A Review on Wind Speed Extreme Values Modeling and Bayes Estimation for Wind Power Plant Design and Construction
Abstract
:1. Introduction
2. Extreme Value Theory
3. Extreme Value Models
- (I)
- Gumbel distribution (Type I)
- (II)
- Inverse Weibull distribution (Fréchet distribution Type II)
- (III)
- Weibull Distribution (Type III):
- (IV)
- The generalized extreme value distribution
- (V)
- The generalized Pareto distribution
- (VI)
- Gamma Distribution
- (VII)
- Mixed Distributions:
M(t) = 0, otherwise.
4. On Bayes Inference Methods for Extreme Wind Speed (EWS) and Related Safety Indices Distribution
4.1. Introduction
- -
- The ML estimate of is given on the basis of an available random sample of the time between gusts: (Tk: k = 1, …, n), by:
- -
- The ML estimate of the EP, , once observed the data:N = number of gusts in the given interval and:M = number of exceedances in the same interval,
4.2. A Bayesian Estimation Method in the Nonparametric Approach
- Evaluating the Mean Square Error of the Bayes estimator;
- Comparing Bayesian estimates with the classical ones, particularly with the most used Maximum Likelihood (ML) estimates.
- -
- Data of the observed number of gusts in a given time interval were produced using a Poisson process of mean frequency (which is randomly produced from the prior PDF) in the interval (0, );
- -
- Data of the observed exceedance number m were produced by a Binomial RV with parameters (n, w), being also w randomly produced using the prior PDF.
- -
- has a Gamma PDF with μ = 11.0 and σ = 0.22 (year−1);
- -
- has a Beta PDF with μ = 0.02 and σ = 0.0275 (w is a unitless parameter, being a probability).
4.3. A Bayesian Estimation Method in the Parametric Approach
- (1)
- Gamma prior conjugate distribution on α (see Appendix F);
- (2)
- Negative Exponential Beta distribution (NEB) (not conjugate distribution) on α (see Appendix E). Its advantage is that it implies a Beta distribution on the already introduced parameter w, so showing such similarity with the previous nonparametric approach.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. The Beta Distribution
Appendix B. The Gamma Distribution
Appendix C. The Negative Log-Gamma (NLG) Distribution
Appendix D
Appendix E. The Gamma as a Prior Conjugate Distribution for the IRD Model
Appendix F. The Negative Exponential Beta (NEB) Distributions
References
- Shi, H.; Dong, Z.; Xiao, N.; Huang, Q. Wind speed distributions used in wind energy assessment: A review. Front. Energy Res. 2021, 9, 769920. [Google Scholar] [CrossRef]
- Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained: Theory, Design and Application; John Wiley & Sons: Chichester, UK, 2010. [Google Scholar]
- Jain, P. Wind Energy Engineering; McGraw-Hill: New York, NY, USA, 2011. [Google Scholar]
- Chiodo, E.; Mazzanti, G.; Karimian, M. Bayes estimation of Inverse Weibull distribution for extreme wind speed prediction. In Proceedings of the International Conference on Clean Electrical Power (ICCEP), Taormina, Italy, 16–18 June 2015. [Google Scholar]
- Pryor, S.C.; Barthelmie, R.J.; Bukovsky, M.S.; Leung, L.R.; Sakaguchi, K. Climate change impacts on wind power generation. Nat. Rev. Earth Environ. 2020, 1, 627–643. [Google Scholar] [CrossRef]
