Multistep Forecasting of Power Flow Based on LSTM Autoencoder: A Study Case in Regional Grid Cluster Proposal
Abstract
:1. Introduction
1.1. Background
1.2. Related Work and Contribution
- This study performs a comparative analysis between LSTM autoencoder and four distinct LSTM family architectures for multistep forecasting, which, as far as the authors are aware, have not been subject to a comparative analysis in prior literature.
- This study presents a 1-h-ahead (four steps of 15 min intervals) forecasting approach for power flow specifically tailored for a regional grid cluster application.
2. Deep Learning Model
2.1. Long Short-Term Memory (LSTM) Structure
2.2. LSTM Autoencoder
3. Grid Network Cluster and Power Flow Dataset
3.1. Grid Network Cluster
3.2. Bidirectional Power Flow Dataset
4. Proposed Methodology
4.1. Data Collection and Data Preprocessing
4.1.1. Step 1: Dealing with Missing Values
4.1.2. Step 2: Data Normalization
4.1.3. Step 3: Sliding Window
4.1.4. Step 4: Dataset Splitting
4.2. Model Construction with Autotune Hyperparameter
4.3. Model Evaluation
5. Results and Discussion
5.1. Comparison of Deep Learning Models in Training Stage
5.2. Performance Comparison of Deep Learing Models
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sen, S.; Ganguly, S. Opportunities, barriers and issues with renewable energy development—A discussion. Renew. Sustain. Energy Rev. 2017, 69, 1170–1181. [Google Scholar] [CrossRef]
- Li, Y.; Janik, P.; Schwarz, H.; Pfeiffer, K. Proposal of a regional grid cluster model for analysis of electrical power network performance. Arch. Electr. Eng. 2022, 71, 601–613. [Google Scholar] [CrossRef]
- Kumari, P.; Toshniwal, D. Deep learning models for solar irradiance forecasting: A comprehensive review. J. Clean. Prod. 2021, 318, 128566. [Google Scholar] [CrossRef]
- Soman, S.S.; Zareipour, H.; Member, S.; Malik, O.; Fellow, L. A Review of Wind Power and Wind Speed Forecasting Methods With Different Time Horizons. In Proceedings of the North-American Power Symposium (NAPS) 2010, Arlington, TX, USA, 26–28 September 2010; pp. 1–7. [Google Scholar] [CrossRef]
- Das, U.K.; Tey, K.S.; Seyedmahmoudian, M.; Mekhilef, S.; Idris, M.Y.I.; Van Deventer, W.; Horan, B.; Stojcevski, A. Forecasting of photovoltaic power generation and model optimization: A review. Renew. Sustain. Energy Rev. 2018, 81, 912–928. [Google Scholar] [CrossRef]
- Agga, A.; Abbou, A.; Labbadi, M.; El Houm, Y.; Ou Ali, I.H. CNN-LSTM: An efficient hybrid deep learning architecture for predicting short-term photovoltaic power production. Electr. Power Syst. Res. 2022, 208, 107908. [Google Scholar] [CrossRef]
- Aksan, F.; Li, Y.; Suresh, V.; Janik, P. CNN-LSTM vs. LSTM-CNN to Predict Power Flow Direction: A Case Study of the High-Voltage Subnet of Northeast Germany. Sensors 2023, 23, 901. [Google Scholar] [CrossRef] [PubMed]
- Rajagukguk, R.A.; Ramadhan, R.A.A.; Lee, H.J. A review on deep learning models for forecasting time series data of solar irradiance and photovoltaic power. Energies 2020, 13, 6623. [Google Scholar] [CrossRef]
- Li, D.; Sun, G.; Miao, S.; Gu, Y.; Zhang, Y.; He, S. A short-term electric load forecast method based on improved sequence-to-sequence GRU with adaptive temporal dependence. Int. J. Electr. Power Energy Syst. 2022, 137, 107627. [Google Scholar] [CrossRef]
