Experimental Investigation and Modelling of Sediments Effect on the Performance of Cadmium Telluride Photovoltaic Panels
Abstract
:1. Introduction
2. CdTe Solar Cells
3. Methodology
3.1. Experimental Procedures
3.2. Method to Obtain 1M5P Unknown Parameters
3.3. Modelling the Sand Effect on CdTe Solar Panels
4. Experimental Results
4.1. Impact of Sand in the Input Parameters of 1M5P
4.2. Impact of Sand in the Output Parameters of 1M5P
4.3. Empirical Model Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marques Lameirinhas, R.A.; Torres, J.P.N.; de Melo Cunha, J.P. A Photovoltaic Technology Review: History, Fundamentals and Applications. Energies 2022, 15, 1823. [Google Scholar] [CrossRef]
- Duarte, F.; Torres, J.P.N.; Baptista, A.; Marques Lameirinhas, R.A. Optical Nanoantennas for Photovoltaic Applications. Nanomaterials 2021, 11, 422. [Google Scholar] [CrossRef] [PubMed]
- Bernardes, S.; Lameirinhas, R.A.M.; Torres, J.P.N.; Fernandes, C.A.F. Characterization and Design of Photovoltaic Solar Cells That Absorb Ultraviolet, Visible and Infrared Light. Nanomaterials 2021, 11, 78. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.S.; Marques Lameirinhas, R.A.; N. Torres, J.P.; P. Fernandes, J.F.; Correia V. Bernardo, C.P. Nanostructures for Solar Energy Harvesting. Micromachines 2023, 14, 364. [Google Scholar] [CrossRef] [PubMed]
- Sarver, T.; Al-Qaraghuli, A.; Kazmerski, L.L. A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches. Renew. Sustain. Energy Rev. 2013, 22, 698–733. [Google Scholar] [CrossRef]
- Mehmood, U.; Irshad, H.M.; Al-Sulaiman, F.A.; Bashir, S.; Yilbas, B.S. Effect of Accumulation of Environmental Dust and Subsequent Mud Formation on Textural, Chemical, and Optical Properties of Silicon Wafers for Photovoltaic Cells. IEEE J. Photovolt. 2018, 8, 1274–1280. [Google Scholar] [CrossRef]
- Alves, T.; N. Torres, J.P.; Marques Lameirinhas, R.A.; F. Fernandes, C.A. Different Techniques to Mitigate Partial Shading in Photovoltaic Panels. Energies 2021, 14, 3863. [Google Scholar] [CrossRef]
- He, B.; Lu, H.; Zheng, C.; Wang, Y. Characteristics and cleaning methods of dust deposition on solar photovoltaic modules—A review. Energy 2023, 263, 126083. [Google Scholar] [CrossRef]
- Isabela, C.B.; Marques Lameirinhas, R.A.; Torres, J.P.N.; Fernandes, C.A.F. Comparative study of the copper indium gallium selenide (CIGS) solar cell with other solar technologies. Sustain. Energy Fuels 2021, 5, 2273–2283. [Google Scholar] [CrossRef]
- Almukhtar, H.; Lie, T.T.; Al-Shohani, W.A.M.; Anderson, T.; Al-Tameemi, Z. Comprehensive Review of Dust Properties and Their Influence on Photovoltaic Systems: Electrical, Optical, Thermal Models and Experimentation Techniques. Energies 2023, 16, 3401. [Google Scholar] [CrossRef]
- Castanheira, A.F.; Fernandes, J.F.; Branco, P.C. Demonstration project of a cooling system for existing PV power plants in Portugal. Appl. Energy 2018, 211, 1297–1307. [Google Scholar] [CrossRef]
- Svinterikos, E.; Zuburtikudis, I.; Abu Khalifeh, H.; Farvin Akbar Ali, S. Multifunctional polymer-based coatings for outdoor glass surfaces: A state of the art. Adv. Ind. Eng. Polym. Res. 2023; in press. [Google Scholar] [CrossRef]
- Javed, W.; Wubulikasimu, Y.; Figgis, B.; Guo, B. Characterization of dust accumulated on photovoltaic panels in Doha, Qatar. Sol. Energy 2017, 142, 123–135. [Google Scholar] [CrossRef]