- Cheng, E.; Yeung, C. Generalized extreme gust wind speeds distributions. J. Wind Eng. Ind. Aerodyn. 2002, 90, 1657–1669. [Google Scholar] [CrossRef]
- Letcher, T. Wind Energy Engineering: A Handbook for Onshore and Offshore Wind Turbines, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Zhang, H.; Yu, Y.-J.; Liu, Z.-Y. Study on the maximum entropy principle applied to the annual wind speed probability distribution: A case study for observations of intertidal zone anemometer towers of rudong in east china sea. Appl. Energ. 2014, 114, 931–938. [Google Scholar] [CrossRef]
- Yan, J.; Liu, Y.; Han, S.; Gu, C.; Li, F. A Robust Probabilistic Wind Power Forecasting Method Considering Wind Scenarios. In Proceedings of the 3rd Renewable Power Generation Conference, Naples, Italy, 24–25 September 2014. [Google Scholar]
- Abdulali, B.A.A.; Abu Bakar, M.A.; Ibrahim, K.; Ariff, N.B.M. Extreme value distributions: An overview of estimation and simulation. J. Probab. Stat. 2022, 2022, 5449751. [Google Scholar] [CrossRef]
- Fisher, R.A.; Tippett, L.H.C. Limiting forms of the frequency distribution of the largest and smallest member of a sample. Proc. Camb. Philos. Soc. 1928, 24, 180–190. [Google Scholar] [CrossRef]
- Gumbel, E.J. Statistics of Extremes; Columbia University Press: New York, NY, USA, 1958. [Google Scholar]
- Perrin, O.; Rootzén, H.; Taesler, R. A discussion of statistical methods used to estimate extreme wind speeds. Theor. Appl. Clim. 2006, 85, 203–215. [Google Scholar] [CrossRef]
- Castillo, E.; Hadi, A.S.; Balakrishnan, N.; Sarabia, J.M. Extreme Value and Related Models with Applications in Engineering and Science; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- An, Y.; Pandey, M.D. A comparison of methods of extreme wind speed estimation. J. Wind Eng. Ind. Aerodyn. 2005, 93, 535–545. [Google Scholar] [CrossRef]
- De Oliveira, M.M.F.; Ebecken, N.F.F.; de Oliveira, J.L.F.; Gilleland, E. Generalized extreme wind speed distributions in South America over the Atlantic Ocean region. J. Theor. Appl. Climatol. 2011, 104, 377–385. [Google Scholar] [CrossRef] [Green Version]
- Kunz, M.; Mohr, S.; Rauthe, M.; Lux, R.; Kottmeier, C.h. Assessment of extreme wind speeds from regional climate models—part 1: Estimation of return values and their evaluation. J. Nat. Hazards Earth Syst. Sci. 2010, 10, 907–922. [Google Scholar] [CrossRef] [Green Version]
- Soukissian, T.H.; Christos, T. The effect of the generalized extreme value distribution parameter estimation methods in extreme wind speed prediction. Nat. Hazards 2015, 78, 1777–1809. [Google Scholar] [CrossRef]
- Palutikof, J.P.; Brabson, B.B.; Lister, D.H.; Adcock, S.T. A review of methods to calculate extreme wind speeds. Meteorological 1999, 6, 119–132. [Google Scholar] [CrossRef]
- De Fondeville, R.; Davison, A.C. Functional peaks-over-threshold analysis. J. R. Stat. Soc. Ser. B Stat. Methodol. 2022, 84, 1392–1422. [Google Scholar] [CrossRef]
- Balkema, A.A.; de Haan, L. Residual life time at great age. Ann. Probab. 1974, 2, 792–804. [Google Scholar] [CrossRef]
- Pickands, J. Statistical inference using extreme order statistics. Ann. Stat. 1975, 3, 119–131. [Google Scholar]
