleChoi, D.-S., Lee, Y.-J., Moon, J.-H., Kim, Y.-S., & Ko, M.-J. (2023). Estimating In-Situ R-Value of Highly Insulated Building Walls Based on the Measurement of Temperature and Heat Flux Inside the Wall. Energies, 16(15), 5714. https://doi.org/10.3390/en16155714