Application of Particle Swarm Optimization (PSO) Algorithm in Determining Thermodynamics of Solid Combustibles
Abstract
:1. Introduction
2. Experiment Description
2.1. Wood Ignition Tests under Constant Heat Fluxes
2.2. Wood Ignition Tests under Power-Law Heat Fluxes
2.3. PMMA Ignition Tests under Linear Heat Fluxes
3. Numerical Model and PSO Algorithm
3.1. Numerical Model
3.2. PSO Algorithm
4. Results and Discussion
4.1. Optimization Results of Wood
4.2. Optimization Results of PMMA
4.3. Parameter Validation
4.4. Impact of Search Range on PSO
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cueff, G.; Mindeguia, J.; Dréan, V.; Breysse, D.; Auguin, G. Experimental and numerical study of the thermomechanical behaviour of wood-based panels exposed to fire. Constr. Build. Mater. 2018, 160, 668–678. [Google Scholar] [CrossRef]
- Ferreiro, A.I.; Rabaçal, M.; Costa, M. A combined genetic algorithm and least squares fitting procedure for the estimation of the kinetic parameters of the pyrolysis of agricultural residues. Energy Convers. Manag. 2016, 125, 290–300. [Google Scholar] [CrossRef]
- Lokmane, A.; Sébastien, L.; Lamiae, V.; Laurent, B.; Bechara, T. Comparative investigation for the determination of kinetic parameters for biomass pyrolysis by thermogravimetric analysis. J. Therm. Anal. Calorim. 2017, 129, 1201–1213. [Google Scholar]
- Ding, Y.M.; Zhang, Y.; Zhang, J.Q.; Zhou, R.; Ren, Z.Y.; Guo, H.L. Kinetic parameters estimation of pinus sylvestris pyrolysis by Kissinger-Kai method coupled with Particle Swarm Optimization and global sensitivity analysis. Bioresour. Technol. 2019, 293, 122079. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.M.; Huang, B.Q.; Li, K.Y.; Du, W.Z.; Lu, K.H.; Zhang, Y.S. Thermal interaction analysis of isolated hemicellulose and cellulose by kinetic parameters during biomass pyrolysis. Energy 2020, 195, 117010. [Google Scholar] [CrossRef]
- Ding, Y.M.; Zhang, J.; He, Q.Z.; Huang, B.Q.; Mao, S.H. The application and validity of various reaction kinetic models on woody biomass pyrolysis. Energy 2019, 179, 784–791. [Google Scholar] [CrossRef]
- Ding, Y.M.; Wang, C.J.; Chaos, M.; Chen, R.Y.; Lu, S.X. Estimation of beech pyrolysis kinetic parameters by Shuffled Complex Evolution. Bioresour. Technol. 2016, 200, 658–665. [Google Scholar] [CrossRef]
- Fiola, G.J.; Chaudhari, D.M.; Stoliarov, S.I. Comparison of pyrolysis properties of extruded and cast Poly (methyl methacrylate). Fire Saf. J. 2021, 120, 103083. [Google Scholar] [CrossRef]
- Richter, F.; Rein, G. Pyrolysis kinetics and multi-objective inverse modelling of cellulose at the microscale. Fire Saf. J. 2017, 91, 191–199. [Google Scholar] [CrossRef]
- Gong, J.H.; Gu, Y.M.; Zhai, C.J.; Wang, Z.R. A hybrid pyrolysis mechanism of phenol formaldehyde and kinetics evaluation using isoconversional methods and genetic algorithm—ScienceDirect. Thermochim. Acta. 2020, 690, 178708. [Google Scholar] [CrossRef]
- Ding, Y.M.; Zhang, W.L.; Yu, L.; Lu, K.H. The accuracy and efficiency of GA and PSO optimization schemes on estimating reaction kinetic parameters of biomass pyrolysis. Energy 2019, 176, 582–588. [Google Scholar] [CrossRef]
- Sun, J.; Wu, X.; Palade, V.; Fang, W.; Lai, C.; Xu, W. Convergence analysis and improvements of quantum-behaved particle swarm optimization. Inform. Sci. 2012, 193, 81–103. [Google Scholar] [CrossRef]
- Nimmanterdwong, P.; Chalermsinsuwan, B.; Piumsomboon, P. Optimizing utilization pathways for biomass to chemicals and energy by integrating emergy analysis and particle swarm optimization (PSO). Renew. Energy 2023, 202, 1448–1459. [Google Scholar] [CrossRef]
- Xu, L.; Jiang, Y.; Wang, L. Thermal decomposition of rape straw: Pyrolysis modeling and kinetic study via particle swarm optimization. Energy Convers. Manag. 2017, 146, 124–133. [Google Scholar] [CrossRef]