- Vedulla, G.; Geetha, A.; Senthil, R. Review of Strategies to Mitigate Dust Deposition on Solar Photovoltaic Systems. Energies 2023, 16, 109. [Google Scholar] [CrossRef]
- Khalid, H.M.; Rafique, Z.; Muyeen, S.; Raqeeb, A.; Said, Z.; Saidur, R.; Sopian, K. Dust accumulation and aggregation on PV panels: An integrated survey on impacts, mathematical models, cleaning mechanisms, and possible sustainable solution. Sol. Energy 2023, 251, 261–285. [Google Scholar] [CrossRef]
- Gholami, A.; Ameri, M.; Zandi, M.; Ghoachani, R.G.; Eslami, S.; Pierfederici, S. Photovoltaic Potential Assessment and Dust Impacts on Photovoltaic Systems in Iran: Review Paper. IEEE J. Photovolt. 2022, 10, 824–837. [Google Scholar] [CrossRef]
- Azouzoute, A.; Hajjaj, C.; Zitouni, H.; Ydrissi, M.E.; Mertah, O.; Garoum, M.; Ghennioui, A. Modeling and experimental investigation of dust effect on glass cover PV module with fixed and tracking system under semi-arid climate. Sol. Energy Mater. Sol. Cells 2021, 230, 111219. [Google Scholar] [CrossRef]
- Chaichan, M.T.; Kazem, H.A.; Al-Waeli, A.H.A.; Sopian, K.; Fayad, M.A.; Alawee, W.H.; Dhahad, H.A.; Isahak, W.N.R.W.; Al-Amiery, A.A. Sand and Dust Storms; Impact on the Efficiency of the Photovoltaic Modules Installed in Baghdad: A Review Study with an Empirical Investigation. Energies 2023, 16, 3938. [Google Scholar] [CrossRef]
- Alves dos Santos, S.A.; Torres, J.P.N.; Fernandes, C.A.F.; Marques Lameirinhas, R.A. The impact of aging of solar cells on the performance of photovoltaic panels. Energy Convers. Manag. X 2021, 10, 100082. [Google Scholar] [CrossRef]
- Toth, S.; Hannigan, M.; Vance, M.; Deceglie, M. Predicting Photovoltaic Soiling From Air Quality Measurements. IEEE J. Photovolt. 2020, 10, 1142–1147. [Google Scholar] [CrossRef]
- Fares, E.; Buffiere, M.; Figgis, B.; Haik, Y.; Isaifan, R.J. Soiling of photovoltaic panels in the Gulf Cooperation Council countries and mitigation strategies. Sol. Energy Mater. Sol. Cells 2021, 231, 111303. [Google Scholar] [CrossRef]
- Shrestha, S.M.; Mallineni, J.K.; Yedidi, K.R.; Knisely, B.; Tatapudi, S.; Kuitche, J.; TamizhMani, G. Determination of Dominant Failure Modes Using FMECA on the Field Deployed c-Si Modules Under Hot-Dry Desert Climate. IEEE J. Photovolt. 2015, 5, 174–182. [Google Scholar] [CrossRef]
- Guo, B.; Javed, W. Efficiency of Electrodynamic Dust Shield at Dust Loading Levels Relevant to Solar Energy Applications. IEEE J. Photovolt. 2018, 8, 196–202. [Google Scholar] [CrossRef]
- Isaifan, R.J.; Johnson, D.; Ackermann, L.; Figgis, B.; Ayoub, M. Evaluation of the adhesion forces between dust particles and photovoltaic module surfaces. Sol. Energy Mater. Sol. Cells 2019, 191, 413–421. [Google Scholar] [CrossRef]
- Heimsath, A.; Nitz, P. The effect of soiling on the reflectance of solar reflector materials—Model for prediction of incidence angle dependent reflectance and attenuation due to dust deposition. Sol. Energy Mater. Sol. Cells 2019, 195, 258–268. [Google Scholar] [CrossRef]
- Gholami, A.; Ameri, M.; Zandi, M.; Gavagsaz Ghoachani, R. A single-diode model for photovoltaic panels in variable environmental conditions: Investigating dust impacts with experimental evaluation. Sustain. Energy Technol. Assess. 2021, 47, 101392. [Google Scholar] [CrossRef]
