Measurement of a Three-Dimensional Rotating Flow Field and Analysis of the Internal Oil Droplet Migration
Abstract
:1. Introduction
2. Experimental
2.1. PIV Experiments
2.2. HSV Experiments
3. Results and Discussion
3.1. Analysis of the Velocity of the Rotating Flow Field Based on PIV
3.1.1. Characteristics of Axial and Radial Velocity Distributions
3.1.2. Characteristics of Axial and Radial Velocity Distributions
3.2. Radial Migration of Oil Droplets in the Rotating Flow Field
3.3. Experimental Study on the Settling Process of Oil Droplets with Different Particle Sizes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, M.; Zhao, L.; Xu, B.; Liu, L.; Zhang, S. Discussion on deep improvement technology of separation efficiency of liquid-liquid hydrocyclone. Prog. Chem. Ind. 2021, 40, 6590–6603. [Google Scholar]
- Zhang, H.; Lu, Y. Numerical simulation of two-phase flow characteristics in supercritical water circulating fluidized bed. J. Eng. Thermophys. 2018, 39, 127–132. [Google Scholar]
- Chen, A.; Huang, Q.; Geng, S.; Yang, C. Hydrodynamic characteristics of gas-liquid two-phase flow in jet reactor. Prog. Chem. Ind. 2018, 37, 1257–1266. [Google Scholar]
- He, M.; Wang, N.; Hou, Q.; Chen, M.; Yu, H. Coalescence and sedimentation of liquid iron droplets during smelting reduction of converter slag with mechanical stirring. Powder Technol. 2020, 362, 550–558. [Google Scholar] [CrossRef]
- Denisova, M.O.; Kostarev, K.G. Droplet Deformation under Conditions of Neutral Buoyancy. J. Phys. Conf. Ser. 2021, 1945, 012002. [Google Scholar] [CrossRef]
- Solsvik, J.; Jakobsen, H.A. Single Air Bubble Breakup Experiments in Stirred Water Tank. Int. J. Chem. React. Eng. 2015, 13, 477–491. [Google Scholar] [CrossRef]
- Schütz, S.; Gorbach, G.; Piesche, M. Modeling fluid behavior and droplet interactions during liquid-liquid separation in hydrocyclones. Chem. Eng. Sci. 2009, 64, 3935–3952. [Google Scholar] [CrossRef]
- Xia, H. Study on the characteristics of oil droplet aggregation and migration in the swirling flow field of non-Newtonian fluid. Northeast. Univ. Pet. 2021. [Google Scholar] [CrossRef]
- Xing, L.; Jiang, M.; Zhang, Y.; Xiong, F. Oil droplet aggregation and crushing characteristics in shaft guide cone hydrocyclone. J. China Univ. Pet. (Nat. Sci. Ed.) 2019, 43, 140147. [Google Scholar]
- Dalgamoni, H.N.; Yong, X. Numerical and theoretical modeling of droplet impact on spherical surfaces. Phys. Fluids 2021, 33, 052112. [Google Scholar] [CrossRef]
- Yuan, S.; Liu, T.; Fan, Y.; Song, G.; Liu, J. Numerical simulation of droplet collision dynamics in oil-water separation process. Petrochem. Ind. 2021, 50, 675–679. [Google Scholar]
- Wu, X.; Wei, N.; Liu, P.; Li, X.; Pan, H.; Li, H. Experimental study on bubble motion characteristics under different nozzle immersion modes. J. Eng. Thermophys. 2021, 42, 143–154. [Google Scholar]
- Zhang, H.; Han, Z.; Wang, X.; Liu, H. Simulation of solid particle trajectory in cyclone separator based on DPM. Shandong Chem. Ind. 2020, 49, 127–129. [Google Scholar]
- Solsvik, J.; Jakobsen, H.A. Single drop breakup experiments in stirred liquid–liquid tank. Chem. Eng. Sci. 2015, 131, 219–234. [Google Scholar] [CrossRef]
- Liu, H.; Lu, Y.; Li, S.; Yu, Y.; Sahu, K.C. Deformation and breakup of a compound droplet in three-dimensional oscillatory shear flow. Int. J. Multiph. Flow 2021, 134, 103472. [Google Scholar] [CrossRef]
- Ling, C.; Zhong, Y.; Peng, L. Three-dimensional numerical research on the effects of lateral pulsating airflow on droplet breakup. Phys. Fluids 2021, 33, 033303. [Google Scholar] [CrossRef]
- Sun, G.; Liu, Y.; Lu, H.; Yang, Q.; Liu, H.; Zhu, Y. Study on the deformation and motion of oil droplets under the action of shear flow. J. Jiangsu Univ. Sci. Technol. (Nat. Sci. Ed.) 2019, 33, 41–47. [Google Scholar]
- Bhardwaj, S.; Dalal, A.; Biswas, G.; Mukherjee, P.P. Analysis of droplet dynamics in a partially obstructed confinement in a three-dimensional channel. Phys. Fluids 2018, 30, 102102. [Google Scholar] [CrossRef]
- Xing, L.; Gao, J.; Jiang, M.; Li, F.; Li, J.; Han, G. Application and comparison of coalescence and breakage model in hydrocyclone simulation. Chem. Eng. 2021, 49, 46–51. [Google Scholar]