- Shorabeh, S.N.; Samany, N.N.; Minaei, F.; Firozjaei, H.K.; Homaee, M.; Boloorani, A.D. A decision model based on decision tree and particle swarm optimization algorithms to identify optimal locations for solar power plants construction in Iran. Renew. Energy 2022, 187, 56–67. [Google Scholar] [CrossRef]
- Srinivasan, B.; Mekala, P. Mining social networking data for classification using Reptree. Int. J. Adv. Res. Comput. Sci. Manag. Stud. 2014, 2, 155–160. [Google Scholar]
- Aghbashlo, M.; Tabatabaei, M.; Nadian, M.H.; Davoodnia, V.; Soltanian, S. Prognostication of lignocellulosic biomass pyrolysis behavior using ANFIS model tuned by PSO algorithm. Fuel 2019, 253, 189–198. [Google Scholar] [CrossRef]
- Zhao, S.H.; Xu, W.J.; Chen, L.H. The modeling and products prediction for biomass oxidative pyrolysis based on PSO-ANN method: An artificial intelligence algorithm approach. Fuel 2022, 312, 122966. [Google Scholar] [CrossRef]
- Sunphorka, S.; Chalermsinsuwan, B.; Piumsomboon, P. Artificial neural network model for the prediction of kinetic parameters of biomass pyrolysis from its constituents. Fuel 2017, 193, 142–158. [Google Scholar] [CrossRef]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Ghose, A.; Gupta, D.; Nuzelu, V.; Rangan, L.; Mitra, S. Optimization of laccase enzyme extraction from spent mushroom waste of Pleurotus florida through ANN-PSO modeling: An ecofriendly and economical approach. Environ. Res. 2023, 222, 115345. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.P.; Keshtegar, B.; Seghier, M.B.; Zio, E.; Taylan, O. Hybrid and enhanced PSO: Novel first order reliability method-based hybrid intelligent approaches. Comput. Methods Appl. Mech. Eng. 2022, 393, 114730. [Google Scholar] [CrossRef]
- Lin, S.W.; Liu, A.; Wang, J.G.; Kong, X.Y. An intelligence-based hybrid PSO-SA for mobile robot path planning in warehouse. J. Comput. Sci. 2023, 67, 101938. [Google Scholar] [CrossRef]
- Kardani, N.; Bardhan, A.; Samui, P.; Nazem, M.; Asteris, P.G.; Zhou, A.N. Predicting the thermal conductivity of soils using integrated approach of ANN and PSO with adaptive and time-varying acceleration coefficients. Int. J. Therm. Sci. 2022, 173, 107427. [Google Scholar] [CrossRef]
- Du, W.Y.; Ma, J.; Yin, W.J. Orderly charging strategy of electric vehicle based on improved PSO algorithm. Energy 2023, 271, 127088. [Google Scholar] [CrossRef]
- ASTM E1354; Standard TEST method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter. ASTM International: West Conshohocken, PA, USA, 2011.
- Swann, J.D.; Ding, Y.; McKinnon, M.B.; Stoliarov, S.I. Controlled atmosphere pyrolysis apparatus II (CAPA II): A new tool for analysis of pyrolysis of charring and intumescent polymers. Fire Saf. J. 2017, 91, 130–139. [Google Scholar] [CrossRef]
- Gong, J.H.; Zhu, Z.X.; Zhai, C.J. A numerical model for simulating pyrolysis and combustion behaviors of multilayer composites. Fuel 2021, 289, 119752. [Google Scholar] [CrossRef]
- Gong, J.H.; Zhai, C.J.; Wang, Z.R. Pyrolysis and autoignition behaviors of beech wood coated with an acrylic-based waterborne layer. Fuel 2021, 306, 121724. [Google Scholar] [CrossRef]
- Gong, J.H.; Cao, J.L.; Zhai, C.J.; Wang, Z.R. Effect of moisture content on thermal decomposition and autoignition of wood under power-law thermal radiation. Appl. Therm. Eng. 2020, 179, 115651. [Google Scholar] [CrossRef]
- Gong, J.H.; Zhang, M.R.; Zhai, C.J.; Yang, L.Z.; Zhou, Y.; Wang, Z.R. Experimental, analytical and numerical investigation on auto-ignition of thermally intermediate PMMA imposed to linear time-increasing heat flux. Appl. Therm. Eng. 2020, 172, 115137. [Google Scholar] [CrossRef]
- ASTM E2058-13a; Standard test Methods for Measurement of Synthetic Polymer Material Flammability Using a Fire Propagation Apparatus (FPA). ASTM International: West Conshohocken, PA, USA, 2013.