- Lin, J.; Ma, J.; Zhu, J.; Cui, Y. Short-term load forecasting based on LSTM networks considering attention mechanism. Int. J. Electr. Power Energy Syst. 2022, 137, 107818. [Google Scholar] [CrossRef]
- Bashir, T.; Haoyong, C.; Tahir, M.F.; Liqiang, Z. Short term electricity load forecasting using hybrid prophet-LSTM model optimized by BPNN. Energy Rep. 2022, 8, 1678–1686. [Google Scholar] [CrossRef]
- Yazici, I.; Beyca, O.F.; Delen, D. Deep-learning-based short-term electricity load forecasting: A real case application. Eng. Appl. Artif. Intell. 2022, 109, 104645. [Google Scholar] [CrossRef]
- Suresh, V.; Aksan, F.; Janik, P.; Sikorski, T.; Sri Revathi, B. Probabilistic LSTM-Autoencoder based hour-ahead solar power forecasting model for intra-day electricity market participation: A Polish case study. IEEE Access 2022, 10, 110628–110638. [Google Scholar] [CrossRef]
- Duan, J.; Zuo, H.; Bai, Y.; Chang, M.; Chen, X.; Wang, W.; Ma, L.; Chen, B. A multistep short-term solar radiation forecasting model using fully convolutional neural networks and chaotic aquila optimization combining WRF-Solar model results. Energy 2023, 271, 126980. [Google Scholar] [CrossRef]
- Wang, K.; Qi, X.; Liu, H. A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network. Appl. Energy 2019, 251, 113315. [Google Scholar] [CrossRef]
- Wang, D.; Cui, X.; Niu, D. Wind Power Forecasting Based on LSTM Improved by EMD-PCA-RF. Sustainability 2022, 14, 7307. [Google Scholar] [CrossRef]
- Liu, H.; Mi, X.; Li, Y. Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM. Energy Convers. Manag. 2018, 159, 54–64. [Google Scholar] [CrossRef]
- Niu, Z.; Yu, Z.; Tang, W.; Wu, Q.; Reformat, M. Wind power forecasting using attention-based gated recurrent unit network. Energy 2020, 196, 117081. [Google Scholar] [CrossRef]
- Jost, D.; Braun, A.; Brauns, K.; Dobschinski, J. Forecasting Vertical Power Flows at Transmission Grid Nodes characterized by high Penetration of Renewable Generation and Consumption. In Proceedings of the Wind Integration Workshop (WIW), Dublin, Ireland, 16–18 October 2019; Available online: https://publica.fraunhofer.de/entities/publication/ (accessed on 28 June 2022). [CrossRef]
- Brauns, K.; Scholz, C.; Schultz, A.; Baier, A.; Jost, D. Vertical power flow forecast with LSTMs using regular training update strategies. Energy AI 2022, 8, 100143. [Google Scholar] [CrossRef]
- Paretkar, P.S.; Mili, L.; Centeno, V.; Jin, K.; Miller, C. Short-term forecasting of power flows over major transmission interties: Using Box and Jenkins ARIMA methodology. In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–8. [Google Scholar] [CrossRef]
- Shao, X.; Kim, C.S. Multi-Step Short-Term Power Consumption Forecasting Using Multi-Channel LSTM with Time Location Considering Customer Behavior. IEEE Access 2020, 8, 125263–125273. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, D.; Bao, J.; Qi, Y. Multi-step ahead time series forecasting for different data patterns based on LSTM recurrent neural network. In Proceedings of the 2017 14th Web Information Systems and Applications Conference (WISA), Liuzhou, China, 11–12 November 2017; pp. 305–310. [Google Scholar] [CrossRef]