- Li, X.; Yuan, H. Study on the mechanism of droplet aggregation in hydrocyclone. Min. Mach. 2006, 7, 67–69. [Google Scholar]
- Chen, D.; Wei, Z.; Jiang, M.; Zhao, L. Effect of large cone gas injection on separation performance of liquid-liquid hydrocyclone. Chem. Mach. 2014, 41, 480–483. [Google Scholar]
- Wang, Z.; Ma, Y.; Jin, Y. Numerical simulation of oil droplet movement and migration in guide vane hydrocyclone. J. Chem. Eng. Univ. 2011, 25, 543–546. [Google Scholar]
- Xu, Y.; Lin, K.; Wu, Z.; Lv, F.; Zhang, J. Numerical simulation of flow field in cyclone separator based on RSM and LES turbulence model. Chem. Mach. 2015, 42, 409–412, 446. [Google Scholar]
- Xie, X.D.; Wang, X.C.; Wang, J.Z.; Li, Y.; Wang, J.; Guo, L.; Han, J.; Gu, J. Study on gas-liquid separation characteristics of cylindrical cyclone under low inlet void fraction. J. Eng. Thermophys. 2021, 42, 2873–2878. [Google Scholar]
- Shi, B.; Xue, K.; Pan, J.; Zhang, X.; Ying, R.; Wu, L.; Zhang, Y. Liquid/solid flow field in a centrifugal pump with different impeller blade types by PIV. Meas. Control 2021, 54, 1219–1233. [Google Scholar] [CrossRef]
- Gao, B.; Coltman, E.; Farnsworth, J.; Helmig, R.; Smits, K.M. Determination of vapor and momentum roughness lengths above an undulating soil surface based on piv-measured velocity profiles. Water Resour. Res. 2021, 57, e2021WR029578. [Google Scholar] [CrossRef]
- Wang, X.B.; Liu, Y.; Cui, H.Q.; Han, H.S. A PIV experimental study on fluid flow characteristics in hydrocyclone. Acta Petrol. Sin. 2022, 33, 143–149. [Google Scholar]
- Li, X.; Yuan, H.; Cao, Z. Analysis of mechanical characteristics of dispersed phase particles in swirl field. Metal. Mine 2007, 101–103, 134. [Google Scholar]
- Xing, L. Study on the Migration Trajectory of Oil Droplets in a Swirl Field. Northeast. Univ. Pet. 2017. Available online: https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C475KOm_zrgu4lQARvep2SAkkyu7xrzFWukWIylgpWWcEg9jkstg9Dp9jlwR8hWWhhgupdcqi49zbJjPn7eMZbvF&uniplatform=NZKPT (accessed on 24 May 2023).
- Qian, Y.; Li, J.; Ma, Y.; Yin, J.; Wang, D.; Li, H.; Liu, W. Numerical simulation of tritiated bubble trajectory in a gas-liquid separator. Int. J. Energy Res. 2018, 42, 293–302. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, H.; Tian, J.; Li, J.; He, F. Theoretical study on centrifugal coupling characteristics of self-rotation and revolution of particles in hydrocyclones. Sep. Purif. Technol. 2020, 244, 116552. [Google Scholar] [CrossRef]
- Sandulyak, A.V.; Sandulyak, D.A.; Polismakova, M.N.; Ershova, V.A. Role of viscosity and temperature factors in the magnetophoresis of dispersed phase of different liquid media. J. Eng. Phys. Thermophys. 2021, 94, 919–926. [Google Scholar] [CrossRef]
- Ozturk, D. Performance of a magnus effect-based cylindrical roll stabilizer on a full-scale motor-yacht. Ocean. Eng. 2020, 218, 108247. [Google Scholar] [CrossRef]
Oil Droplet | Oil Droplet Size/mm | Radial Position/mm | Balance Time/s | Average Radial Velocity/m·s−1 |
---|---|---|---|---|
1# | 2.67 | 19.93 | 0.902 | 0.0221 |
2# | 4.11 | 22.57 | 1.002 | 0.0225 |
3# | 6.61 | 39.79 | 0.784 | 0.0531 |
4# | 2.95 | 21.35 | 1.660 | 0.0219 |
5# | 2.71 | 30.21 | 1.514 | 0.0200 |
6# | 4.10 | 38.43 | 2.226 | 0.0173 |
7# | 4.39 | 20.50 | 0.752 | 0.0273 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, L.; Guan, S.; Gao, Y.; Jiang, M. Measurement of a Three-Dimensional Rotating Flow Field and Analysis of the Internal Oil Droplet Migration. Energies 2023, 16, 5094. https://doi.org/10.3390/en16135094
Xing L, Guan S, Gao Y, Jiang M. Measurement of a Three-Dimensional Rotating Flow Field and Analysis of the Internal Oil Droplet Migration. Energies. 2023; 16(13):5094. https://doi.org/10.3390/en16135094
Chicago/Turabian StyleXing, Lei, Shuai Guan, Yang Gao, and Minghu Jiang. 2023. "Measurement of a Three-Dimensional Rotating Flow Field and Analysis of the Internal Oil Droplet Migration" Energies 16, no. 13: 5094. https://doi.org/10.3390/en16135094
APA StyleXing, L., Guan, S., Gao, Y., & Jiang, M. (2023). Measurement of a Three-Dimensional Rotating Flow Field and Analysis of the Internal Oil Droplet Migration. Energies, 16(13), 5094. https://doi.org/10.3390/en16135094