- Leadbetter, M.R. On a basis for ‘Peaks over Threshold’ modeling. Stat. Probab. Lett. 1991, 12, 357–362. [Google Scholar] [CrossRef]
- Davison, A.C. Modelling Excesses over High Thresholds, with an Application; Statistical Extremes and Applications; Reidel: Dordrecht, The Netherlands, 1984; pp. 461–482. [Google Scholar]
- Smith, R.L. Threshold Methods for Sample Extremes; Statistical Extremes and Applications; Reidel: Dordrecht, The Netherlands, 1984; pp. 621–638. [Google Scholar]
- Davison, A.C.; Smith, R.L. Models for Exceedances over High Thresholds (with discussion). J. R. Stat. Soc. Ser. B 1990, 52, 393–442. [Google Scholar]
- Chiodo, E.; Mazzanti, G.; Karimian, M.; Zoh, R. Comparison of two different estimation methods of wind speed extreme values. In Proceedings of the International Conference on Clean Electrical Power (ICCEP), Taormina, Italy, 16–18 June 2015. [Google Scholar]
- Coles, S.G.; Elwyn, A.P. Bayesian methods in extreme value modelling: A review and new developments. Int. Stat. Rev. 1996, 64, 119–136. [Google Scholar] [CrossRef]
- Li, G.; Jing, S. Applications of Bayesian methods in wind energy conversion systems. Renew. Energy 2012, 43, 1–8. [Google Scholar] [CrossRef]
- Mazzanti, G.; Diban, B.; Chiodo, E.; De Falco, P.; Noia, L.P.D. Forecasting the Reliability of Components Subjected to Harmonics Generated by Power Electronic Converters. Electronics 2020, 9, 1266. [Google Scholar] [CrossRef]
- De Angelis, F.; Cancellara, D.; Grassia, L.; D’Amore, A. The influence of loading rates on hardening effects in elasto/viscoplastic strain-hardening materials. Mech. Time-Depend. Mater. 2018, 22, 533–551. [Google Scholar] [CrossRef]
- De Angelis, F.; Cancellara, D. Dynamic analysis and vulnerability reduction of asymmetric structures: Fixed base vs base isolated system. Compos. Struct. 2019, 219, 203–220. [Google Scholar] [CrossRef]
- De Angelis, F.; Cancellara, D. Multifield variational principles and computational aspects in rate plasticity. Comput. Struct. 2017, 180, 27–39. [Google Scholar] [CrossRef]
- Leadbetter, M.R.; Lindgren, G.; Rootzén, H. Extremes and Related Properties of Random Sequences and Processes; Springer Verlag: New York, NY, USA, 1983. [Google Scholar]
- Galambos, J.; Lechner, J.; Simiu, E. Extreme Value Theory and Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994; pp. 139–158. [Google Scholar]
- Gross, J.; Heckert, A.; Lechner, J.; Simiu, E. Novel Extreme Value Estimation Procedures: Application to Extreme Wind Data. In Extreme Value Theory and Applications; Springer: Boston, MA, USA, 1994. [Google Scholar]
- Chiodo, E.; Noia, L.P.D. Stochastic Extreme Wind Speed Modeling and Bayes Estimation under the Inverse Rayleigh Distribution. Appl. Sci. 2020, 10, 5643. [Google Scholar] [CrossRef]
- Fréchet, M. Sur. La loi de probabilité de l’écart maximum. Ann. Soc. Polon. Math 1927, 6, 93. [Google Scholar]
- Sarkar, A.; Deep, S.; Datta, D.; Vijaywargiya, A.; Roy, R.; Phanikanth, V.S. Weibull and Generalized Extreme Value Distributions for Wind Speed Data Analysis of Some Locations in India. KSCE J. Civ. Eng. 2019, 23, 3476–3492. [Google Scholar] [CrossRef]
- Shu, Z.R.; Li, Q.S.; Chan, P.W. Statistical Analysis of Wind Characteristics and Wind Energy Potential in Hong Kong. Energy Convers. Manag. 2015, 101, 644–657. [Google Scholar] [CrossRef]