- Eberhart, R.C.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the sixth international symposium on micro machine and human science 1995, Nagoya, Japan, 4–6 October 1995. [Google Scholar]
- Gong, J.; Yang, L. A Review on Flaming Ignition of Solid Combustibles: Pyrolysis Kinetics, Experimental Methods and Modelling. Fire Technol. 2022, 1–98. [Google Scholar] [CrossRef]
- Ross, R.J. Wood Handbook: Wood as an Engineering Material; Forest Products Laboratory, United States Department of Agriculture Forest Service: Washington, DC, USA, 1987. [Google Scholar]
- Stoliarov, S.I.; Crowley, S.; Lyon, R.E. Prediction of the burning rates of non-charring polymers. Combust. Flame 2009, 156, 1068–1083. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Burnham, A.K.; Favergeon, L.; Koga, N.; Moukhina, E.; Perez-Maqueda, L.A.; Sbirrazzuolie, N. ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochim Acta. 2020, 689, 178597. [Google Scholar] [CrossRef]
Parameter | Value | Source |
---|---|---|
Density (ρ, g m−3) | 6.54 × 105 | Measured |
Absorptivity/emissivity (ε) | 0.86 | [30] |
Convection coefficient (hc, W m−2 K−1) | 10 | [30] |
Specific heat (Cp, J g−1 K−1) | 0.012 + 6.73 × 10−3 T | Optimized at constant HFs |
0.006 + 3.58 × 10−3 T | Optimized at power-law HFs | |
Thermal conductivity (k, W m−1 K−1) | −0.001 + 4.64 × 10−4 T | Optimized at constant HFs |
0.003 + 4.25 × 10−4 T | Optimized at power-law HFs |
Heat Flux | a (W m−2 s−b) | b (−) |
---|---|---|
HF1 | 14.3 | 1.363 |
HF2 | 9.4 | 1.374 |
HF3 | 6.8 | 1.383 |
HF4 | 4.0 | 1.412 |
Heat Flux | a (W m−2 s−1) |
---|---|
HF1 | 57.6 |
HF2 | 80.0 |
HF3 | 89.6 |
HF4 | 102.0 |
HF5 | 116.8 |
HF6 | 137.4 |
Parameters | Value | Source |
---|---|---|
Density (ρ, g m−3) | 1.19 × 106 | Measured |
Absorptivity/emissivity (ε) | 0.945 | [31] |
Convection coefficient (hc, W m−2 K−1) | 10 | [30] |
Specific heat (Cp, J g−1 K−1) | 0.49 + 2.37 × 10−3 T | Optimized |
Thermal conductivity (k, W m−1 K−1) | 0.19 + 2.64 × 10−5 T | Optimized |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, H.; Gong, J. Application of Particle Swarm Optimization (PSO) Algorithm in Determining Thermodynamics of Solid Combustibles. Energies 2023, 16, 5302. https://doi.org/10.3390/en16145302
Pan H, Gong J. Application of Particle Swarm Optimization (PSO) Algorithm in Determining Thermodynamics of Solid Combustibles. Energies. 2023; 16(14):5302. https://doi.org/10.3390/en16145302
Chicago/Turabian StylePan, Haoyu, and Junhui Gong. 2023. "Application of Particle Swarm Optimization (PSO) Algorithm in Determining Thermodynamics of Solid Combustibles" Energies 16, no. 14: 5302. https://doi.org/10.3390/en16145302
APA StylePan, H., & Gong, J. (2023). Application of Particle Swarm Optimization (PSO) Algorithm in Determining Thermodynamics of Solid Combustibles. Energies, 16(14), 5302. https://doi.org/10.3390/en16145302