Analysis of Energy Recovery from Municipal Solid Waste and Its Environmental and Economic Impact in Tulkarm, Palestine
Abstract
:1. Introduction
1.1. Background
1.2. Energy Status in Tulkarm
1.3. MSW Management in the Governorate of Tulkarm
1.4. Composition of the Palestinian MSW
2. Methodology
2.1. Study Area
2.2. Data Collection
2.3. Estimation of Energy Potential Using Different Technologies
2.3.1. Capturing of Landfill Gas Technology
2.3.2. Anaerobic Digestion Technology
2.3.3. Incineration Technology
2.3.4. Gasification Technology
2.4. Economic Analysis
2.5. Environmental Analysis
2.5.1. Capturing Landfill Gas Technology
2.5.2. Anaerobic Digestion Technology
2.5.3. Incineration Technology
2.5.4. Gasification Technology
3. Result and Discussion
3.1. Calculation of Biogas Production Using the LandGEM
3.2. Estimate of Energy Potential for Various Technologies
3.3. Economic Analysis
3.4. Environmental Analysis
3.5. Challenges and Recommendations
3.5.1. The Incineration Approach
- −
- The economic-related issues:
- −
- The environmental-related issues:
3.5.2. The Gasification Approach
- −
- Political-related aspects:
- −
- Gasification-scale-related issue:
- −
- Cost-related issue:
3.5.3. The LFG and AD Approaches
- LF energy production
- AD energy production
- LF environmentally
- AD environmentally
- AD and LFG costs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lyu, C.; Ou, X.; Zhang, X. China automotive energy consumption and greenhouse gas emissions outlook to 2050. Mitig. Adapt. Strateg. Glob. Chang. 2015, 20, 627–650. [Google Scholar] [CrossRef]
- Omer, A.M. Energy, environment and sustainable development. Renew. Sustain. Energy Rev. 2008, 12, 2265–2300. [Google Scholar] [CrossRef]
- Weliwaththage, S.R.; Arachchige, U.S. Solar energy technology. J. Res. Technol. Eng. 2020, 1, 2265–2300. [Google Scholar]
- Farjana, S.H.; Tokede, O.; Ashraf, M. Environmental Impact Assessment of Waste Wood-to-Energy Recovery in Australia. Energies 2023, 16, 4182. [Google Scholar] [CrossRef]
- Lubańska, A.; Kazak, J.K. The Role of Biogas Production in Circular Economy Approach from the Perspective of Locality. Energies 2023, 16, 3801. [Google Scholar] [CrossRef]
- Herzog, A.V.; Lipman, T.E.; Kammen, D.M. Encyclopedia of life support systems (EOLSS). Forerunner Volume: Perspectives and overview of life support systems and sustainable development. Renew. Energy Sources 2001, 76. [Google Scholar]
- Shah, T.M.; Khan, A.H.; Nicholls, C.; Sohoo, I.; Otterpohl, R. Using Landfill Sites and Marginal Lands for Socio-Economically Sustainable Biomass Production through Cultivation of Non-Food Energy Crops: An Analysis Focused on South Asia and Europe. Sustainability 2023, 15, 4923. [Google Scholar] [CrossRef]
- Al-Khateeb, A.J.; Al-Sari, M.I.; Al-Khatib, I.A.; Anayah, F. Factors affecting the sustainability of solid waste management system—The case of Palestine. Environ. Monit. Assess. 2017, 189, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Salah, W.A.; Abuhelwa, M.; Abusafa, A.; Bashir, M.J.K. The feasibility of renewable energy recovery from municipal solid wastes in Palestine based on different scenarios. Biofuels 2023, 14, 499–507. [Google Scholar] [CrossRef]
- Abuhelwa, M.; Salah, W.A.; Bashir, M.J.K. Potential energy production from organic waste and its environmental and economic impacts at a tertiary institution in Palestine. Environ. Qual. Manag. 2023, 32, 167–177. [Google Scholar] [CrossRef]
- Tan, S.T.; Ho, W.S.; Hashim, H.; Lee, C.T.; Taib, M.R.; Ho, C.S. Energy, economic and environmental (3E) analysis of waste-to-energy (WTE) strategies for municipal solid waste (MSW) management in Malaysia. Energy Convers. Manag. 2015, 102, 111–120. [Google Scholar] [CrossRef]
- Salah, W.A.; Abuhelwa, M.; Bashir, M.J.K. Overview on the current practices and future potential of bioenergy use in Palestine. Biofuels Bioprod. Biorefin. 2021, 15, 1095–1109. [Google Scholar] [CrossRef]
- Johari, A.; Ahmed, S.I.; Hashim, H.; Alkali, H.; Ramli, M. Economic and environmental benefits of landfill gas from municipal solid waste in Malaysia. Renew. Sustain. Energy Rev. 2012, 16, 2907–2912. [Google Scholar] [CrossRef]
- Tozlu, A.; Özahi, E.; Abuşoğlu, A. Waste to energy technologies for municipal solid waste management in Gaziantep. Renew. Sustain. Energy Rev. 2016, 54, 809–815. [Google Scholar] [CrossRef]
- Tayeh, R.A.; Alsayed, M.F.; Saleh, Y.A. The potential of sustainable municipal solid waste-to-energy management in the Palestinian Territories. J. Clean. Prod. 2021, 279, 123753. [Google Scholar] [CrossRef]
- PENRA: Palestinian Energy and Natural Resources Authority. 2020. Available online: http://www.penra.pna.ps/ar/index.php?p=penra10 (accessed on 15 February 2022).