- Wais, P. Two and Three-Parameter Weibull Distribution in Available Wind Power Analysis. Renew. Energy 2017, 103, 15–29. [Google Scholar] [CrossRef]
- Kiss, P.; Jánosi, I.M. Comprehensive Empirical Analysis of ERA-40 Surface Wind Speed Distribution over Europe. Energy Convers. Manag. 2008, 49, 2142–2151. [Google Scholar] [CrossRef]
- Bilir, L.; İmir, M.; Devrim, Y.; Albostan, A. An Investigation on Wind Energy Potential and Small Scale Wind Turbine Performance at İncek Region—Ankara, Turkey. Energy Convers. Manag. 2015, 103, 910–923. [Google Scholar] [CrossRef]
- Celik, A.N. A Simplified Model for Estimating Yearly Wind Fraction in Hybrid-Wind Energy Systems. Renew. Energy 2006, 31, 105–118. [Google Scholar] [CrossRef]
- Alves, M.F.; Neves, C. Extreme Value Distributions; Springer: Berlin, Germany, 2011. [Google Scholar]
- Pinheiro, E.C.; Ferrari, S.L.P. A comparative review of generalizations of the Gumbel extreme value distribution with an application to wind speed data. J. Stat. Comput. Simul. 2016, 86, 2241–2261. [Google Scholar] [CrossRef] [Green Version]
- Torrielli, A.; Repetto, M.P.; Solari, G. Extreme Wind Speeds from Long-Term Synthetic Records. J. Wind Eng. Ind. Aerod. 2013, 115, 22–38. [Google Scholar] [CrossRef]
- Kang, D.; Ko, K.; Huh, J. Determination of Extreme Wind Values Using the Gumbel Distribution. Energy 2015, 86, 51–58. [Google Scholar] [CrossRef]
- Baran, S.; Szokol, P.; Szabó, M. Truncated generalized extreme value distribution-based ensemble model output statistics model for calibration of wind speed ensemble forecasts. Environmetrics 2021, 32, 2678. [Google Scholar] [CrossRef]
- Holmes, J.D.; Moriarty, W.W. Application of the generalized Pareto distribution to extreme value analysis in wind engineering. J. Wind Eng. Ind. Aerodyn. 1999, 83, 1–10. [Google Scholar] [CrossRef]
- Brabson, B.B.; Palutikof, J.P. Tests of the Generalized Pareto Distribution for Predicting Extreme Wind Speeds. J. Appl. Meteor. Climatol. 2000, 39, 1627–1640. [Google Scholar] [CrossRef]
- Samal, R.K. Assessment of Wind Energy Potential Using Reanalysis Data: A Comparison with Mast Measurements. J. Clean. Prod. 2021, 313, 127933. [Google Scholar] [CrossRef]
- Raynal, J.; Guevara, J. Maximum Likelihood Estimators for the Two Populations Gumbel Distribution. Hydrol. Sci. Technol. 1997, 13, 47–56. [Google Scholar]
- Raynal, J.; Santillan, O. Maximum Likelihood Estimators of the Parameters of the Mixed GEV Distribution. In Proceedings of Congreso Nacional de Hidráulica; Asociación Mexicana de Hidráulica AMH: Querétaro, Mexico, 1986. [Google Scholar]
- Escalante, C. Application of Bivariate Extreme Value Distribution to Flood Frequency Analysis: A Case Study of Northwestern Mexico. Nat. Hazards 2006, 42, 37–46. [Google Scholar] [CrossRef]
- Escalante, C. Estimation of Extreme Wind Speeds by Using Mixed Distributions. Ing. Investig. Y Tecnol. 2013, 14, 153–162. [Google Scholar]
- Rossi, F.; Fiorentino, M.; Versace, P. Two-Component Extreme Value Distribution for Flood Frequency Analysis. Water Resour. Res. 1984, 20, 847–856. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, Y.; Xie, Z.; Zhu, P.; Yu, D. On Estimating Uncertainty of Wind Energy with Mixture of Distributions. Energy 2016, 112, 935–962. [Google Scholar] [CrossRef]