- Alsharekh, M.F.; Habib, S.; Dewi, D.A.; Albattah, W.; Islam, M.; Albahli, S. Improving the Efficiency of Multistep Short-Term Electricity Load Forecasting via R-CNN with ML-LSTM. Sensors 2022, 22, 6913. [Google Scholar] [CrossRef]
- Singh, N.; Vyjayanthi, C.; Modi, C. Multi-step Short-term Electric Load Forecasting using 2D Convolutional Neural Networks. In Proceedings of the 2020 IEEE-HYDCON, Hyderabad, India, 11–12 September 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Cheng, Y.; Chang, H.; Tang, K.; Zou, J.; Zhuo, J.; Cai, Y. Multistep electricity load forecasting method based on the hybrid GRU neural network. In Proceedings of the 2022 International Applied Computational Electromagnetics Society Symposium (ACES-China), Xuzhou, China, 9–12 December 2022; pp. 1–3. [Google Scholar] [CrossRef]
- Hüsken, M.; Stagge, P. Recurrent neural networks for time series classification. Neurocomputing 2003, 50, 223–235. [Google Scholar] [CrossRef]
- Smagulova, K.; James, A.P. Overview of long short-term memory neural networks. Model. Optimal Sci. Technol. 2020, 14, 139–153. [Google Scholar] [CrossRef]
- Hochreiter, S. Long Short-term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Janocha, K.; Czarnecki, W.M. On loss functions for deep neural networks in classification. Schedae Inform. 2016, 25, 49–59. [Google Scholar] [CrossRef]
- Baranwal, M.; Salapaka, S.M. Clustering of Power Networks: An Information-Theoretic Perspective. In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017. [Google Scholar]
- Abou Hamad, I.; Arne Rikvold, P.; Poroseva, S.V. Floridian high-voltage power-grid network partitioning and cluster optimization using simulated annealing. Phys. Procedia 2011, 15, 2–6. [Google Scholar] [CrossRef] [Green Version]
- Elhassan, A.; Abu-soud, S.M.; Alghanim, F.; Salameh, W. ILA4: Overcoming missing values in machine learning datasets—An inductive learning approach. J. King Saud Univ.—Comput. Inf. Sci. 2021, 34, 4284–4295. [Google Scholar] [CrossRef]
- Aksan, F.; Janik, P.; Suresh, V.; Leonowicz, Z. Review of the application of deep learning for fault detection in wind turbine. In Proceedings of the 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Prague, Czech Republic, 28 June–1 July 2022. [Google Scholar] [CrossRef]
- Suresh, V.; Janik, P.; Rezmer, J.; Leonowicz, Z. Forecasting solar PV output using convolutional neural networks with a sliding window algorithm. Energies 2020, 13, 723. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Qi, X.; Liu, H. Photovoltaic power forecasting based LSTM-Convolutional Network. Energy 2019, 189, 116225. [Google Scholar] [CrossRef]
- Lu, X.; Lin, P.; Cheng, S.; Lin, Y.; Chen, Z.; Wu, L.; Zheng, Q. Fault diagnosis for photovoltaic array based on convolutional neural network and electrical time series graph. Energy Convers. Manag. 2019, 196, 950–965. [Google Scholar] [CrossRef]
- Hwang, H.P.C.; Ku, C.C.Y.; Chan, J.C.C. Detection of malfunctioning photovoltaic modules based on machine learning algorithms. IEEE Access 2021, 9, 37210–37219. [Google Scholar] [CrossRef]
- Wang, F.; Xuan, Z.; Zhen, Z.; Li, K.; Wang, T.; Shi, M. A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework. Energy Convers. Manag. 2020, 212, 112766. [Google Scholar] [CrossRef]