- Salah, W.A.; Abuhelwa, M.; Bashir, M.J. The key role of sustainable renewable energy technologies in facing shortage of energy supplies in Palestine: Current practice and future potential. J. Clean. Prod. 2021, 293, 125348. [Google Scholar] [CrossRef]
- Kreitem, G.M.; Khatib, I. Renewable Energy Exploitation in Palestine: Current Practice & Future; LAP LAMBERT Academic Publishing: Saarbruecken, Germany, 2018. [Google Scholar]
- Salah, W.A.; Abuhelwa, M. Energy status and practices for efficient energy management to reduce power interruptions: A case study on Tulkarm district in Palestine. Int. J. Sustain. Energy 2020, 39, 685–699. [Google Scholar] [CrossRef]
- PCBS. Palestinian Central Bureau of Statistics. 2018. Available online: https://www.pcbs.gov.ps/statisticsIndicatorsTables.aspx?lang=en&table_id=528 (accessed on 10 February 2019).
- Thöni, V.; Matar, S.K. Solid Waste Management. 2019. Available online: https://www.cesvi.eu/wp-content/uploads/2019/12/SWM-in-Palestine-report-Thoni-and-Matar-2019_compressed-1.pdf (accessed on 21 January 2020).
- Tayeh, R. Solid Waste Management Strategies via Waste to Energy (WtE) Potential Assessment in Palestine. Ph.D. Thesis, An-Najah National University, Nablus, Palestine, 2019. [Google Scholar]
- Villa, F.; Vaccari, M.; Gibellini, S. Separate Collection of Organic Waste and Cardboard: Assessing the Impact of a Development Cooperation Project in Tulkarem, West Bank. Environ. Eng. Manag. J. (EEMJ) 2018, 17, 2473–2484. [Google Scholar]
- El-Kelani, R.J.; Shadeed, S.M.; Hasan, A.F.R.; Ghodieh, A.M.; Burqan, M.A. Geospatial Implications Assessment of Zahrat Al Finjan Solid Waste Landfill, North of West Bank, Palestine. IUG J. Nat. Stud. 2017, 25, 1–9. [Google Scholar]
- Nadaletti, W.; Cremonez, P.; De Souza, S.; Bariccatti, R.; Belli Filho, P.; Secco, D. Potential use of landfill biogas in urban bus fleet in the Brazilian states: A review. Renew. Sustain. Energy Rev. 2015, 41, 277–283. [Google Scholar] [CrossRef]
- Nanda, S.; Berruti, F. Municipal solid waste management and landfilling technologies: A review. Environ. Chem. Lett. 2021, 19, 1433–1456. [Google Scholar]
- Heinrich-Böll-Stiftung. Palestine: Solid Waste Management under Occupation. Available online: https://ume.la/elQvQF (accessed on 11 July 2021).