- Fan, S.; Wang, Y.; Cao, S.; Sun, T.; Liu, P. A novel method for analyzing the effect of dust accumulation on energy efficiency loss in photovoltaic (PV) system. Energy 2021, 234, 121112. [Google Scholar] [CrossRef]
- Santos, J.; Lameirinhas, R.; Fernandes, C.; Torres, J.P. The influence of sand on the performance of CdTe photovoltaic modules of different colours and transparencies. Energy Syst. 2022. [Google Scholar] [CrossRef]
- Rawat, R.; Kaushik, S.; Sastry, O.; Singh, Y.; Bora, B. Energetic and exergetic performance analysis of CdS/CdTe based photovoltaic technology in real operating conditions of composite climate. Energy Convers. Manag. 2016, 110, 42–50. [Google Scholar] [CrossRef]
- Pulli, E.; Rozzi, E.; Bella, F. Transparent photovoltaic technologies: Current trends towards upscaling. Energy Convers. Manag. 2020, 219, 112982. [Google Scholar] [CrossRef]
- Goetzberger, A.; Hebling, C.; Schock, H.W. Photovoltaic materials, history, status and outlook. Mater. Sci. Eng. R Rep. 2003, 40, 1–46. [Google Scholar] [CrossRef]
- Amin, N. Introduction of inorganic solar cells. In Comprehensive Guide on Organic and Inorganic Solar Cells; Elsevier: Amsterdam, The Netherlands, 2022; pp. 57–63. [Google Scholar]
- Sundaram, S.; Benson, D.; Mallick, T.K. Solar Photovoltaic Technology Production: Potential Environmental Impacts and Implications for Governance; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Afghan, S.A.; Abdulkareem, H.; Husi, G. Simulating the electrical characteristics of a photovoltaic cell based on a single-diode equivalent circuit model. MATEC Web Conf. 2017, 126, 03002. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Shokeen, P.; Jain, A.; Kapoor, A. Exact analytical solutions of the parameters of different generation real solar cells using Lambert W-function: A Review Article. J. Renew. Energy 2014, 4, 155–194. [Google Scholar]
- Coutinho, I.; Medici, T.; Gratuze, B.; Ruivo, A.; Dinis, P.; Lima, A.; Vilarigues, M. Sand and Pebbles: The Study of Portuguese Raw Materials for Provenance Archaeological Glass. Minerals 2022, 12, 193. [Google Scholar] [CrossRef]
- Song, Z.; Fang, K.; Sun, X.; Liang, Y.; Lin, W.; Xu, C.; Huang, G.; Yu, F. An Effective Method to Accurately Extract the Parameters of Single Diode Model of Solar Cells. Nanomaterials 2021, 11, 2615. [Google Scholar] [CrossRef] [PubMed]
- Castro, R.; Silva, M. Experimental and Theoretical Validation of One Diode and Three Parameters–Based PV Models. Energies 2021, 14, 2140. [Google Scholar] [CrossRef]
- Kumar Garg, V.; Sharma, S. Performance Evaluation of Solar Module with Emulator and DC Microgrid. Int. J. Renew. Energy Res. 2021, 11, 1552–1560. [Google Scholar]
- Khan, F.; Singh, S.; Husain, M.O. Determination of the diode parameters of aSi and CdTe solar modules using variation of the intensity of illumination: An application. Sol. Energy 2011, 85, 2288–2294. [Google Scholar] [CrossRef]
- Albright, S.; Singh, V.; Jordan, J. Junction characteristics of CdS/CdTe solar cells. Sol. Cells 1988, 24, 43–56. [Google Scholar] [CrossRef]
- Sharma, R. Temperature Dependence of I-V Characteristics of Au/n-Si Schottky Barrier Diode. J. Electron Devices 2010, 8, 286–292. [Google Scholar]