- Jahangir, H.; Aliakbar, M.; Alhameli, F.; Mazouz, A.; Ahmadian, A.; Elkamel, A. Short-term wind speed forecasting framework based on stacked denoising auto-encoders with rough ANN. Sustain. Energy Technol. Assess. 2020, 38, 100601. [Google Scholar] [CrossRef]
- Hong, Y.; Lian, C.; Rioflorido, P.P. A hybrid deep learning-based neural network for 24-h ahead wind power forecasting. Appl. Energy 2019, 250, 530–539. [Google Scholar] [CrossRef]
- Fekri, M.N.; Patel, H.; Grolinger, K.; Sharma, V. Deep learning for load forecasting with smart meter data: Online Adaptive Recurrent Neural Network. Appl. Energy 2021, 282, 116177. [Google Scholar] [CrossRef]
- Le, X.; Ho, H.V.; Lee, G.; Jung, S. Application of Long Short-Term Memory (LSTM) Neural Network for Flood Forecasting. Water 2019, 11, 1387. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Wu, Q.; Zhu, J. Data-driven wind speed forecasting using deep feature extraction and LSTM. IET Renew. Power Gener. 2019, 13, 2062–2069. [Google Scholar] [CrossRef]
- Xiuyun, G.; Ying, W.; Yang, G.; Chengzhi, S.; Wen, X.; Yimiao, Y. Short-term Load Forecasting Model of GRU Network Based on Deep Learning Framework. In Proceedings of the 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China; 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Inteha, A.; Nahid-Al-Masood. A GRU-GA Hybrid Model Based Technique for Short Term Electrical Load Forecasting. In Proceedings of the 2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST) 2021, Dhaka, Bangladesh, 5–7 January 2021; pp. 515–519. [Google Scholar] [CrossRef]
- Siami-Namini, S.; Tavakoli, N.; Namin, A.S. The Performance of LSTM and BiLSTM in Forecasting Time Series. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 3285–3292. [Google Scholar] [CrossRef]
- TensorFlow. Available online: https://www.tensorflow.org/ (accessed on 16 April 2023).
- Keras: Deep Learning for Humans. Available online: https://keras.io/ (accessed on 16 April 2023).
- Wang, Y.; Zou, R.; Liu, F.; Zhang, L.; Liu, Q. A review of wind speed and wind power forecasting with deep neural networks. Appl. Energy 2021, 304, 117766. [Google Scholar] [CrossRef]
- Badran, I.; El-Zayyat, H.; Halasa, G. Short-term and medium-term load forecasting for Jordan’s power system. Am. J. Appl. Sci. 2008, 5, 763–768. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Dong, Z.; Su, J.; Han, Z.; Zhou, D.; Zhao, Y.; Bao, Y. 2-D regional short-term wind speed forecast based on CNN-LSTM deep learning model. Energy Convers. Manag. 2021, 244, 114451. [Google Scholar] [CrossRef]
- Scikit-Learn: Machine Learning in Python—Scikit-Learn 1.0.2 Documentation. Available online: https://scikit-learn.org/stable/ (accessed on 13 March 2022).
- Koch, P.; Golovidov, O.; Gardner, S.; Wujek, B.; Griffin, J.; Xu, Y. Autotune: A Derivative-free Optimization Framework for Hyperparameter Tuning. In Proceedings of the KDD’18: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Jamieson, K.; Rostamizadeh, A.; Talwalkar, A. Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization. J. Mach. Learn. Res. 2018, 18, 1–52. Available online: http://jmlr.org/papers/v18/16-558.html (accessed on 8 May 2023).