- Singh, R.; Tyagi, V.; Allen, T.; Ibrahim, M.H.; Kothari, R. An overview for exploring the possibilities of energy generation from municipal solid waste (MSW) in Indian scenario. Renew. Sustain. Energy Rev. 2011, 15, 4797–4808. [Google Scholar] [CrossRef]
- Burnley, S.J. A review of municipal solid waste composition in the United Kingdom. Waste Manag. 2007, 27, 1274–1285. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, C.; Hellweg, S.; Stucki, S. Municipal Solid Waste Management: Strategies and Technologies for Sustainable Solutions; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- WAFA. The Palestinian News & Information Agency. 2022. Available online: https://info.wafa.ps/ar_page.aspx?id=3297 (accessed on 15 February 2022).
- Hamadah, S.R. Comparative Analysis of Separation Versus Direct Transport of Solid Waste from Tulkarem District to Zahret Al-Finjan. Ph.D. Thesis, An-Najah National University, Nablus, Palestine, 2011. [Google Scholar]
- Palestine Municipality of Tulkarem Sustainable Energy Action Plan (SEAP), CES-MED. 2016; (Unpublished Material).
- Tulkarm-Municipality. Imported Energy in Palestine by Type During 2020. 2020. Available online: https://mycovenant.eumayors.eu/docs/seap/21696_1464105679.pdf (accessed on 15 February 2022).
- Tulkarm Directorate of Agriculture; Ministry of Agriculture. 2022. Available online: https://www.moa.pna.ps/events/29 (accessed on 20 February 2023).
- Omar, H.; Rohani, S. Treatment of landfill waste, leachate and landfill gas: A review. Front. Chem. Sci. Eng. 2015, 9, 15–32. [Google Scholar]
- Vaverková, M.D. Landfill impacts on the environment. Geosciences 2019, 9, 431. [Google Scholar] [CrossRef] [Green Version]
- Mehta, R.; Barlaz, M.A.; Yazdani, R.; Augenstein, D.; Bryars, M.; Sinderson, L. Refuse decomposition in the presence and absence of leachate recirculation. J. Environ. Eng. 2002, 128, 228–236. [Google Scholar] [CrossRef]
- Reinhart, D.R.; McCreanor, P.T.; Townsend, T. The bioreactor landfill: Its status and future. Waste Manag. Res. 2002, 20, 172–186. [Google Scholar] [CrossRef]
- Reinhart, D.R.; Townsend, T.G. Landfill Bioreactor Design & Operation; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Njoku, P.O.; Odiyo, J.O.; Durowoju, O.S.; Edokpayi, J.N. A review of landfill gas generation and utilisation in Africa. Open Environ. Sci. 2018, 10, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Agency, H.P. Impact on Health of Emissions from Landfill Site, Advice from the Health Protection Agency; Health Protection Agency: London, UK, 2011. [Google Scholar]
- Mutz, D.; Hengevoss, D.; Hugi, C.; Gross, T. Waste-to-Energy Options in Municipal Solid Waste Management a Guide for Decision Makers in Developing and Emerging Countries; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH: Bonn, Germany, 2017. [Google Scholar]
- Alcani, M.; Dorri, A.; Maraj, A. Estimation of energy recovery potential and environmental impact of Tirana landfill gas. Environ. Prot. Eng. 2018, 44, 117–128. [Google Scholar] [CrossRef]
- Lastella, G.; Testa, C.; Cornacchia, G.; Notornicola, M.; Voltasio, F.; Sharma, V.K. Anaerobic digestion of semi-solid organic waste: Biogas production and its purification. Energy Convers. Manag. 2002, 43, 63–75. [Google Scholar] [CrossRef]
- Wilken, D.; Rauh, S.; Bontempo, G.; Hofmann, F.; Strippel, F.; Kramer, A.; Ricci-Jürgensen, M.; Fürst, M. Biowaste to Biogas; Fachverband Biogas: Freising, Germany, 2019; Volume 5, p. 2022. [Google Scholar]
- Demirbas, A. Waste management, waste resource facilities and waste conversion processes. Energy Convers. Manag. 2011, 52, 1280–1287. [Google Scholar] [CrossRef]
- Deublein, D.; Steinhauser, A. Biogas from Waste and Renewable Resources: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Bioenergy, I. The Biogas Handbook; Woodhead Publishing Limited: Cambridge, UK, 2013. [Google Scholar]
- Vögeli, Y.; Lohri, C.R.; Gallardo, A.; Diener, S.; Zurbrügg, C. Anaerobic Digestion of Biowaste in Developing Countries; Eawag: Dübendorf, Switzerland, 2014; pp. 1–137. [Google Scholar] [CrossRef]