- Gaewdang, T.; Wongcharoen, N.; Wongcharoen, T. Characterisation of CdS/CdTe Heterojunction Solar Cells by Current-Voltage Measurements at Various Temperatures under Illumination. Energy Procedia 2012, 15, 299–304. [Google Scholar] [CrossRef] [Green Version]
- Naik, S.; Rajagopal Reddy, V. Temperature Dependency And Current Transport Mechanisms Of Pd/V/N-Type InP Schottky Rectifiers. Adv. Mater. Lett. 2012, 3, 188–196. [Google Scholar] [CrossRef]
- Dalapati, P.; Manik, N.B.; Basu, A.N. Analysis of the Temperature Dependence of Diode Ideality Factor in InGaN-Based UV-A Light-Emitting Diode. Semiconductors 2020, 54, 1284–1289. [Google Scholar] [CrossRef]
- Gopal, V.; Gautam, N.; Plis, E.; Krishna, S. Modelling of current-voltage characteristics of infrared photo-detectors based on type—II InAs/GaSb super-lattice diodes with unipolar blocking layers. AIP Adv. 2015, 5, 097132. [Google Scholar] [CrossRef] [Green Version]
- Razooqi Alaani, M.; Abdulameer, A.F.; Adwan, N.; Awni, R.; Sabbar, E. The Electrical Characterization of p-CdTe/n-Si (111) Heterojunction Diode. Adv. Mater. Res. 2013, 702, 236–241. [Google Scholar] [CrossRef]
- Lv, B.; Yan, B.; Cai, P.; Gao, F.; Ye, Z.; Li, Y.; Chen, N.; Sui, C.; Lin, Q.; Cheng, G.; et al. The study on saturation current and ideality factor of CdTe solar cell based on CdS window layer deposited with hydrogen peroxide. Semicond. Sci. Technol. 2019, 34, 115025. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, K.; Zhang, J.; Li, Y.; Yang, Z.; Zheng, W.; Chen, X. Fault diagnosis approach for photovoltaic array based on the stacked auto-encoder and clustering with I-V curves. Energy Convers. Manag. 2021, 245, 114603. [Google Scholar] [CrossRef]
- Dupon, I.; Carvalho, P.; Jucá, S.C.; Neto, J. Novel methodology for detecting non-ideal operating conditions for grid-connected photovoltaic plants using Internet of Things architecture. Energy Convers. Manag. 2018, 200, 112078. [Google Scholar] [CrossRef]
Color | n | |||
---|---|---|---|---|
yellow | −23.5% | 17.8% | −32.1% | −29.8% |
orange | −13.0% | 14.6% | −4.5% | −25.1% |
red | −15.8% | 19.6% | −6.0% | −25.5% |
gray | −35.3% | 53.8% | −35.9% | −30.4% |
green | −32.5% | 32.0% | −37.5% | −14.8% |
blue | −21.2% | 22.0% | −5.2% | −21.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, B.; Fernandes, J.F.P.; Torres, J.P.N.; Marques Lameirinhas, R.A. Experimental Investigation and Modelling of Sediments Effect on the Performance of Cadmium Telluride Photovoltaic Panels. Energies 2023, 16, 4777. https://doi.org/10.3390/en16124777
Gonçalves B, Fernandes JFP, Torres JPN, Marques Lameirinhas RA. Experimental Investigation and Modelling of Sediments Effect on the Performance of Cadmium Telluride Photovoltaic Panels. Energies. 2023; 16(12):4777. https://doi.org/10.3390/en16124777
Chicago/Turabian StyleGonçalves, Bernardo, João F. P. Fernandes, João Paulo N. Torres, and Ricardo A. Marques Lameirinhas. 2023. "Experimental Investigation and Modelling of Sediments Effect on the Performance of Cadmium Telluride Photovoltaic Panels" Energies 16, no. 12: 4777. https://doi.org/10.3390/en16124777
APA StyleGonçalves, B., Fernandes, J. F. P., Torres, J. P. N., & Marques Lameirinhas, R. A. (2023). Experimental Investigation and Modelling of Sediments Effect on the Performance of Cadmium Telluride Photovoltaic Panels. Energies, 16(12), 4777. https://doi.org/10.3390/en16124777