- Ouarda, T.B.M.J.; Charron, C. On the Mixture of Wind Speed Distribution in a Nordic Region. Energy Convers. Manag. 2018, 174, 33–44. [Google Scholar] [CrossRef]
- Chiodo, E.; Fantauzzi, M.; Mazzanti, G. The Compound Inverse Rayleigh as an Extreme Wind Speed Distribution and Its Bayes Estimation. Energies 2022, 15, 861. [Google Scholar] [CrossRef]
- Han, Q.; Hao, Z.; Hu, T.; Chu, F. Non-parametric models for joint probabilistic distributions of wind speed and direction data. Renew. Energy 2018, 126, 1032–1042. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Erdem, E.; Li, G.; Shi, J. Comprehensive Evaluation of Wind Speed Distribution Models: A Case Study for North Dakota Sites. Energy Convers. Manag. 2010, 51, 1449–1458. [Google Scholar] [CrossRef]
- McElroy, T.; Penny, R. Maximum entropy extreme-value seasonal adjustment. Aust. N. Z. J. Stat. 2019, 61, 152–174. [Google Scholar] [CrossRef]
- Lechner, J.A.; Simiu, E.; Heckert, N.A. Assessment of ‘peaks over threshold methods for estimating extreme value distribution tails. Struct. Saf. 1993, 12, 305–314. [Google Scholar] [CrossRef]
- Beirlant, J.; Goegebeur, Y.; Segers, J.J.; Teugels, J. Statistics of Extremes: Theory and Applications; Wiley: Chichester, UK, 2004. [Google Scholar]
- Powell, M.D. Wind measurement and archival under the Automated Surface Observing System (ASOS): User concerns and opportunity for improvement. Bull. Am. Meteorol. Soc. 1993, 74, 615–624. [Google Scholar] [CrossRef]
- Simiu, E.; Heckert, N.A. Extreme wind distribution tails: A “peaks over threshold” approach. J. Struct. Eng. 1996, 122, 539–547. [Google Scholar] [CrossRef] [Green Version]
- Cook, N.J. Towards better estimation of extreme winds. J. Wind Eng. Ind. Aerodyn. 1982, 9, 295–323. [Google Scholar] [CrossRef]
- Ross, W.H. A peaks-over-threshold analysis of extreme wind speeds. Can. J. Stat. 1987, 15, 328–335. [Google Scholar] [CrossRef]
- Coles, S.; Bawa, J.; Trenner, L.; Dorazio, P. An Introduction to Statistical Modeling of Extreme Values; Springer: Berlin/Heidelberg, Germany, 2001; p. 208. [Google Scholar]
- Ceppi, P.; Della-Marta, P.M.; Appenzeller, C. Extreme value analysis of wind speed observations over Switzerland. Arbeitsberichte der MeteoSchweiz 2008, 219, 48. [Google Scholar]
- Folgueras, P.; Solari, S.; Losada, M.Á. The selection of directional sectors for the analysis of extreme wind speed. Nat. Hazards Earth Syst. Sci. 2019, 19, 221–236. [Google Scholar] [CrossRef] [Green Version]
- Fawcett, L.; Walshaw, D. Bayesian inference for clustered extremes. Extremes 2008, 11, 217–233. [Google Scholar] [CrossRef]
- Bernardo, J.M.; Smith, A.F.M. Bayesian Theory; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- Cowles, M.K. Applied Bayesian Statistics; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Press, S.J. Subjective and Objective Bayesian Statistics: Principles, Models, and Applications, 2nd ed.; Wiley: New York, NY, USA, 2002. [Google Scholar]
- Diriba, T.A.; Debusho, L.K.; Botai, J.; Hassen, A. Bayesian modelling of extreme wind speed at Cape Town, South Africa. Env. Ecol. Stat. 2017, 24, 243–267. [Google Scholar] [CrossRef]