- Nazir, M. Biogas plants construction technology for rural areas. Bioresour. Technol. 1991, 35, 283–289. [Google Scholar] [CrossRef]
- Luijten, C.; Kerkhof, E. Jatropha oil and biogas in a dual fuel CI engine for rural electrification. Energy Convers. Manag. 2011, 52, 1426–1438. [Google Scholar] [CrossRef]
- Duc, P.M.; Wattanavichien, K. Study on biogas premixed charge diesel dual fuelled engine. Energy Convers. Manag. 2007, 48, 2286–2308. [Google Scholar]
- Bari, S. Effect of carbon dioxide on the performance of biogas/diesel duel-fuel engine. Renew. Energy 1996, 9, 1007–1010. [Google Scholar] [CrossRef]
- Henham, A.; Makkar, e.M. Combustion of simulated biogas in a dual-fuel diesel engine. Energy Convers. Manag. 1998, 39, 2001–2009. [Google Scholar] [CrossRef]
- Tippayawong, N.; Promwungkwa, A.; Rerkkriangkrai, P. Long-term operation of a small biogas/diesel dual-fuel engine for on-farm electricity generation. Biosyst. Eng. 2007, 98, 26–32. [Google Scholar] [CrossRef]
- Tippayawong, N.; Promwungkwa, A.; Rerkkriangkrai, P. Durability of a small agricultural engine on biogas/diesel dual fuel operation. Iran. J. Sci. Technol. Trans. B Eng. 2010, 34, 167–177. [Google Scholar]
- Holm-Nielsen, J.B.; Al Seadi, T.; Oleskowicz-Popiel, P. The future of anaerobic digestion and biogas utilization. Bioresour. Technol. 2009, 100, 5478–5484. [Google Scholar] [CrossRef]
- Tchobanoglous, G. Integrated Solid Waste Managementengineering Principles and Management Issues; McGraw-Hill: New York, NY, USA, 1993. [Google Scholar]
- European Commission. Integrated Pollution Prevention and Control: Reference document on the Best Available Techniques for Waste Incineration. 2005. Available online: https://eippcb.jrc.ec.europa.eu/sites/default/files/2020-01/sa_bref_0505.pdf (accessed on 25 January 2023).
- Neuwahl, F.; Cusano, G.; Benavides, J.G.; Holbrook, S.; Roudier, S. Best Available Techniques (BAT) Reference Document for Waste Incineration; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Department for Environment, Food & Rural Affairs. Incineration of Municipal Solid Waste; Department for Environment, Food & Rural Affairs: London, UK, 2013; p. 56.
- Pulok, H.A. Prospect of E-Waste in Bangladesh: A Review. Available online: https://www.researchgate.net/profile/Hasibul_Ahmed_Pulok/publication/362230233_Prospect_of_E-waste_in_Bangladesh_a_review/links/62de30baaa5823729ee0a892/Prospect-of-E-waste-in-Bangladesh-a-review.pdf (accessed on 25 January 2023).
- Hu, H.; Li, X.; Nguyen, A.D.; Kavan, P. A critical evaluation of waste incineration plants in Wuhan (China) based on site selection, environmental influence, public health and public participation. Int. J. Environ. Res. Public Health 2015, 12, 7593–7614. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Guo, Z. Technologies for direct production of flexible H2/CO synthesis gas. Energy Convers. Manag. 2006, 47, 560–569. [Google Scholar] [CrossRef]
- Ciolkosz, D.; Miller, B.; Wallace, R. Renewable and Alternative Energy Fact Sheet: Characteristics of Biomass as a Heating Fuel; The Pennsylvania State University, Ag Communications and Marketing: State College, PA, USA, 2010. [Google Scholar]
- Anukam, A.; Mamphweli, S.; Meyer, E.; Okoh, O. Computer simulation of the mass and energy balance during gasification of sugarcane bagasse. J. Energy 2014, 2014, 713054. [Google Scholar] [CrossRef] [Green Version]
- Basu, P. Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Arena, U. Process and technological aspects of municipal solid waste gasification. A review. Waste Manag. 2012, 32, 625–639. [Google Scholar] [CrossRef]
- Mohammadi, A.; Anukam, A. The Technical Challenges of the Gasification Technologies Currently in Use and Ways of Optimizing Them: A Review; IntechOpen: London, UK, 2022. [Google Scholar]
- Themelis, N.J. An overview of the global waste-to-energy industry. Waste Manag. World 2003, 40–48. Available online: http://www.columbia.edu/cu/seas/earth/papers/global_waste_to_energy.html (accessed on 11 July 2023).