- Anzanello, M.J.; Fogliatto, F.S. Learning curve models and applications: Literature review and research directions. Int. J. Ind. Ergon. 2011, 41, 573–583. [Google Scholar] [CrossRef]
- Tong, X.; Wang, J.; Zhang, C.; Wu, T.; Wang, H.; Wang, Y. LS-LSTM-AE: Power load forecasting via Long-Short series features and LSTM-Autoencoder. Energy Rep. 2022, 8, 596–603. [Google Scholar] [CrossRef]
Topic | Reference | Methodology/Output |
---|---|---|
Power flow forecasting | Jost et al. [19] | Using an extreme learning machine postprocessing technique to forecast the vertical power flow. |
Brauns et al. [20] | Using LSTM model with updating process for vertical power flow forecasting. | |
Paretkar et al. [21] | Implementing Box and Jenkins ARIMA for predicting power flow in the short term on significant transmission interconnections. | |
Multistep forecasting-based LSTM | Shao et al. [22] | Using TL-MCLSTM for multistep short-term power consumption forecasting. |
Liu et al. [23] | Utilizing LSTM RNN for multistep time series forecasting. | |
Alsharekh et al. [24] | Employing R-CNN with ML-LSTM for multistep forecasting. | |
Sing et al. [25] | Using 2D CNN for multistep short-term electric load forecasting. | |
Duan et al. [14] | Proposing CNN with chaotic aquila optimization algorithm for multistep short-term solar radiation forecasting. | |
Cheng et al. [26] | Combining GRU model and feedforward neural network for multistep electricity load forecasting. | |
Our approach (multistep forecasting of power flow) | Proposing LSTM autoencoder for multistep forecasting of power flow. |
Timestamp | Line 1 | Line 2 | Line 3 | Line 4 | Line 5 | Line 6 | P_Net |
---|---|---|---|---|---|---|---|
2019-01-01 00:00:00 | −58.285 | −56.291 | −16.162 | −21.027 | −7.297 | −7.743 | −166.805 |
2019-01-01 00:15:00 | −60.758 | −59.467 | −19.703 | −27.23 | −7.297 | −9.297 | −183.752 |
2019-01-01 00:30:00 | −65.043 | −62.977 | −20.811 | −31.649 | −6.851 | −9.96 | −197.291 |
2019-01-01 00:45:00 | −68.495 | −65.522 | −20.365 | −28.77 | −9.068 | −11.068 | −203.288 |
2019-01-01 01:00:00 | −68.531 | −67.661 | −27.446 | −36.527 | −10.405 | −12.608 | −223.178 |
DL Model | Structure Layers of Model |
---|---|
Simple RNN | Simple RNN layer + Dense layer |
LSTM | LSTM layer + Dropout layer + Dense layer |
GRU | GRU layer + Dropout layer + Dense layer |
Bidirectional LSTM | Bidirectional LSTM layer + Dropout layer + Dense layer |
LSTM Autoencoder | LSTM layer + Dense layer + Repeat vector layer + LSTM layer + Dense layer |
Parameter | Specification |
---|---|
CPU | 12th Gen Intel® core ™ i7-12650h |
GPU | NVIDIA GeForce RTX 3060 6 GB |
HDD/SDD | 500 GB |
RAM | 16 GB |
OS | Windows 11 Home 64 bit |
Model Name | RMSE | MAE | R2 |
---|---|---|---|
Simple RNN | 36.238 | 28.127 | 0.912 |
LSTM | 38.646 | 29.398 | 0.9 |
GRU | 32.377 | 24.352 | 0.93 |
Bidirectional LSTM | 32.486 | 24.552 | 0.929 |
LSTM Autoencoder | 32.243 | 24.154 | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aksan, F.; Li, Y.; Suresh, V.; Janik, P. Multistep Forecasting of Power Flow Based on LSTM Autoencoder: A Study Case in Regional Grid Cluster Proposal. Energies 2023, 16, 5014. https://doi.org/10.3390/en16135014
Aksan F, Li Y, Suresh V, Janik P. Multistep Forecasting of Power Flow Based on LSTM Autoencoder: A Study Case in Regional Grid Cluster Proposal. Energies. 2023; 16(13):5014. https://doi.org/10.3390/en16135014
Chicago/Turabian StyleAksan, Fachrizal, Yang Li, Vishnu Suresh, and Przemysław Janik. 2023. "Multistep Forecasting of Power Flow Based on LSTM Autoencoder: A Study Case in Regional Grid Cluster Proposal" Energies 16, no. 13: 5014. https://doi.org/10.3390/en16135014
APA StyleAksan, F., Li, Y., Suresh, V., & Janik, P. (2023). Multistep Forecasting of Power Flow Based on LSTM Autoencoder: A Study Case in Regional Grid Cluster Proposal. Energies, 16(13), 5014. https://doi.org/10.3390/en16135014