- Sloughter, J.; McLean, T.G.; Raftery, A.E. Probabilistic wind speed forecasting using ensembles and Bayesian model averaging. J. Am. Stat. Assoc. 2010, 105, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Touqeer, A.; Ahmad, I.; Arshad, I.A.; Almanjahie, I.M. An efficient Bayesian modelling of extreme winds in the favour of energy generation in Pakistan. Energy Rep. 2023, 9, 2980–2992. [Google Scholar]
- Berger, J.O. Bayesian analysis: A look at today and thoughts of tomorrow. J. Am. Stat. Assoc. 2000, 95, 1269–1276. [Google Scholar] [CrossRef]
- Jackman, S. Bayesian Analysis for the Social Sciences; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Cooley, D.; Naveau, P.; Jomelli, V.; Rabatel, A.; Grancher, D. A Bayesian hierarchical extreme value model for lichenometry. Env. Off. J. Int. Env. Soc. 2006, 17, 555–574. [Google Scholar] [CrossRef]
- Chiodo, E.; Falco, P.D.; Noia, L.P.D.; Mottola, F. Inverse Log-logistic distribution for Extreme Wind Speed modeling: Genesis, identification and Bayes estimation. AIMS Energy 2018, 6, 926–948. [Google Scholar] [CrossRef]
- Chiodo, E.; Mazzanti, G. Theoretical and practical aids for the proper selection of reliability models for power system components. Int. J. Reliab. Saf. 2008, 2, 99–128. [Google Scholar] [CrossRef]
- Guo, Z.; Chi, D.; Wu, J.; Zhang, W. A new wind speed forecasting strategy based on the chaotic time series modelling technique and the Apriori algorithm. Energy Convers. Manag. 2014, 84, 140–151. [Google Scholar] [CrossRef]
- Casella, G.; Berger, R.L. Statistical Inference, 2nd ed.; Duxbury Press: Pacific Grove, CA, USA, 2001. [Google Scholar]
- Tanoe, V.; Henderson, S.; Shahirinia, A.; Bina, M.T. Bayesian and non-Bayesian regression analysis applied on wind speed data. J. Renew. Sustain. Energy 2021, 13, 053303. [Google Scholar] [CrossRef]
- Battistelli, L.; Chiodo, E.; Lauria, D. Bayes assessment of photovoltaic inverter system reliability and availability. In Proceedings of the 2010 International Symposium on Power Electronics Electrical Drives Automation and Motion (SPEEDAM), Pisa, Italy, 14–16 June 2010; pp. 1–5. [Google Scholar]
ϕ (Year−1) | α (m2/s2) | ||
---|---|---|---|
50 | 100 | 200 | |
2 | 0.133 | 0.240 | 0.401 |
4 | 0.248 | 0.423 | 0.641 |
8 | 0.435 | 0.667 | 0.871 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiodo, E.; Diban, B.; Mazzanti, G.; De Angelis, F. A Review on Wind Speed Extreme Values Modeling and Bayes Estimation for Wind Power Plant Design and Construction. Energies 2023, 16, 5456. https://doi.org/10.3390/en16145456
Chiodo E, Diban B, Mazzanti G, De Angelis F. A Review on Wind Speed Extreme Values Modeling and Bayes Estimation for Wind Power Plant Design and Construction. Energies. 2023; 16(14):5456. https://doi.org/10.3390/en16145456
Chicago/Turabian StyleChiodo, Elio, Bassel Diban, Giovanni Mazzanti, and Fabio De Angelis. 2023. "A Review on Wind Speed Extreme Values Modeling and Bayes Estimation for Wind Power Plant Design and Construction" Energies 16, no. 14: 5456. https://doi.org/10.3390/en16145456
APA StyleChiodo, E., Diban, B., Mazzanti, G., & De Angelis, F. (2023). A Review on Wind Speed Extreme Values Modeling and Bayes Estimation for Wind Power Plant Design and Construction. Energies, 16(14), 5456. https://doi.org/10.3390/en16145456