- Abushammala, M.F.; Qazi, W.A. Financial feasibility of waste-to-energy technologies for municipal solid waste management in Muscat, Sultanate of Oman. Clean Technol. Environ. Policy 2021, 23, 2011–2023. [Google Scholar] [CrossRef]
- Kumar, A.; Samadder, S.R. A review on technological options of waste to energy for effective management of municipal solid waste. Waste Manag. 2017, 69, 407–422. [Google Scholar] [CrossRef]
- Danthurebandara, M.; Van Passel, S.; Nelen, D.; Tielemans, Y.; Van Acker, K. Environmental and socio-economic impacts of landfills. In Proceedings of the Linnaeus ECO-TECH 2012: International Conference on Natural Sciences and Environmental Technologies for Waste and Wastewater Treatment Remediation Emissions Related to Climate Environmental and Economic Effects, Kalmar, Sweden, 26–28 November 2012; Linnaeus University: Växjö, Sweden, 2012; pp. 40–52. [Google Scholar]
- Stengler, E. Impending European legislation from the view of the Confederation of European Waste-to-Energy Plants (CEWEP); Europaeische Gesetzesvorhaben aus Sicht der Confederation of European Waste-to-Energy Plants (CEWEP). Available online: https://www.osti.gov/etdeweb/biblio/20501830 (accessed on 25 January 2023).
- Stuart, P. The Advantages and Disadvantages of Anaerobic Digestion as a Renewable Energy Source; Loughborough University: Loughborough, UK, 2006. [Google Scholar]
- Wilkie, A.C. Anaerobic digestion: Biology and benefits. In Dairy Manure Management: Treatment, Handling, and Community Relations; NRAES-176; Natural Resource, Agriculture, and Engineering Service, Cornell University: Ithaca, NY, USA, 2005; pp. 63–72. Available online: http://biogas.ifas.ufl.edu/Publs/NRAES176-p63-72-Mar2005.pdf (accessed on 12 January 2022).
- ClientEarth. What Are the Environmental Impacts of Waste Incineration? Available online: https://ume.la/jFZ7do (accessed on 12 January 2022).
- Sharma, R.; Sharma, M.; Sharma, R.; Sharma, V. The impact of incinerators on human health and environment. Rev. Environ. Health 2013, 28, 67–72. [Google Scholar] [CrossRef]
- Lung, F.-W.; Shu, B.-C.; Chiang, T.-L.; Lin, S.-J. The impermanent effect of waste incineration on children’s development from 6 months to 8 years: A Taiwan Birth Cohort Study. Sci. Rep. 2020, 10, 3150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hester, R.E.; Harrison, R.M. Waste Incineration and the Environment; Royal Society of Chemistry: London, UK, 1994; Volume 2. [Google Scholar]
- Zhang, Y.; Cui, Y.; Chen, P.; Liu, S.; Zhou, N.; Ding, K.; Fan, L.; Peng, P.; Min, M.; Cheng, Y. Gasification technologies and their energy potentials. In Sustainable Resource Recovery and Zero Waste Approaches; Elsevier: Amsterdam, The Netherlands, 2019; pp. 193–206. [Google Scholar]
- Zafar, S. Gasification of municipal solid wastes. Energy Manag. 2009, 2, 47–51. [Google Scholar]
- CTCN. Gasification of Waste. Available online: https://ume.la/tHt8uX (accessed on 16 February 2022).
- Barahmand, Z.; Eikeland, M.S. A scoping review on environmental, economic, and social impacts of the gasification processes. Environments 2022, 9, 92. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M.; Rosado, P. Energy. Our World in Data. 2022. Available online: https://ourworldindata.org/energy (accessed on 25 March 2023).
- Vähk, J. Zero Waste Europe Welcomes the European Sustainable Finance Platform. In Defence of the Exclusion of Waste-to-Energy Incineration from the EU Taxonomy Regulation; Zero Waste Europe: Brussels, Belgium, 2020. [Google Scholar]
- Hofbauer, H. Biomass gasification for electricity and fuels, large scale. In Renewable Energy Systems; Springer: Berlin/Heidelberg, Germany, 2013; pp. 459–478. [Google Scholar]
MSW Composition | Percentage in Palestine | Anaerobic Digestion | Gasification | Incineration | Landfilling |
---|---|---|---|---|---|
Organic | 50% | √ | √ | ||
Paper | 12% | √ | √ | √ | |
Plastic | 15% | √ | √ | √ | |
Metals | 2% | √ | |||
Glass | 2% | √ | |||
Other | 19% | √ | √ | √ |
municipal solid waste (ton/year) | 32,850 |
sum of agricultural residues (ton/year) | 14,655.6 |
sum of animal manure (ton/year) | 4841.247 |
final solid waste total (ton/year) | 52,346.8 |
Parameters | Value of the Parameters | Units | |
---|---|---|---|
Low Calorific Value of Biogas | LCVBiogas | 5.56 | KWh/m3 |
Methane Generation | QCH4 | 2427.97 | m3/day |
Efficiency of Biogas Recovery System | γ | 80 | % |
Electrical Efficiency | η | 33 | % |
Parameters | Value of the Parameters | Units | |
---|---|---|---|
LCV of Biogas due to Methane | Q | 5.56 | KWh/m3 |
Number of Population | P | 69,937 | Capita |
Organic Fraction of Solid Waste | F | 50 | % |
Efficiency of Process | η | 26 | % |
Amount of Waste Produced per Capita | RAC | 0.85 | Kg/capita.day |
Methane Generation per ton of Organic Fraction of Solid Waste | MOFSW | 120 | m3/ton |
Parameters | Value of the Parameters | Units | |
---|---|---|---|
Lower Calorific Value of Waste | LCVMSW | 5.5 | KWh/m3 |
Total Mass of Dry Solid Waste | M | 41.4 | ton/day |
Efficiency of Process | η | 18 | % |
Parameters | Value of the Parameters | Units | |
---|---|---|---|
Lower Calorific Value of Waste | LCVMSW | 5.5 | KWh/m3 |
Daily Tonnage Processed | G | 90 | ton/day |
Ratio of Excluded after Mechanical Handling | Rf | 46 | % |
Efficiency of Process | η | 23 | % |
WTE Technologies | Capital Cost (US$/Ton of MSW/Year) | Operational Cost (US$/Ton of MSW/Year) |
---|---|---|
Capturing of Landfill gas | 10–30 | 1–3 |
Anaerobic digestion | 50–350 | 5–35 |
Incineration | 400–700 | 40–70 |
Gasification | 250–700 | 45–85 |
Fuel Types | % of Fuel Use | CO2 Emissions (tons/kWh) |
---|---|---|
Coal | 26 | 1.035 × 10−3 |
Petroleum | 44 | 16.435 × 10−3 |
natural gas | 30 | 60.655 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salah, W.A.; Atatri, M.; Zaid, A.; Abuhafeza, R.; Abuhelwa, M.; Bashir, M.J.K.; Abu Zneid, B. Analysis of Energy Recovery from Municipal Solid Waste and Its Environmental and Economic Impact in Tulkarm, Palestine. Energies 2023, 16, 5590. https://doi.org/10.3390/en16155590
Salah WA, Atatri M, Zaid A, Abuhafeza R, Abuhelwa M, Bashir MJK, Abu Zneid B. Analysis of Energy Recovery from Municipal Solid Waste and Its Environmental and Economic Impact in Tulkarm, Palestine. Energies. 2023; 16(15):5590. https://doi.org/10.3390/en16155590
Chicago/Turabian StyleSalah, Wael A., Manar Atatri, Aya Zaid, Rama Abuhafeza, Mai Abuhelwa, Mohammed J. K. Bashir, and Basem Abu Zneid. 2023. "Analysis of Energy Recovery from Municipal Solid Waste and Its Environmental and Economic Impact in Tulkarm, Palestine" Energies 16, no. 15: 5590. https://doi.org/10.3390/en16155590
APA StyleSalah, W. A., Atatri, M., Zaid, A., Abuhafeza, R., Abuhelwa, M., Bashir, M. J. K., & Abu Zneid, B. (2023). Analysis of Energy Recovery from Municipal Solid Waste and Its Environmental and Economic Impact in Tulkarm, Palestine. Energies, 16(15), 5590. https://doi.org/10.3390/en16155590